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Abstract
We present a comprehensive data-driven statistical model for skin and muscle deformation of the human shoulder-
arm complex. Skin deformations arise from complex bio-physical effects such as non-linear elasticity of muscles,
fat, and connective tissue; and vary with physiological constitution of the subjects and external forces applied
during motion. Thus, they are hard to model by direct physical simulation. Our alternative approach is based
on learning deformations from multiple subjects performing different exercises under varying external forces. We
capture the training data through a novel multi-camera approach that is able to reconstruct fine-scale muscle detail
in motion. The resulting reconstructions from several people are aligned into one common shape parametrization,
and learned using a semi-parametric non-linear method. Our learned data-driven model is fast, compact and
controllable with a small set of intuitive parameters - pose, body shape and external forces, through which a
novice artist can interactively produce complex muscle deformations. Our method is able to capture and synthesize
fine-scale muscle bulge effects to a greater level of realism than achieved previously. We provide quantitative and
qualitative validation of our method.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—I.4.8 [Image Processing]: Digitization and Image Capture—Scanning

1. Introduction

Realistic virtual humans are becoming commonplace in
movies and interactive CG applications. Achieving realistic
appearance depends not only on accurate rendering and mo-
tion, but also on accurate modeling of subtle pose-dependent
deformations which are due to muscles and other soft tis-
sue. Currently, creating such subtle effects is a challenging
process - usually requiring tedious manual work by expe-
rienced animators. State-of-the-art techniques typically rely
on a complex multi-layered animation model - comprising
an animation rig, attached muscles and a physics based sim-
ulation of deformation effects [LGK∗12]. Despite producing
believable results, these approaches have several drawbacks.
Customization of muscle models to specific virtual subjects
is not easy. Control and simulation of these models may be
computationally expensive and require tuning of many pa-
rameters. Further, since the underlying muscle model is still
an approximation of the anatomical reality, truly fine-scale
muscle deformation may not be reproducible.

In this paper, we present an alternative data-driven ap-
proach for muscle deformation which addresses some of
these limitations. Rather than designing a model a priori, we
learn the complex inter-dependencies between muscle activ-
ity of real subjects and their physical constitution, motion,
and external forces. From a database of multi-view video
observations on male human subjects performing a range
of arm motions, we build a data-driven muscle simulation
model for the shoulder-arm complex. Our model is efficient
and easy-to-use, controllable with only a small number of in-
tuitive parameters. It is capable of reproducing a wide range
of arm movements and muscle bulges in various poses as
well as under the action of various external forces. We note
that similar concepts as presented in this work can be applied
to other body parts, or across wider populations.

Our model takes as input standard skeletal motion pa-
rameters to specify the motion to be executed. In addition,
the parameters that control the appearance of the subject in
terms of physique and training level - the subject’s body
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Figure 1: Multi-view recordings of human subjects performing various muscle exercises (left) are used to build a statistical
model for synthesizing muscle deformations (middle) that can be altered according to pose, body shape and external forces.
Our model can simulate fine-scale bulges and dimples on the skin which are caused by various muscle strands (right).

mass index (BMI), muscularity, height are considered. We
are also able to smoothly vary the muscle deformation be-
tween subjects of very different physique, training level and
muscularity. Finally, the model takes as input an external
force vector on the hand. Ultimately, our model reproduces
realistic muscle shape as an interplay of all the above factors,
and generalizes well to other motions, people and mechani-
cal scenarios beyond the training dataset.

Building such a data-driven model poses new challenges
in acquisition, model learning, and parametrization. In this
paper, we make these principal contributions

1. A 3D acquisition method for highly detailed and spatio-
temporally coherent geometry of deforming skin - which
captures individual muscle strands, fat tissue, as well as
tangential stretching and shifting of skin. The method
is robust and scalable, e.g. for registering thousands of
scans of a person it requires hand-labeling landmarks in
just a single scan.

2. A semi-parametric learning approach to build a data-
driven model from the above input data. The model needs
little memory, can handle huge training datasets, and can
be evaluated in real-time. At the same time, it can pro-
duce non-linear muscle deformation effects that cannot
be achieved by previous data driven methods. Our pro-
totype application rapidly synthesizes new animations of
the shoulder-arm complex by controlling a small set of
intuitive parameters.

To our knowledge, our method is the first data-driven ap-
proach for reproducing detailed pose-dependent skin and
muscle deformation that spans the space of motion, body
shape and physique, as well as external forces. In the fol-
lowing, we review related work (Sec. 2) and formally state
the problem (Sec. 3). In Sec. 4, we describe our acquisition
method. We describe our shape parameterization and learn-
ing method in Sec. 5 and Sec. 6. We show quantitative eval-
uation with groundtruth and a variety of deformation results
atop new motions in Sec. 7 and in the supplementary video.

2. Related Work

Data-driven Muscle Modeling was studied by Allen et
al. [ACP02] by acquiring static range scans of the torso and
the arm of a single person in different poses. Performing
nearest-neighbor interpolation allows them to generate de-
formations at new poses. Park and Hodgins [PH06] used
a VICON mocap system and a set of 350 reflective mark-
ers to capture skin deformation. In [PH08], they describe a
non-linear kernel regression method for obtaining a surface
model at this resolution (350 markers) from a smaller set of
40− 50 skeletal markers. They later describe a method to
generate a better skeletal model for the shoulder with addi-
tional virtual joints, using a capture set-up of 200 markers
[HPH10]. Drawing inspiration from these works, we build
a model with a wider scope and higher detail. Specifically,
unlike these methods, we model the statistical variations of
muscle deformations across multiple people. We also in-
corporate external forces which enables modeling isometric
muscle contractions in static poses, an effect largely over-
looked previously. Additionally, our acquisition strategy is
less intrusive and yields high resolution of capture.

Data-driven Face Capture and Modeling Vlasic et
al. [VBPP05] present a multi-linear face model that models
personal identity, facial expression and visemes as discrete
variables. Attempts have also been made to capture the elas-
tic properties of facial muscles: Beeler et al. [BBO∗09] pro-
pose a marker-based framework for capturing muscle strain
in response to stress induced by a force probe. In our current
work, we synthesize such force-dependent deformations not
by parameters of elasticity, but directly through a data-driven
model.

Statistical Body Modeling Allen et al. [ACP03] analyze
shape variations of 3D scans of people standing in the same
pose. The SCAPE body model [ASK∗05] generalizes this
work by modeling surface deformation as a function of
both body shape and pose, by assuming that both effects
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are independent (using 70 scans from one subject in mul-
tiple poses and 37 scans of multiple subjects in one pose).
Later, it was shown by Allen et al. [ACPH06] and Hasler et
al. [HSS∗09] that body pose and shape can also be modeled
simultaneously, which allows scanning several subjects in
several poses to analyze a broader range of variations. Statis-
tical body models like these have applications in image and
video understanding [HAR∗10], animation and shape com-
pletion [ASK∗05]. Unlike these methods which are based
on laser scans, we capture and model minute muscle defor-
mation and tangential skin-shifting on multiple subjects. We
use a large training database of more than 32,000 meshes
and contribute to this area by modeling the effect of external
forces on muscle deformation and stretching of skin.

Anatomical and Physics-based Modeling Anatomically
accurate modeling of human muscle tissue and bone de-
formation has applications in sport medicine and kinesi-
ology, alongside computer graphics. In the recent past,
Teran et al. [TSB∗05] show impressive results by simulta-
neously modeling muscles, bones and tendon properties us-
ing the Visible Human dataset, and simulating them using a
Finite Element method. A similar approach is also used for
building an anatomically based face muscle model [SNF05]
and for realistic hand animation [SKP08]. Lee et al. [LST09]
describe a comprehensive system for the biomechanical
modeling of the upper human body. For a more comprehen-
sive review of physiologically based modeling, we refer to
the survey of [LGK∗12]. Such physiologically based simula-
tion methods are complementary to our approach. Although
they are more accurate and yield elaborate shape and elastic
deformation priors, tuning these parameters to different sub-
jects is not straightforward. Simulating these complex me-
chanical systems is also computationally demanding. In this
paper, we describe a data-driven approach that is easy-to-
use, computationally efficient and which adapts quickly to
new people.

Example-based Deformation Lewis et al. [LCF00] pre-
sented one of the first approaches to smoothly blend defor-
mations defined at specific training poses. [WPP07] present
a fast example-based skinning method based on predict-
ing deformation gradients [SP04] from example meshes.
Context-aware skeletal shape deformation [WSLG07] takes
a similar path by learning polar-decomposed deformation
gradients as residuals on top of a skeleton that is rigged by
an artist. These methods provide deformation control using
limited number of training poses modeled by the artist, while
our approach provides deformation control by intuitive pa-
rameters and learns from a large dataset of 3D reconstruc-
tions of real people.

Shape Parametrization It is interesting to note how all
these related approaches parametrize 3D shape. [PH08]
model surface vertex displacements as offsets from the bone
skeleton. [ASK∗05] model surface triangle deformations us-

ing deformation gradients [SP04]. [HSS∗09] use the rela-
tive rotations between triangles as a rotation-invariant en-
coding, which are, however, hard to use alongside positional
constraints on vertices. Our deformation gradient encoding
is related to this prior work, and is combined with a skin-
ning prior as in [WSLG07] to make it usable alongside an
artist-controllable skeleton. We also compress the encoding
further, which reduces the burden on the learning method,
especially for large training datasets like ours.

Pectoralis

Deltoid

Triceps

Biceps

Brachialis

Brachio-Radialis

Figure 2: Left: Anatomy of the shoulder-arm complex
(Gray’s Anatomy - Henry Gray, 1858) , depicting a few par-
ticipating muscles. Right: Surface mesh of the same area as
obtained by our method.

3. Problem Statement

When a person moves, a complex biological control sys-
tem of muscles, bones and soft tissue is activated. In the
shoulder-arm complex alone, more than 20 muscles con-
tribute to the motion - not taking into account multiple
branches of pennation for muscles such as the deltoid,
cf. Fig. 2. The largest arm muscles are the biceps brachii and
the triceps brachii in the upper arm, which show large pose
and force-dependent deformations. On the one hand, mus-
cles are intentionally or sub-consciously activated through
neural signalling. On the other hand, muscles react to ex-
ternal influences, i.e., forces or torques acting on joints. As
a result, the body moves, the muscles bulge, and the soft
tissue and skin deform, a process whose biological mecha-
nisms are well-studied in anatomy and kinesiology [Eno08].
However, muscle shape and deformation also depend on a
person’s physical constitution, training level, tissue and fibre
composition, etc. It is no wonder that the design of biologi-
cally accurate physics-based forward simulation models that
account for all these parameters influencing the muscle and
skin deformation is challenging, if not impossible, even to-
day.

It is a reasonable abstraction of the true biomechanical
process to assume that the main external influence on mus-
cle bulges are forces acting on the rigid skeletal parts that the
muscles are connected to. Such forces also create secondary
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effects such as the in-taking of air into the lungs, the defor-
mation of the spine to stabilize the body, and slight transla-
tions of bones. In this paper, we concentrate on building a
model of the shoulder-arm-complex, as by its motion range
and anatomical complexity it can be considered a down-
scaled version of the full body [ACP02]. We consider slow
to medium-fast motions which can be interpreted as quasi-
static according to biomechanics literature [Eno08, “When
is a movement fast ?"]. We acquire a training set of 3D skin
surface measurements of several subjects doing a variety of
muscle exercises slowly and naturally, where the quasi-static
assumption is justified. We propose a data-driven approach
to learn a mapping Ψ between a few intuitive yet biologically
motivated input parameters (body pose θ, body shape β, ex-
ternal forces γ) and a body surface M that exhibits plausible
muscle bulges and skin deformation, as follows:

M= Ψ(θ,β,γ) (1)

Body Pose: The base of our model is a simplified bone
skeleton with a shoulder and an elbow joint. Each joint is
parametrized as a 3-degree of freedom ball- and socket joint,
i.e., in total six parameters θ determine the skeleton pose.

Body Shape: We consider the body mass index (BMI),
muscle proportion (as a percentage of body mass), and the
height of the person as important physiological parameters
β that influence muscle bulges.

External Forces: We add the force magnitude and direction
vector rotated into the coordinate frame of the lower and up-
per arm (in all, 2 ·3+1 scalars) as model parameters. Please
note that, although gravity acts always downwards, we cap-
ture deformation effects due to forces at different directions
because of the relative rotations of the torso, upper and lower
arm (supplementary document shows the validation).

The kind of deformations that are induced by external
force are visually analyzed in Fig. 4, which shows two re-
constructions acquired using our method.

4. Acquisition

To capture a training set for learning muscle deformations
as specified in our problem statement, we developed a new
vision-based reconstruction approach that measures dense
dynamic 3D arm geometry with a multi-camera system.

4.1. Capturing Setup

We use a multi-camera acquisition setup consisting of 16
synchronized and calibrated FireWire video cameras, each
recording at a resolution of 1600× 1200 pixels and a frame
rate of 30Hz, Fig 3(a). Cameras are arranged in a convergent
setup around the shoulder-arm region. To facilitate space-
time reconstruction, we apply a pattern of dense colored dots
to the arm, shoulder and torso (random peppering of black,

dark green and blue dots) using film make-up, Fig. 3(b).
Depending on the body shape of the subject, around 800
to 1200 markers are applied with a maximum inter-marker
distance of about 5mm. While most markers are randomly
placed on the subject, we place 11 markers at anatomically
equivalent locations with a red pen. These anatomical mark-
ers will be used in a template initialization step, and enable
template matching across captured subjects. Application of
make-up takes around 30−45 minutes per person.

4.2. Training Database

We recruited 10 male subjects (between 20 to 34 years
of age, of different body shapes) to be captured. Five
of the subjects practice body building regularly, the re-
maining subjects exercise less and cover a wide variety
of body shapes, from corpulent to thin. For each sub-
ject, we record some physiological parameters, such as
weight and height. With a body fat scale we also get esti-
mates of bone mass, body fat ratio, and muscle proportion.
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Based on this data, body shape
can be roughly characterized
with a scalar body mass index
(BMI), height, and the muscle
proportion. On the left, we show
the measured BMI and muscu-
larity of our 10 subjects.

Each subject performs the same 11 predefined arm mo-
tions. An exact description of the motions is provided as sup-
plementary document. In some motions, the shoulder-arm
joints are articulated separately. In others, articulations are
combined. Five of these motions are repeated with a bar-
bell in the hand, to simulate external forces. For each sub-
ject, we capture the motion with 8 barbells between 0.5kg
and 17.5kg, or up to the maximum he could lift. Addition-
ally, some free motions like boxing, dancing, or flexing are
performed, which we use for cross validation. Per subject,
around 30− 40 motions, each consisting of approximately
100 frames, were captured. Our dataset is designed to suf-
ficiently sample the pose, body shape and force parameter
dimensions serving as input to our model.

4.3. Multi-view Reconstruction

The reconstruction pipeline consists of four stages: 3D
marker reconstruction, template initialization, template reg-
istration across motions, and articulated motion estimation.

3D Marker Reconstruction In each frame of video, mark-
ers are detected with sub-pixel precision as Gaussian blobs.
To match markers across views, we exploit epipolar con-
straints, and additionally impose soft constraints to enforce
consistently matched marker neighborhoods. To this end, we
extended the approximate Graduated Assignment algorithm
[GR96], a graph-matching algorithm, from its original two
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(a) (b) (c) (d)

Figure 3: Capturing the skin deformation dataset: a) Subjects are recorded by 16 synchronized video cameras. b) Dot pattern
on skin used for reconstruction of point clouds. c) Template (light blue) registered to a single initialization point cloud per
subject, first using user-selected anatomic landmarks, followed by automatic alignment to the remaining ≈ 1,000 points. d)
Dense and robust correspondences (lines) between marker point clouds automatically align the initialization template to all
other ≈ 3,000 poses of the subject, occluded areas (dark grey) are interpolated.

camera setting to the multi-camera case. The result is a dense
cloud of 3D markers at each time step. These point clouds
are not yet in temporal correspondence over frames. Hence-
forth, we use the terms points and markers interchangeably.

Template Initialization To bring all point clouds of the
same subject, i.e., data from all motions, into correspon-
dence, we register them to a common template mesh M (see
Sect. 3) of the arm with n = 5152 vertices. We use the arm
section of the average mesh of human body scans, kindly
provided to us by [HSS∗09]. From all the recorded frames
per subject, we select a single initialization time step having
the least occlusions.

To fit the template to the initialization point cloud, corre-
spondences between the 11 anatomical markers in the point
cloud and the respective locations on the template are man-
ually marked, Fig. 3(c), using a simple user interface. The
rest of the fitting procedure is fully-automatic and consists
of a rough pose alignment followed by a non-rigid fine reg-
istration. For rough alignment, we deform the template into
the point cloud by means of Laplacian deformation with ro-
tation correction to compensate for the rotation-variance of
differential coordinates [SKR∗06].

To reproduce the fine-scale skin deformations in the data,
we subsequently perform a non-rigid registration. We con-
sider point matches to barycentric coordinates relative to en-
closing triangles on the template mesh. The mesh is then dis-
placed towards these constraints with As-rigid-as-possible
surface deformation [SA07] as regularization, Fig. 3(c).

Marker Matching and Template Registration Across
Motions Once the template is initialized, it has to be aligned
to all captured frames of a subject. Instead of relying on tem-
plate tracking and thereby suffering from drift, we propose a
novel strategy to robustly match 3D markers across any two
poses and use these matches to deform the template into each

target pose independently - thereby creating a fast and paral-
lelized pipeline for template registration across all poses.

For each marker, we construct a series of Shape Con-
text descriptors, each having a distinct orientation of the his-
togram axes. The coordinate frame of each descriptor is de-
fined by a triplet consisting of the central and two neigh-
boring points. The matching distance between two points
is then the minimum distance of all descriptors attached to
those points. An important benefit of this approach is that it
implicitly takes care of skin deformations by deforming the
histogram axes accordingly. By filtering out erroneous corre-
spondences using non-maximal suppression, and by check-
ing geometric consistency in the local spatial-neighborhoods
of matches, this strategy yields a robust set of matches across
even large pose differences, Fig 3(d).

We use these to deform the template mesh to fit to
any pose in the captured dataset. Similar to the template
initialization step, we achieve this by Laplacian deforma-
tion with rotation correction for the differential coordinates
[SKR∗06]. As shown in Fig. 4 and in the accompanying
video, this yields highly accurate 3D reconstructions of the
arm in movement.

In fact, the template mesh gives a strong prior for extend-
ing marker correspondences. After the template is deformed
using the initial set of marker matches, new correspondences
are found by searching within the local neighborhood of the
deformed template and matching closest predicted marker
locations for each unmatched marker. This process of marker
matching, template deformation and correspondence update
is iterated until no new correspondences can be added, usu-
ally around 5−10 iterations. Please note that since this tem-
plate alignment procedure is applied to the data of each in-
dividual, alignment of the entire database comes for free.
User intervention is needed only for the template initializa-
tion step, once for each subject in the database.
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Figure 4: Muscle deformations due to external load in elbow flexing motion, as captured on one subject in our dataset.
(a) Flexing with no external load (b) Flexing with 17.75kg of barbell weight in one hand (c) Cross-sectional cut along the
horizontal plane at the bottom of the upper arm. Subtle bulges can be seen on triceps and biceps muscles, which work as
an agonist-antagonist pair to keep the arm in equilibrium against the external load. (d) Vertex displacements from ‘a’ to ‘b’
visualized on mesh ‘b’. Bulges are shown in blue, and dimples are shown in red (see also video for an animation).

Articulated Motion Estimation All data are now reg-
istered based on a surface model, but we still need
to infer joint angles for each pose to train our model.
We consider a user-supplied segmenta-
tion of the shoulder-arm complex into 4
parts: Torso, upper arm, lower arm, and
hand, as shown on the right. A rigid body
rotation R and translation t is now found
that best maps the rest-pose vertices vi
of each body part to the vertices v′i in the observed pose,
by minimizing the distance ∑‖Rvi + t−v′i‖

2 for each body
part separately. An initial rotation is found by solving the or-
thogonal procrustes problem using SVD. From this starting
point, a more accurate rigid transformation is estimated by
iterative minimization using a Newton-Raphson method and
the twist representation of the rotation, similar to [BM98]
but without the need for a kinematic chain. These segment
transformations are aligned between different subjects by
expressing them relative to a skeleton rigged inside the tem-
plate mesh. Similar to conventional motion-capture, rotation
angles are used to represent the body part rotations.

5. Shape Parametrization

As described in our problem statement, we would like to rep-
resent the surface deformation as a function of body pose
(θ), shape (β) and external forces representing triggers for
muscle activation (γ). Of these, parametrizing the surface
deformation through skinning from joint angles θ is widely
used practice in animation. We adopt a two layered repre-
sentation for surface deformation that enables us to accom-
modate the additional input dimensions: The first layer is
provided by a skeleton and triangle-based quaternion blend
skinning [WSLG07]. The second layer of residual transfor-
mations that connects the skinned mesh to the actual detailed

skin and muscle deformation is to be learnt by our mathe-
matical model Ψ.

To this end, we need to represent a shape (that is, the ver-
tex coordinates vi of our template mesh Mt in a pose t) in
a suitable encoding. Using 3D Euclidean positions directly
cannot model rotations of the arm properly, and even when
modeled in pose space [LCF00, SRC01] causes problems
due to varying arm lengths and shapes between subjects. We
therefore build upon and extend ideas on deformation gradi-
ent encoding [SP04], to learn a rotation and stretch transfor-
mation per template triangle from the training data.

Deformation Gradient Encoding Let us consider a trian-
gle in the current pose Mt with vertices vt

1,v
t
2,v

t
3. Follow-

ing [SP04], we represent its deformation gradient from a rest
pose s as

Dt = Tt · (Ts)−1 (2)

where

Tt =
[
vt

2−vt
1 vt

3−vt
1 nt

]
(3)

and correspondingly for Ts. Here, nt is the triangle face nor-
mal. We simplify the formulation by setting (Ts)−1 = Ts =
I, i.e. by constraining the rest-pose triangle to lie in the xy-
plane with edge lengths 1. In the following discussion, we
remove the pose-specific superscripts t,s.

We can separate the rotation and stretch components of
the deformation gradient D = RS by polar decomposition.
The rotation R j can be represented in axis-angle representa-
tion r j with 3 components (using the log map to convert to,
and the exponential map to convert from rotation matrices).
In the particular case of Ts = I, the stretch matrix S j of a
given triangle j has only 3 relevant components for repre-
senting xy-plane scaling and shear. These can be assembled
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into a vector s j =
[
S j,1,1 S j,2,2 S j,1,2

]T . Thus, the deforma-
tion gradient encoding maps from R3n to R6m where m is
the number of triangles.

The deformation gradient encoding is translation invari-
ant. To decode the deformation gradients and obtain the
mesh, a reconstruction process stitches together the uncon-
nected edge vectors found in the deformation gradients by
providing positional information pa for a set A of (at least)
one anchor point. By expressing Eq. (2) as linear operator
G, the stitching process can be shown to be equivalent to
Poisson reconstruction with boundary constraints [SP04],

argmin
v

‖Gv−D‖2 +λ ∑
a∈A

(pa−va)
2 . (4)

For our special case of Ts = I, G has a particularly simple
form with a row with 2 nonzero entries (−1,1) per edge in
the mesh. As shown by Botsch et al. [BSPG06], the trian-
gle normal in the third column of D is unnecessary for the
solution of Eq. (4).

Decomposition into residual transformations The defor-
mation gradient (2) of a triangle in each pose is decomposed
further to yield a shape encoding better suited for learning.
Let Ra be the pose-dependent rotation for the triangle given
by blending articulated segment rotations using the blending
weights and estimated body part rotations as discussed pre-
viously. The deformation of the triangle with respect to this
simple pose-dependent transformation is given as

Da = RaDo = Ra(RoSo) (5)

where Do = RoSo is the deformation gradient from the unit
triangle in the xy-plane to the triangle in the template pose.

However, our reconstructed shape shows residual defor-
mations that appear as both the rotation (R∗) and stretch (S∗)
components

D = Ra(R∗Ro)(S∗So) (6)

As discussed before, these residual deformations can be
represented compactly using only 6 scalars per triangle: 3
for representing the rotation in axis-angle representation,
and 3 for the stretch matrix. Together, these parameters
in effect compose a residual deformation gradient D∗ =
R∗(RoS∗RT

o ) that maps the skinned mesh to the observed
mesh, such that D = RaD∗D0.

The final shape representation vector y that represents
the residual transformations (R∗,S∗) for all the triangles is
given by

y = vec([s0 · · ·sm r0 · · ·rm]) . (7)

6. Deformation Learning

The aim is now to learn a model that, given input parameters
such as pose, body shape, and external load, can generate
the shape that realistically shows the deformations as seen

in the recorded data. For this, we assemble the dataset of f
example meshes, encoded as vectors yi with Eq. (7), into a
training matrix Y ∈ R f×6m; and equivalently with the cor-
responding l-dimensional input parameters xi = [θi,βi,γi] to
form X ∈ R f×l . The learning task is to estimate a function
Ψ(x) that is able to generate a shape vector from a novel,
previously unseen xa. The function Ψ is learnt separately for
each output parameter, i.e, the deformation mode of each tri-
angle in the mesh.

An obvious choice for function Ψ is a linear regression
model which can be trained by minimizing the square loss to
the training examples and therefore results in the following
linear least squares problem

argmin
W∈Rl×6m

‖XW−Y‖2
F (8)

The evaluation phase is then a simple matrix multiplication,
Ψ(xa) = W>xa. This linear model avoids overfitting and
generalizes well along dimensions where limited training
data is available, e.g. the body shape of the person. How-
ever, for the subset lθ < l of pose-specific parameters (the
joint angles θ), this fails to produce details such as fine con-
cavities at certain elbow poses.

This necessitates learning additional non-linearities for a
more accurate non-linear model. Since our captured dataset
covers the space of lθ pose parameters well, we can build
such a model without overfitting. Non-parametric methods
such as kernel ridge regression are well suited in this situa-
tion. The main idea is to replace the lθ-dimensional input pa-
rameters by a higher dimensional feature vector θi→ φ(θi).
The well-known kernel trick is applied and the dual prob-
lem is solved. To avoid overfitting with a huge number of
features, regularization is needed,

argmin
C∈R f×6m

‖KC−Y‖2
F + λ‖CT KC‖2

F , (9)

where K(i, j) = κ(θi,θ j) is the precomputed Gaussian ker-
nel matrix, that is related to the non-linear map φ as follows

φ(θi)
T

φ(θ j) = κ(θi,θ j) = exp(−‖θi−θ j‖/σ) . (10)

During evaluation, the kernel ridge regression synthesizes
pose-dependent shapes by computing Ψ(θa) = C>κ(θ,xa) .

Training the kernel ridge regression, Eq. (9), requires
solving a linear system of size f × f (for 6m right hand
sides), which in our case of f ≈ 32,000 is prohibitively ex-
pensive. Inspired by the work of [KK10], who face a simi-
lar problem in the scope of image super-resolution, we find
a sparse approximation of the kernel ridge regression. The
approach is based on finding a set of b � f basis points
B = [b1 . . . bb]

> ,B ∈ Rb×lθ from the pose input param-
eters. Then, the solution is estimated only with respect to
those few basis points,

argmin
Cb∈Rb×6m

‖KbCb−Y‖2
F + λ‖CT

b K0Cb‖2
F . (11)

where K0 = κ(B,B) is the b× b pairwise kernel matrix in
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Figure 5: Results on shoulder lift motion, colored by vertex
displacement error from ground-truth. Left: Linear model.
Right: our model.

the basis set, and Kb(i, j) = κ(bi,θ j). The algorithm is also
faster during synthesis, since the kernel needs to be evaluated
only with the few basis vectors, Ψ(θa) = C>b κ(B,θa).

To obtain B, we run K-Means clustering on the pose pa-
rameters of the training set and use the cluster center loca-
tions as the basis points. In the final model, we combine lin-
ear regression with the sparse kernel regression, and opti-
mize

argmin
Cb∈Rb×6m

W∈Rl×6m

‖
[

Kb X
][ Cb

W

]
−Y‖2

F + λ‖CT
b K0Cb‖2

F ,

(12)
where Kb and K0 are formed by evaluating the pairwise ker-
nel function κ only for the pose parameters θi of the train-
ing set; and only kernelized pose parameters are regularized.
Given a new set of parameters xa (with the subset θa denot-
ing the pose parameters), the corresponding deformation can
be synthesized as follows.

Ψ(xa) =

[
Cb
W

]> [
κ(B,θa)

xa

]
. (13)

7. Results

Quantitative Evaluation As described in Sect. 4, we cap-
tured 10 male subjects in 30−40 motions each. Each motion
is roughly 80−100 frames long, and our dataset consists of
ca. 32,000 meshes. Our model is trained on a set of 16 in-
put parameters - 3 angles of rotation each at the shoulder
and elbow joints, 3 body shape parameters given by height,
BMI and muscularity, and 7 force parameters given by the
3−dimensional force vector of the barbell weight in the lo-
cal coordinate frames of the lower and upper arm and their
magnitude. We quantitatively evaluate the accuracy of our
model by cross-validating our result with the ground-truth
on 6 reconstructed motions, each of a different subject, by
leaving that motion out of the training set. We report the ac-
curacy in the R3 Euclidean space of vertex coordinates. In
order to recover 3D Euclidean vertex coordinates from our
shape encoding, we need to re-align the generated mesh with
ground truth rigidly before comparison, as our shape encod-
ing is translation-invariant. Quantitative evaluation with re-
spect to both these error metrics is reported in Tab. 1. For
comparison purposes, we also train a purely linear model
(given by Eq. (8)) and a purely linear model using a dif-

ours linear [HSS∗09]

curl low weight 5.57 9.29 24.23

curl high weight 5.94 8.86 24.87

shoulder spin 14.66 14.19 28.04

arm rotate 9.33 11.30 29.72

boxing 14.28 15.58 49.52

freestyle 9.00 10.20 30.80

Table 1: Evaluation on motions not used for training. Aver-
age errors in vertex displacements (in mm) for our method,
a linear model with our proposed shape encoding, and a lin-
ear regression with the encoding from [HSS∗09].

ferent shape encoding [HSS∗09] on the same dataset. The
shape encoding of [HSS∗09] fails to provide comparative
quantitative results since their encoding does not contain the
base layer of a skinned skeleton, which results in misaligned
body parts. Our method is also robust against flickering in
some reconstructions, as visible in the supplementary video.

Our sparse kernel-learning method has two hyperparam-
eters - the kernel size σ and the regularization strength λ.
We observed that the learning method is robust to different
hyperparameter settings, but the best results are obtained at
σ = 0.1 and λ = 10.0. We tested different cluster numbers
k in K-Means for finding the pose space basis points (64,
256,512 and 1024). More clusters yield slightly better ac-
curacy, but take longer to evaluate. We found k = 512 as a
good compromise. In Fig. 5, we visualize the error of our
result against the linear model, both compared against the
ground-truth 3D reconstruction on the shoulder-lift motion.

Visual Results As shown in the accompanying video, our
model can be interactively used by an artist to synthesize
complex muscle effects by changing pose, shape or external
forces, and smoothly vary between the parameters. In Fig. 6,
we show the results expressing plausible variation in arm
shape with respect to BMI and muscularity parameters. In
Fig. 7, we show the major strength of our model i.e, to si-
multaneously model external forces along with the other pa-
rameters. Our model generalizes well - the pose and external
force parameters given to produce these effects are beyond
the capture range in the training dataset. One can see phys-
iological effects such as the sharp pronouncement of mus-
cle strands in reaction to external forces (the deltoid and bi-
ceps muscles in Fig. 7(b), the biceps and triceps muscles in
Fig. 7(c)), complex skin deformation around joint capsules
(scapula joint at the back of the shoulder in Fig. 7(a)), and
the marked difference in skin deformation with respect to the
direction of the force vector (the loose skin around the elbow
joint in Fig. 7(d)). These effects are achieved rapidly by the
artist using our prototype tool through editing the skeletal
pose, body shape and the force vector.
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(a) Muscularity 43%, BMI 25 (b) Muscularity 55%, BMI 20

(c) Muscularity 40%, BMI 40 (d) Muscularity 40%, BMI 15

Figure 6: Example body shape variations as produced by
our statistical model, by controling BMI and muscularity.

Performance At run time, new poses with our trained
model can be produced extremely fast, requiring only sim-
ple matrix operations. Even our unoptimized Python imple-
mentation on the CPU provides realtime feedback. Owing to
the strategy of sparse-kernel learning and the need to keep
only a few basis vectors, it also has a low memory foot-
print (100MB for 512 basis points). This makes it suitable
for deployment in resource constrained applications, such as
character animation in game consoles. The learning phase of
our unoptimized code took 25 minutes over the dataset of
ca. 32,000 meshes.

Discussion Our model generalizes well beyond the range
of inputs captured in the training set, but starts to fail when
these parameters are far off (e.g, external force that is twice
the maximum captured barbell weight fails in many poses).
Synthesized deformation is not perfect for poses not well-
captured in the dataset due to occlusions, such as with the
arm vertically upward. Capturing more people and training
on a larger dataset would further improve the results. Cap-
turing the effects of dynamics, such as the wobbling of body
fat and soft tissue, is another important future work which
can benefit from our contributions on 3D data acquisition.
We used a simple skeleton structure, akin to those in ani-
mations for computer games, but achieved very natural and
detailed animation results. Certain motions like shrugging
of the shoulders cannot be modeled by this skeleton. Physio-
logical skeletons and physics-based muscle models will fur-
ther improve the accuracy of our method - e.g, subtle mo-
tions of clavicle and scapula that currently cannot be de-
scribed by our control skeleton and only moderately visible
when changing arm pose and external force, can be better
modeled. Similarly, data-driven models like ours help to bet-
ter initialize physiological muscle models to novel subjects.
This potential for cross-fertilization needs to be explored in
future work. Capturing with higher resolution cameras will
help model even finer deformations (e.g, vertebral notches,
clavicle bone). The acquisition and modeling paradigms of

this paper can also be applied for capturing the whole hu-
man body, such that force-dependent muscle deformations
are simulated by a data-driven model that is easy to control.

8. Conclusion

In this paper, we present the first comprehensive data-driven
model for muscle deformation of the shoulder-arm region,
spanning the parameter spaces of body pose, body shape and
external forces. We propose an acquisition method and setup
to capture a large training database of detailed muscle and
skin deformations from real subjects. We further contribute
by an effective semi-parametric non-linear approach to learn
an expressive data-driven model, which can be evaluated in
real-time and has a low memory footprint. The trained model
can be used in a fast and intuitive-to-use prototype appli-
cation to reproduce fine-scale, anatomically realistic muscle
deformations at a high quality not shown by previous data-
driven methods. Our approach is built on shape representa-
tions that easily fit into the work-flow of animators.
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