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Abstract

We present a system for real-time deformation of the
shape and appearance of people who are standing in front
of a depth+RGB camera, such as the Microsoft Kinect. Our
system allows manipulating human body shape parameters
such as height, muscularity, weight, waist girth and leg
length. The manipulated appearance is displayed in real-
time. Thus, instead of posing in front a real mirror and
visualizing their appearance, users can pose in front of a
‘virtual mirror’ and visualize themselves in different body
shapes. Our system is made possible by a morphable model
of 3D human shape that was learnt from a large database
of 3D scans of people in various body shapes and poses.
In an initialization step, which lasts a couple of seconds,
this model is fit to the 3D shape parameters of the people
as observed in the depth data. Then, a succession of pose
tracking, body segmentation, shape deformation and image
warping steps are performed – in real-time and indepen-
dently for multiple people. We present a variety of results
in the paper and the video, showing the interactive virtual
mirror cabinet experience.

1. Introduction

Artists have long employed the technique of morphing
the visual appearance of humans for comical and caricature
purposes, and to improve the appearance. With the advent
of digital technology, such editing has become common-
place through tools such as Adobe Photoshop. However,
such editing was cumbersome and required intensive man-
ual work by the artist in order to produce a plausible image.
Quite recently, certain methods allowed for automatic mor-
phing of shape and appearance of people in photographs
[13] and in videos [8]. This is achieved by a morphable hu-
man body model that is built from a statistical analysis of
human body shapes, obtained from a large database of 3D
scans. During an initialization step, the shape parameters

of the model are fit to a given person. Then, these param-
eters are varied to obtain the structure of the person in a
deformed shape, but in the same pose. To show this defor-
mation in a picture or a video, an image-warping step needs
to be performed that is driven by positional constraints on
certain selected pixels. Each of these steps might involve
manual input that makes the task harder for reshaping hu-
mans in videos [8], since the editing has to be performed in
a holistic way throughout the video. In this paper, we take
this challenge much further, by presenting a completely au-
tomatic system that is capable of real-time manipulation of
human body shape and appearance.

Achieving the shape-morphing effect in real-time opens
up a new range of personalized augmented reality applica-
tions that could be interresting especially for fairgrounds
and theme parks. Indeed, carnivals have often employed
mirrors with optical distortions such that people experience
the effect of seeing themselves thinner, shorter, fatter or
taller. Mirrors can be designed to deflect the light just so
that these effects are visible to people standing at a certain
position and distance. However, the suspension of disbelief
that is possible through mirror optics alone is rather narrow.
The same can be said about simple image distortion meth-
ods that can be applied over digital images. In this paper,
we present an approach for semantically meaningful human
shape distortion in real-time. The person need not stand in
a specific place or pose, and the range of possible shape de-
formations is far wider – e.g., the muscularity or the BMI of
the person can be changed. Thus, our system can also serve
as a Virtual Gym showing how people will look if they loose
weight or work out regularly. This is possible, because the
shape deformations we provide can be interpreted semanti-
cally and look sufficiently realistic.

In order to achieve such deformations, a semantically
meaningful knowledge about the human shape is required,
and that shape has to be fit properly to the image, before
the image is warped. The works of Zhou et al. [13] and
Jain et al. [8] perform this off-line by statistically modeling
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Figure 1. Overview of the system workflow: (a) Input video (b) Registered 3D shape overlay (c) Modified 3D shape (d) Foreground mask
(e) Image warping constraints – red points correspond to target locations and green points to source locations (f) Output warped image

the shape semantics from a database of 3D scans of peo-
ple (both works rely on the database collected by Hasler
et al.[6]). This problem, however, becomes far more chal-
lenging when trying to achieve real-time performance. In
this paper, we solve a variety of theoretical and engineer-
ing challenges to present a virtual mirror cabinet experi-
ence for the users. In real-time, the users can visualize
semantically-meaningful deformations of their shape and
appearance. For example, a person can appear taller or more
muscular, and this appearance is maintained as the person
moves and changes pose. The shape of the person can also
be continuously changed, in real-time over the course of
motion. Different shape deformations can be applied to dif-
ferent people, which allows for an entertaining and fun ex-
perience.

Our main contributions in this paper, differentiating it
from related works [13] [8], are as follows.

1. A fast and completely automatic shape initialization
procedure, where a set of human body shape parame-
ters are rapidly estimated.

2. A real-time pose tracking, pose transfer and shape de-
formation system for articulated 3D motion.

3. A real-time image foreground segmentation that re-

fines the Kinect SDK foreground mask using the RGB
images of the Kinect sensor.

4. A real-time implementation of image warping improv-
ing on the Movie Reshape [8] implementation. In con-
trast to Movie Reshape, our implementation handles
foreground and background separately to avoid any
distortions in the background.

2. Previous work

Our work falls in the broad range of techniques deal-
ing with real-time augmented reality. Augmented reality
services which partly alter the incoming video streams are
being used increasingly in computer games [11], television
advertising and in video-chats. However, the kind of possi-
ble edits are often limited to a rigid shape that is overlayed
onto the surface of the object being imaged. For example,
a pair of spectacles can be added to the face of a consumer
[10], such that the new look can be visualized before a pur-
chase is made. Hilsmann et al. [7] have demonstrated an
application where a virtual print is added to the T-shirt of
a person being imaged. An entire virtual dress can also be
constructed, and added to a person’s frame [14]. Many in
this gamut of applications have been termed as ‘virtual mir-
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ror’ applications. However, each application is often lim-
ited to a specific scenario. Various artifacts may affect the
quality of the results owing to misalignment in shape reg-
istration over images. Simulating virtual non-rigid shapes
such as dresses or human bodies in a perceptually pleas-
ing manner is also hard, and may result in visual artifacts
if done improperly. Various research efforts have been ad-
dressing some of these issues. But so far, modifying the
actual body shape of the persons in real-time has not been
attempted. Our work enlarges the scope of virtual mirror
applications by addressing this important challenge.

We now discuss a category of works from computer vi-
sion whose objective is to estimate human body shape pa-
rameters from input photographs or video. Such modeling
of human body shape is necessary to effect any semantically
meaningful body shape modification. Anguelov et al. [1]
present the SCAPE body model as a means for separately
modeling the statistical variation of human body shapes and
poses from a database of 3D scans - with several people
standing in the same pose and one person standing in dif-
ferent poses. Hasler et al. [6] present a different statistical
body model by simultaneously modeling both body shape
and pose from a database of 3D scans consisting of several
people in various poses. Such statistical human body mod-
els have a variety of applications. Balan and Black [2] use
the SCAPE model to present an application for estimating
the 3D ‘naked’ body shape of a person underneath clothes
from a set of photographs. Weiss et al. [12] present an ap-
plication for obtaining a more accurate 3D body scan of
the person from the depth data given by the Kinect sen-
sor, and regularizing the noisy depth information through
the SCAPE body priors. However, this approach requires
higher computation time and multiple scans. In contrast, we
present an approach for rapid shape estimation with real-
time applications. Our work takes direct inspiration from
the works of Zhou et al. [13] and Jain et al. [8] who present
interactive systems for reshaping human body shape in pho-
tographs and videos respectively. We extend the scope of
these works and target real-time reshaping of humans to al-
low for a virtual mirror experience.

3. Overview
We first describe the input and output sensor modalities,

and the underlying mathematical model for shape and pose
deformation. Afterwards, the real-time image deformation
method is detailed.

System Input and Output As input to our system, we
take the RGB video stream provided by the Microsoft
Kinect sensor at a resolution of 640 × 480 pixels, with the
frame rate of 30 fps. We assume that there are 1 - 2 people
(referred to as actors) in front of the Kinect camera, and take
as input a set of shape modification attributes from the user.

The output from our system is an altered RGB video stream
where the required shape modifications are performed (as
illustrated in Fig. 1). To drive our method, we take two fur-
ther inputs from the Kinect sensor (i) a depth data stream
at a resolution of 320 × 240 pixels with the depth range
between 1.2 and 3.5 meters (ii) the joint positions of 20
skeletal joints (denoted henceforth by {Ki}) for 1 − 2 ac-
tors given by the Kinect SDK. However, please note that
these input skeleton estimates are not temporally coherent
and ‘bone lengths’ vary over time. Also, no joint angle pa-
rameters are provided1.

Statistical human shape model Our system relies on a
mathematical model for human body shape that models
variations across several men and women. We build on
top of the model developed by Hasler et al. [6], that was
built from 3D laser scans of over 100 people of varying
age and gender. Our model can be represented as BαΘ =
(Mα, SΘ,W ) whereMα is a 3D surface mesh consisting of
nm = 6500 vertices in R3 controlled by shape parameters
α (explained in the following), SΘ is a kinematic skeleton of
joints {Ji}, which is controlled by pose parameters Θ, and
W is a set of skinning weights that map the surface vertices
to a linear combination of rigid transformations affecting
various joints. We design the skeleton such that the joint
positions Ji correspond to the locations Ki, where Kinect
SDK places the skeletal joints. The model is built on top of
an average human body model B0

0 = (M0, S0,W ), spec-
ifying the average surface mesh M0 of the persons in the
database and the rigged kinematic skeleton S0 in the de-
fault pose. Henceforth, we call this the default body. Un-
derlying this model are a set of n = 20 shape deformation
vectors {n1 vi} that provide a linear basis spanning the prin-
cipal variations of human body shape, as observed in the
database collected by Hasler et al. [6]. When the user spec-
ifies a set of input human shape parameters α = {n1αi}, a
corresponding 3D surface mesh (in the default pose) can be
obtained as

Mα =M0 +

n∑
i=1

αi ∗ vi (1)

This body shape can be retargeted to a new pose speci-
fied by joint transformations Θ = {θi}. We use a set of
nj = 52 joint parameters, where θ1, θ2, θ3 correspond to
the absolute position of the root joint, and the parameters
θ4, . . . , θnj correspond to rotation angles for the rest of the
joints. The body model in the new pose Θ with shape pa-
rameters α is denoted as BαΘ . Mesh deformation with re-
spect to these joint transformations is modelled by a stan-

1The Kinect for Windows SDK 1.5 released in May 2012 already pro-
vides rotation parameters for joints. However, our project was developed
before its release.
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dard surface skinning approach driven by skinning weights
W .

Initialization When the actor appears in the scene for the
first time, an initialization step needs to be performed in
order to estimate the body shape parameters αS = {αi}
that map to the principal shape variations given by the basis
deformation vectors {vi}. We refer to the output of this
initialization step, i.e. the estimated source model of the
actor with the embedded skeleton in the default pose as the
‘source body’ BS

0 .

Real-time deformation Based on this initialized shape
deformation model, we describe a system for reshaping the
appearance of humans in real-time. Fig. 1 provides a con-
ceptual overview, which consists of the following 4 princi-
pal steps

1. Pose deformation At each frame, pose Θ is estimated
by minimizing the distances between the joints of BS

Θ
and corresponding Kinect joints Ki (Fig. 1b).

2. Shape deformation and pose transfer The model
of desired actor appearance target body BT

0 is ob-
tained fromBS

0 through a shape deformation driven by
user provided shape parameters αT , which correspond
to semantically meaningful attributes such as height,
weight, muscularity, etc. The pose Θ is transfered to
target body,so that BT

Θ models the desired target ap-
pearance (Fig. 1c).

3. Foreground mask estimation Foreground region cor-
responding to the actor is estimated. This step takes the
Kinect SDK foreground mask and refines it by means
of Graph-cut segmentation [3] to obtain the final fore-
ground mask (Fig. 1d).

4. Image warping Based on the constraints obtained
from correspondences between the image projections
of BS

Θ and BT
Θ (Fig. 1e), the foreground region of the

image is deformed by an image-warping step, which
achieves the desired actor appearance modification.
Finally, the output image is composed by overlay-
ing morphed foreground over the background image
(Fig. 1f).

In the following, the initialization strategy is detailed in
Section 4. In Section 5, the method for real-time shape de-
formation is explained. Results of our approach are pre-
sented and discussed in Section 6, and directions to future
work are pointed out. Section 7 concludes the paper.

4. Initialization
We propose a novel and completely automatic initializa-

tion procedure to estimate the body shape parameters of the

actor from the Kinect sensor. The objective of this method
is to provide a simple and fast strategy (taking only a couple
of seconds) for initialization without any manual interven-
tion or markers. The actor appears in front of the sensor
in an arbitrary static pose. Using the point cloud from the
depth image and the landmarks of joint positions given by
the Kinect SDK, the source body shape BS of the actor is
estimated. This consists of the following steps.

Transformation of point cloud into default pose Let
Pin = {np1 pi ∈ R3} be the 3D point cloud given by the
Kinect depth sensor. The objective of this step is to trans-
form Pin into the default pose P0 such that body shape pa-
rameters can be optimised. In order to achieve this transfor-
mation, we first need to estimate correspondences between
points in the depth image and the vertices of B0

0 . We first
construct an intermediate body shape BD

0 from B0
0 by scal-

ing the bone lengths of S0 in order to fit bone lengths given
by the Kinect skeleton {Ki}, and correspondingly scaling
the offsets of vertices from joints in the direction along the
bones.

Then we solve the inverse kinematics (IK) problem in or-
der to estimate pose parameters Θin, such that the skeleton
ofBD

in exactly fits the joint positionsKi given by the Kinect
SDK. We adopt a standard IK-solve step by estimating the
joint rotations down the kinematic chains (starting from the
root joint), in a manner similar to that described by Bregler
et al. [4]. This procedure gives us a body shape model BD

in

that is reasonably close to Pin. We take advantage of this
proximity to estimate correspondences between Pin and the
vertices in the body shape model BD

in, by simply assigning
correspondences to the closest neighboring vertex for each
point in Pin. We use the skinning weightsW of correspond-
ing mesh vertices as the skinning weights for their matches
in Pin and transfer the point cloud to the default pose P0.
We do this by applying the inverse of the pose transforma-
tions Θ−1

in along the kinematic chain and blending the joint
transformations with linear blend skinning.

Fitting statistical body model to point cloud data Here,
we estimate the optimal set of parameters α̂ = {n1 α̂i} such
that the mesh M̂ = M α̂ matches the shape of the actor.
Given P0 from the earlier step, we perform a gradient de-
scent optimization of the shape parameters α1, . . . , αn in
order to minimize the distances between points in P0 and
their corresponding mesh vertices. i.e. given the point cloud
P0 = (p1, ..., pnp), mesh M = (v1, ..., vnm) and corre-
spondence function k(i) = j, where vj is the closest mesh
vertex to the point pi), we minimize the following energy
with respect to the parameters α

E(α) =
np∑
i=1

(pi − vαk(i))
2 (2)
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Subsequently, we perform this shape initialization step at
several frames and compute the optimal set of shape pa-
rameters for a given person by averaging the results from
individual frames. Since the Kinect depth sensor captures
at 30 fps and our optimization procedure is very fast, this
only takes 2− 3 seconds to initialize the model. We refer to
the body model with optimized shape parameters α̂ as the
source body Bα̂0 = BS .

Skeleton refitting The earlier step provides us with the
surface meshMS

0 of the source body BS
0 but not yet the un-

derlying skeleton. We obtain the positions of skeletal joints
utilizing the approach used in [5].

For each joint Ji, we associate a set of mesh vertices
{ni1 va} that are close to the joint. We denote the positions
of these vertices in the default body as v01 , ..., v

0
ni and their

positions in the source body as vS1 , . . . , v
S
ni. Let J0

i be the
position of the joint in the default body B0

0 . Then the posi-
tion JS

i in the source body BS
0 can be computed as

JS
i = J0

i +

∑ni
a=1(v

S
a − v0a)
n

(3)

After this initialization procedure, we have the source body
BS

0 i.e, a 3D body model for the actor with a 3D surface
mesh and a rigged kinematic skeleton. We use this to track
the actor and apply various body shape deformations.

5. real-time shape deformation
5.1. Shape deformation

To deploy the modified body appearance, we take a set of
semantically meaningful shape deformation attributes and
deform the source body shape BS

0 to a target body shape
BT

0 . The shape database of Hasler et al. [6] is recorded
along with a set of semantic attributes - height, weight,
breast girth, waist girth, hips girth, legs girth, muscularity.
Following the Movie-Reshape project [8], which uses the
same database, we adopt a linear map between the space
of principal shape variations {vi} as defined earlier, and
the space of semantically meaningful shape offsets {wi}
(please note that unlike {vi}, the semantic shape offset vec-
tors {wi} might be correlated with each other). We take as
input from the user a set of semantically meaningful shape
modification parameters λ1, . . . , λ6 and morph the source
body BS into the target body BT as follows.

MT =MS +

6∑
i=1

λi ∗ wi (4)

This shape deformation step does not depend on the sen-
sory input from the Kinect, but only needs to be performed
whenever the parameters λi are changed by the user. In our

(a) (b)

Figure 2. Image segmentation: Results for person shortening (a)
Kinect SDK foreground (b) Graph-cut refined foreground.

virtual mirror application, we provide for a gradual and con-
tinuous change of shape variations which is more pleasing
to the user.

5.2. Pose deformation

In this step, we deform the pose of source and target bod-
ies to suit to the observations of joint positions {Ki} given
by the Kinect SDK. For this, we take the skeleton S0 of the
source body BS

0 in the default pose, and estimate the skele-
tal pose Θ such that the distance between joints Ji of SΘ and
the corresponding Kinect joints Ki in the current frame is
minimized. Again, we use the standard IK-solve procedure
by consecutively estimating the root position and joint rota-
tion angles down the kinematic chains. The pose adjusted
models BS

Θ and BT
Θ with meshes skinned according to the

pose Θ and their projections into the video image provide
the necessary spatial constraints for image warping step.

5.3. Foreground estimation

Prior to the image-warping, we need to separate out the
scene background from the image foreground over which
the actor appears. We take advantage of the foreground seg-
mentation mask in the depth image that is provided by the
Kinect SDK, but this is jittery at the edges. In this step, we
propose a real-time procedure that refines this mask and ex-
tracts a clean foreground. We build up on work of Boykov
and Jolly [3], who formulate image segmentation as a graph
partitioning problem. An unordered graph is constructed
between image pixels such that every pair of neighboring
pixels is connected by an edge whose weight is given by
color similarity, and two extra terminal nodes are added
to denote foreground and background regions. Source and
sink weights are given by similarity of the pixels to known
foreground and background regions. The image is then seg-
mented into foreground and background regions by a fast
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min-cut algorithm which cuts along the edges with mini-
mum weight. In order to achieve this in real-time, we ap-
ply this method only on a narrow band of pixels around
the boundary of the foreground mask given the Kinect SDK
(those pixels that are likely to be assigned incorrectly).

5.4. Image warping

In this step, we take the input image and a set of deforma-
tion constraints in order to produce a warped output image.
The deformation constraints are given by source and target
2D locations for a set of pixels. This sparse set of con-
straints are smoothly interpolated over the whole image do-
main. In our case, the constraints come from the projections
of a sparse subset of vertices ofBS

Θ andBT
Θ - the source and

target bodies in the new pose Θ. Let the 2D vertex locations
in the source and target bodies be s1, . . . , sn and t1, . . . , tn
respectively. Similar to the [8], we use the Moving Least
Squares (MLS) method for image warping, through a paral-
lelized GPU implementation for real-time performance. For
each pixel x, MLS finds the optimal 2D transformation Mx

that transfers the pixel to its new location x
′
=Mx(x). Fol-

lowing the minimization strategy of Müller et al. [9], Mx

is obtained as

Mx = argminM

n∑
i=1

1

|x− si|2
(M(si)− ti)2 (5)

In our GPU implementation of MLS, we compute the trans-
formation Mx only for a subset of pixels in a uniform
160×120 pixel grid. The warping field of the whole im-
age domain is obtained from the grid by linear interpola-
tion. This optimization exploits the fact that the warping
field varies smoothly, so the sparse spatial sampling does
not have significant impact on results. With this technique,
we achieve 16× speed-up when warping an image of size
640× 480 pixels, which enables us to accomplish real-time
performance even with low end integrated GPUs such as 16
cores NVIDIA NVS 3100M.

Please note that the image warping method in our paper
is different from the one proposed in the Movie-Reshape
paper [8], which does not separate foreground from back-
ground. This direct warping results in background dis-
tortions that are negligible for minor shape deformations.
However, they become disturbing for exaggerated shape de-
formations, which are often used in the context of our ap-
plication (see Fig. 3 for comparison).

5.5. Output image composition

In order to produce the illusion of a virtual mirror cabi-
net, we compose the warped image foreground with an un-
warped image background. Holes may appear if the fore-
ground region is shrunk (e.g, when the person is deformed
to be shorter or thinner). We fill these holes through in-
painting from a static background image, which is recorded

(a) (b)

Figure 3. Image warping: Results for shortening and muscularity
increase (a) Movie-Reshape warping strategy (b) our method.

(a) (b)

Figure 4. Result of shape modification: Top row - input images.
Bottom row - (a) increased muscularity (b) decreased muscularity

first during initialization. This background image is subse-
quently updated over time such that pixels marked as back-
ground with high confidence (i.e, sufficiently far from pixels
estimated as foreground) replace the older pixels.

6. Results
We evaluate the system on a number of users of vari-

ous body proportions, and wearing a variety of clothing. In
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(a) (b)

Figure 5. Result of shape modification: Top row shows the input
images. Bottom row shows (a) increased weight and height (b)
effect of making thinner with longer legs.

Fig. 4 and Fig. 5, we present the resulting images of various
body shape modifications. These results are best viewed
in the accompanying video, which shows the interactive na-
ture of our system and how it achieves temporally consistent
smooth body modifications in the video. Fig. 4 shows the
results of increasing and decreasing of muscularity of the
actor. The foreground shape deformations resemble carica-
ture depiction due to the extreme change of the muscularity
parameter. Distortions in background areas are avoided be-
cause the deformation is restricted to the foreground. The
high accuracy of the segmentation leads to very plausible
results. Fig. 5 shows examples of moderate shape deforma-
tions. The resulting shape deformations look realistic and
give the idea of how the person will look if certain body
shape parameters change. The achieved level of realism
of minor shape edits opens up possibilities of personalized
augmented reality applications such as the “Virtual Gym” -
showing users how will they look if they diet or go to a gym
regularly.

The importance of graph cut segmentation refinement is
shown in figure Fig. 2 as well as in the acompanying video.
The refined masks yield more accurate results and reduce
the artifact of jittering near the actor’s boundary.

The advantages of our image warping strategy over the

Movie-reshape image warping strategy in case of significant
shape deformations are illustrated by Fig. 3 and the acom-
panying video.

The system is capable of producing an output video with
a frame-rate of 12 fps on a regular laptop2 and 18 fps on a
high-end desktop computer3 - foreground estimation takes
50% and image warping takes 40% of computation time ap-
proximately. It is possible to track and deform two persons
simultaneously. This makes it suitable for deployment in
interactive demos and virtual chat rooms.

Limitations and Future Work Visual artifacts might re-
sult from errors in the steps Shape Initialization, Pose
Tracking, Segmentation, or Image Warping. These artifacts
can be broadly divided into two categories. The first group
are visually displeasing artifacts that are harmful for the vir-
tual mirror illusion. The second group are artifacts that are
not visually displeasing, but where the output appearance
of the person is different from the desired result. We show
some of these artifacts in Fig. 6.

We first discuss the visually unpleasant artifacts. Cer-
tain poses of the person might be difficult to register for the
Kinect-based pose tracking algorithm, for example, when
some of the limbs are occluded by other parts of the body.
Since we rely on the joint location detection provided by
the Kinect SDK, which is not temporally coherent and un-
stable for such difficult poses, this may result in jumps and
shaky movement in the output video. Such artifacts can be
removed by incorporating temporal priors in pose tracking.

Detecting occlusions and handling missing data is also
an important area for future work. When parts of the ac-
tor are not visible in the input image but are required to
be visible after the shape modification, our method fails to
reproduce them since it warps each frame of the video in-
dependently. More intelligent object inpainting algorithms
are required to handle such cases. Minor artifacts can also
appear when filling holes in the final image with pixels from
the static (inpainted) background. This is mostly caused by
the fact that the lighting condition may have changed be-
tween the current frame and the frames where pixels used
for inpainting originate from.

Imperfect segmentation of the body shape near the
boundaries of the foreground mask might produce flicker-
ing. Inaccurate segmentation also leads to some warping of
the pixels that are originally in the background but marked
incorrectly as belonging to the actor. Better foreground seg-
mentation can be achieved by incorporating more accurate
appearance and shape priors, than simple color similarity.

The second class of artifacts where the output appear-
ance of the person differs from the desired result, happen

2Dell Latitude E6410, Intel CORE i5, NVIDIA NVS 3100M
3HP Elite 7300 Microtower, Intel Core i7 2600 Sandy Bridge, NVIDIA

GeForce GT545 3GB
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(a) (b) (c)

Figure 6. Examples of artifacts: (a) shows the artifact in the hair region due to segmentation failure, (b) shows unnatural discontinuities
in the background caused by the fact that the shadow casted by the person in not properly represented in the static background image, (c)
shows unnatural legs cut due to missing image information when the person is made taller.

due to imperfect alignment between the tracked model and
the actor’s image caused either by poor model initialization
or pose tracking. In such cases, the warping constraints are
not placed at the correct locations and the shape deforma-
tion effect can be weakened. Another problem results from
the fact that the warping constraints act globally on the ac-
tor’s foreground image, which means that constraints on
one body-part influence another body-part when both come
close. For example, the person’s arm and chest are warped
together when they are in close proximity in the input im-
age. This problem can be alleviated by accurate body-part
segmentation in the input images, which poses a challeng-
ing problem for future work.

7. Conclusion

In this paper, we have presented a system for real-time
shape deformation of people. To achieve this, we solve sev-
eral challenging vision problems in real-time: shape initial-
ization, human pose-tracking, shape segmentation and im-
age warping. We build on existing state-of-the-art systems
for depth imaging and body-part detection, and statistical
human body modeling. On top of this, we solve several cru-
cial problems to achieve real-time performance. Our work
presents the first system that is capable of producing human
body-shape modification effects in real-time.
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