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Figure 1: We modify the lip motion of an actor in a target video (a) sd thaligns with a new audio track. Our set-up consists
of a single video camera that Ims a dubber in a recording $bug + c). Our system transfers the mouth motion of the voice
actor (d) to the target actor and creates a new plausible @idéthe target actor speaking in the dubbed language (e).

Abstract

In many countries, foreign movies and TV productions arebddbi.e., the original voice of an actor is replaced
with a translation that is spoken by a dubbing actor in therdoyls own language. Dubbing is a complex process
that requires speci c translations and accurately timeditations such that the new audio at least coarsely ad-
heres to the mouth motion in the video. However, since theeseg of phonemes and visemes in the original and
the dubbing language are different, the video-to-audioalmas never perfect, which is a major source of visual
discomfort. In this paper, we propose a system to alter thetinmotion of an actor in a video, so that it matches
the new audio track. Our paper builds on high-quality mordacwapture of 3D facial performance, lighting
and albedo of the dubbing and target actors, and uses audiyais in combination with a space-time retrieval
method to synthesize a new photo-realistically renderetitaghly detailed 3D shape model of the mouth region
to replace the target performance. We demonstrate plagisisual quality of our results compared to footage that
has been professionally dubbed in the traditional way, lopthlitatively and through a user study.

1. Introduction quality. However, in most cases the voice of the original ac-
tor is substituted with the voice of a differembice actor

or dubberspeaking in another language. Dubbing of foreign
productions into the locally spoken language is common in
countries where subtitling is not widely accepted, such as
Germany, France and many Spanish speaking countries.

Dubbing is the process of replacing the original voice of an
actor in a video with a voice that has been recorded off-
camera in a studio. The new voice can say the exact same
text in the original language, but with improved in-studio

Dubbing has the advantage over subtitling that it does not
Y e-mail: pgarrido@mpi-inf.mpg.de draw the attention away from the action on screen. On the
Z e-mail: valgaerts@mpi-inf.mpg.de other hand, it has been shown that viewers are very sensi-

¢ 2015 The Author(s)
Computer Graphics Forune 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Garrido et al. / VDub: Modifying Face Video of Actors for Pihle Visual Alignment to a Dubbed Audio Track

tive to discrepancies between the auditory signal and the vi In summary, oucontributionsare:
sual appearance of the face and lips during speBétb4.

In fact, mismatches between mouth motion and audio can
drastically impair comprehension of the spoken language;
hearing-impaired people in particular exploit this caarel
tion [OB86, Sum93. It is thus imperative that the dubbed
language track is adjusted well to the visual performance.
This requires an expensive and time consuming three-stage
process performed by special production companies:

A system for video-realistic model-based resynthesis of
detailed facial performances in monocular video that
aligns the visual channel with a dubbed audio signal.

A spatio-temporal rearrangement strategy that uses the in-
put facial performances and the dubbed audio channel to
synthesize a new highly detailed 3D target performance.
The reconstruction of a realistic target face albedo and the

) : synthesis of a plausible mouth interior based on a geomet-
1. Translation: Certain mouth shapes are manually anno- jc tooth proxy and inner mouth image warping.

tated in the video, such as the lip closure of the bilabial
consonants /m/, /p/, and /b/. Then a transcript, which is ~ Our system is one of the rst to produce visually plau-
semantically close to the original script and yet produces Sible and detailed, synthetically altered and relit fapiet-
bilabials at roughly the same time, is made in the new lan- formances of an actor's face. We compare our results with
guage. Consequently, the translation may not be literal. ~ traditionally dubbed, unmodi ed video, both visually ang b

2. Recording:A voice actor in a studio reads out the dubbed Means of a user study. Since we synthesize the entire mouth
transcript in pace with the original performance. Even region, we do not require that the dubbed audio perfectly
recording a single sentence may need several trials un- aligns with the original target video. Our approach thus-sim
til alignment with the video is satisfactory. pli es the dubbing pipeline, since the translation into the

3. Editing: The temporal alignment of the new language €ign language can now stay closer to the original script.
track and the mouth motion in the video is improved by

manually time-shifting and skewing the new audio. > Related Work

Despite the efforts of trained professionals, traditional ) ) .
dubbing is unable to produce dubbed voice tracks that match 2-1- Visual Cues in Speech Perception

the mouth movements in the target video perfectly. The rea- Visual cues, such agisemesare essential for speech per-
son is that spoken words differ between languages, yielding ception [Fum93, both for people with normal hearing abil-
different phoneme sequences and lip motions. Hearing and jty [OB86], but in particular for hearing-impaired persons
seeing different languages proves very distracting foryman  [LK81]. In fact, under noise, one third of the speech informa-
viewers [SP54 and causes even stronger distraction for hear- tjon is conveyed visually through lip gesturdsgMCB94]
ing-impaired persons who rely on lip readirQEag. and a discrepancy between sound and facial motion clearly

In this paper, we propose a system that visually alters the disturbs perceptiongP54. The discrepancies between the
lip motion as well as the facial appearance of an actor in a Visual and auditory cues can signi cantly alter the sound
video, so that it aligns with a dubbed foreign language voice Perceived by the observeMM76] and this may explain
We thus take a step towards reducing the strong visual dis- Why many people dislike watching dubbed contefitd3].
comfort caused by the audio-visual mismatch in tradition- Taylor et al. TMTM12] report that a direct mapping from
a”y dubbed videos. Our method takes as input the actor's acoustic SpeeCh to facial deformation USing visemes is sim-
and the dubber's video as well as the dubbed |anguage track, pllSth and realistic Synthesis of facial motion needs talglo
and then it employs state-of-the-art monocular facialgrerf ~ hon-linear co-articulation effectsSC0Q. The problem is
mance capture to reconstruct both performances. This gives that the statistical relationship between speech acaustid
us parameters describing the facial performances based on dacial con gurations accounts for approximately 65% of the
coarse blend shape model. Via inverse rendering, we addi- variance in facial motionYRVB98], and thus the speech
tionally reconstruct the incident scene lighting in thegetr ~ Signal alone is not suf cient to synthesize a full range of re
video and the high-frequency surface geometry and dense alistic facial eXpressionS. In view of these ndings, welbui
albedo of the target actor. The 4D facial performance of the mapping from the dubber to the actor primarily using the
the actor (3D geometry over time) is modi ed fully auto-  Visual signal obtained through facial performance capture
matica”y by using a new Space.time optimization method We thus achieve audio-visual coherence |mp|IC|t|y, which
that retrieves a sequence of new facial shapes from the cap-We reinforce by using the acoustic signal as a guide to en-
tured performance, such that it matches the blend shape se-force salient mouth motion events, like lip closures.
guence of the dubber, yet is temporally coherent, also in its
ne-scale surface detail. A phonetic analysis of the dubbed
audio nds salient mouth motion events, such as lip clo-
sures, which are explicitly enforced in the synthesized per Our work is related to speech-driven animation of virtual
formance. The synthesized face sequence is plausibly ren-CG faces or bodiesLTK09] use a hidden Markov model
dered and lit, after which the lower half of the face is seam- to drive non-semantic body gestures from prosody features.
lessly blended into the target video to yield the nal result [Bra99g proposed one of the rst systems for voice puppetry,

2.2. Speech- and Capturing-driven Animation
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i.e., animating a virtual avatar's face directly from speduy perform dense 3D motion and detail estimation on a full 3D
modeling the joint distribution of acoustic and visual sgee model [GVWT13] along with a global spatio-temporal opti-
However, predicting the entire range of facial motion from mization for synthesizing highly realistic new video anima
the speech signal is not possibMRVB98] and the facial tions of the face aligned to a dubbed audio traBC§97
performance of an actor is often a better guide for motion re- rewrite the facial dialog in a monocular video by synthesiz-
targeting Wil90, XCXHO03, CFKP04 PSS99. Synthesizing ing new mouth movements through image warping and rear-
3D speech animation with learned audio-controlled activa- rangement of video frames. The approach learns a mapping
tion curves for a virtual face muscle system has also been between phonemes and static visemes for one speci ¢ ac-
tried [SSRMFO08, but plausible facial expressions and lip tor and one language, but produces medium-quality results,
movements have proven to be hard, even for cartoon avatars,only succeeds for simple head poses, and is not applicable
as human visual perception is highly attuned to facial mo- to dubbing between different languages and different indi-
tion and unforgiving of errorsTMTM12] learn a set of dy- viduals. KIM 14] synthesize the inner mouth for a given
namic units of visual speech from a large corpus of motion- frontal 2D animation by employing a tooth and tongue im-
captured examples to properly render co-articulatiorcesfe age database and a syllabic decomposition of the speech. In
New speech animations can also be synthesized by matchingthis paper, we generate a convincingly rendered inner mouth
a given phoneme stream to variable- or xed-length units in by using a textured 3D tooth proxy and mouth cavity that are
a database of motion capture daa03,MCP 06], some- connected to the tracked blend shape model.

times guided by user-de ned emotion speci eBBN06]. We

show that a strong coupling of high-quality performance A trained multidimensional morphable model can be used
capture and speech analysis also leads to plausible resultsfor expression cloningyNO01], e.g., across video recordings
with co-articulation effects. Professional Im produati® of different people CEQ], or to separate the effects of emo-
drive believable CG avatars, e.g., Gollum in tterd of the tion and dialog EGP032, which is an important problem in
Ringsmovies, with the facial performance and dialog of a facial motion retargeting HBVP03 learn a statistical mor-
dedicated actor captured with complex studio-based multi- phable model from a database of human 3D face scans and
camera systems$BHB 11]. This would be unfeasible for use it to reanimate faces in images and vidaBRPP0]

us, as we need to capture detailed 3D face models directly learn a multilinear model from a database of facial expres-
from monocular video. Motion and audio capture and trans- sions that model visemes, identity and emotiomxSJ 11]

fer to a virtual CG face in real-time has been made possible use this model to replace the face region of a target video
using cheaper depth cameradBLP11 or even monocu- with that of a different person. Although they show impres-
lar video [CHZ14, BWP13. However, these methods only  sive results, applying their approach to dubbing requinas t
capture models of low shape detail, do not always work on both the dubber and the actor are the same and share a sim-
a given monocular target video and often require person- ilar frontal head pose. This can not be guaranteed in a gen-
speci ¢ algorithm training under controlled conditionshdy eral dubbing scenario, where the visual dialog of a given ac-
are thus not suitable for our task, for which we resort to tor has to be completely synthesized and inpainted, which
the monocular, high-quality facial performance capture ap is what our system achieves. Our method is also related to
proach by 5VWT13], which captures a blend shape model video texture synthesiSESEO] where input video frames
and high shape detail under general uncontrolled lighting.  are rearranged to create a new output.Xh$ 11] video-
based charactersvere proposed, which can create novel
poses of a human actor by tracking a 3D mesh model, and re-
arranging and interpolating frames from a database of multi
Our approach is related to expression synthesis methodsview video under model guidance. Recently{WW 12] and

that reorder video frames, sometimes in a model-guided [GVR 14] proposed similar systems for synthesizing novel
way [LO11]. [KSSS1(transfer the facial poses of a source facial expressions by using either an existing databasa-of f
video character to a different character in a target video by cial images or a short sequence of an arbitrary actor per-
rearranging and roughly aligning target video frames in a formance. Both systems are limited in their ability to ren-
stop-motion-like fashion. Similarly, TMCBO7] use active der facial dynamics, especially in the mouth region, which
appearance models (AAM) for real-time expression cloning, is crucial for dialog. Moreover, the rst method only works
while [SDT 07] perform facial expression cloning between  for simple frontal head poses, while both approaches can not
faces in simple static frontal poses by using a differermiial handle lighting changes or transfer between different-indi
ordinate representation of a triangle mesh overlaid with th  viduals. To the best of our knowledge, our system is one of
image. ASWC13 used an extended AAM for image-based the rst to enable facial video rewrite that meets the visual
text-to-speech synthesis that separates global pose eald lo quality needed in realistic Im dubbing, i.e., source and ta
variation. None of these systems produces the spatial and get actors being shot in different surroundings, source and
temporal quality required for a detailed rendering of the ta  target dialogs in different languages having differentpho
get face, as well as audio-visual coherence. In this paper, netic content, and videos recorded with audio from a single
we use AAM tracking §LC11] as an initialization, but then camera at standard frame rates.

2.3. Video-based Face Animation And Rewriting
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Figure 2: Overview of our method

3. Method Overview We will denote byl! and|} the frame at time in the

target and dubbing sequence, withunning from 1 to the

number of frames. For simplicity, we assume that the tar-

get and dubbing sequence have the same number of frames

and are temporally aligned such that corresponding spoken

sentences coincide in time. This can be achieved as a prepro-

cessing step or by recording the dubber in sync with the ac-

tor. The nal result is thesynthesized sequencge Ehowing

the actor speaking in the dubbed language. In the following,
Our method uses the dubbed language track as the newwe will provide more details on the different steps.

voice track for the target sequence and modi es the mouth

motion of_the qctor such Fhat it matches the dubbed words. 4. Motion Transfer

It does this while preserving the appearance and head pose

of the actor, as well as the original background and scene To capture the facial performances of the actor and the dub-

lighting. We assume that the dubber reads his text roughly in ber, we employ a state-of-the-art facial performance aaptu

pace with the actor's performance, but strict alignmenheft ~ method on monocular video that utilizes an underlying blend

dubbed language track with the actor's lip movements, as in shape model and produces a sequence of space-time coher-

traditional dubbing, is not necessary because we generate aént face meshes with ne-scale skin detail. The parameters

completely new performance that is in sync by construction. of the tracked blend shape model will be used to transfer the

We further assume that the dubber is able to reenact the fa- mouth motion from the dubber to the actor.

cial expressions of the actor well, i.e., the target and thghb

sequences bear a s?milar emotional content. Our algorithm 4, 1 Monocular Facial Performance Capture

consists of three major steps (see R2ig.

Our method takes as input two video recordings with sound.
The rstrecording is the original movie segment of tetor
performing in the original language. We refer to this as the
target sequence |, as it will be modi ed later. The second
recording is thedubbing sequence | showing thedubber
reading a translation of the original text, which will seag
the source to synthesize a new target performance.

] ] Both the actor's and the dubber's performance is captured
1. Motion Transfer (Sec. 4). The facial perfo_rmances of using the method ofGVWT13], which uses a personalized
the actor and the dubber are captured using a personal-pjeng shape model. This model is a prior on the face shape

ized blend shape model. The target lighting is estimated 4,4 describes a basis of variation in facial expressions:
and high-frequency detail, such as wrinkles and folds, are

. R . b
captured. The blending weights pertaining to the mouth | —n+ 3 bb
motion of the dubber are transferred to generate a new e(by;::tbp) = 1 jélb’ bj @
blend shape sequence for the actor. _ an o
2. Detail Synthesis (Sed). Actor-speci ¢ high-frequency In this modeln 2 R*" is a vector containing the 3D vertex

face detail is added to the synthesized blend shape se-coordinates of the face at re&,2 R%, 1 | b, are the
guence by globally searching for frames with similar de- blend shape displacements at each vertexedhB" is the
tail in the target sequence. We only transfer detail in the facial expression obtained by linearly combining the blend
lower face region around the mouth, preserving the orig- shape displacements using thlending weight® b; 1,
inal detail elsewhere. 8j. We create a personalized blend shape model of the actor
3. Speech Alignment and Rendering (Sed). Lip clo- and the dubber by registering a generic blend shape model
sure is enforced by detecting bilabial consonants in the to a static stereo reconstruction of the face at rest, as de-
dubbed language track. By using the estimated target scribed in GVWT13]. Thus, the actor's blend shape model
lighting and the dense skin re ectance of the actor, we differs from that of the dubber's in face shape, but their
render the synthesized face into the original video. The blend shapes correspond to the same canonical expressions
mouth interior is rendered separately and blended in with and therefore have the same semantic meaning. For our mod-
the target to produce the nal composite. elsb= 78 and in our experiments we chase 50000.
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The method of GVWT13] tracks a sparse set of facial
landmarks (eyes, eyebrows, nose, mouth, face outlinegin th
image sequence by employing 2D feature detection and op-
tical ow. These features are used to estimate the head pose
(3D rigid transformation) and the facial expression (biegd
weights). The result of thislend shape trackingtep is a se-
quence of coarse face meshes that are spanned by the blengtigure 3: The region of in uence of the blend shapes re-
shape model, but lack ne-scale detail, such as wrinkles and gponsible for the mouth motion (left) and three example
folds. Skin detail is produced in a subsequshépe re ne- blend shapes that activate the mouth (right, color encodes

mentstep, which better aligns the facial geometry with the pe magnitude of the displacement w.r.. the rest pose).
video and adds detail as a per-vertex surface displacement.

This step effectively lifts the face geometry out of the blen  synthesized target expressie, 8t, is identical to the orig-
shape space, while at the same time it estimates the scendnal target expression, except in the mouth region shown in
lighting and a coarse, piece-wise constant approximation o Fig. 3, where it is the same as the expression of the dubbing
the face albedo. The nal result is a sequence of temporally actor. The synthesized expressignand the captured head
coherent triangular face mesHds! for the target sequence  pose can be used to build a sequence of synthetic, coarse face
andM ! for the dubbing sequence, with &t f. meshesM | for the actor, which exhibits the same mouth
motion as the dubber. This is illustrated in Figfor the ex-
ample of Fig.1. Note thatM { still lies within the blend
shape space and therefore lacks any ne-scale detail, such
The blend shape model encodes most of the speech-relatedas wrinkles and folds. This detail is necessary for a falthfu
motion, such as the movement of the jaw, lips and cheeks, rendering of the actor and will be added in Sgc.

whereas the detail layer mainly encodes person-specirt ski
deformation, such as emerging and shifting wrinkles. The
blend shape models of the actor and dubber are derived from

the same generic model and thus share the same semanticrhe blending weight transfer described in E2).\yorks well
dimensions, including those related to speech. We can-there it the blending weight combinations for the actor and dub-
fore make the actor utter the same words as the dubber by ber have the same meaning. In practice, this is not guaran-
transferring the temporal curves of the blending weighas th  teed since both blend shape models are manually constructed
activate the mouth region from the dubber to the actor. As from independently selected scans of a face at rest. As a re-
explained in Sec4.3, these activation curves need further SUlt, they share the same semantic dimensionsy but do not
actor speci ¢ adjustment during transfer. necessarily agree on the rest pose, i.e., the two models span

We manually identify then= 49 blend shapes responsible  the same semantic space but might have a different origin.
for the mouth motion as those components that displace ver- | there is a small systematic offset in the model origin,

tices on the jaw, lip or cheeks. We quantify a region of inu- e can get an estimate of the true rest pose by selecting the
ence for these mouth blend shapes by assigning a value be-pjending weight combination that has the smallest Euctidea
tween 0 and 1 to each vertex, where 1 means highly affected norm over allf captured frames, provided that there is at
by mouth motion and 0 not affected at all. These values are g5t one neutral expression in the sequence. This blending
found by accumulating the blend shape displacements at  \yeight combination with minimum norm is then taken as
each vertex and mapping them{@1], where 0 corresponds  the true model origin and is used to correct the transferred
to zero displacement and 1 to the median displacement OVer yeights. To this end, we replate - in Eq. () by

all vertices. The obtained mask is depicted in H@nd is ) o

used for detail synthesis and image blending (see Saad bo:j = by;j b+ b for 1 j m, (3
Sec.6). The mask is extended to include the nose tip, since

it is often in uenced by the mouth motion in practice. e
ing weight combination with the minimum Euclidean norm

over all f target frames ant™" has the same meaning for
the dubbing sequence. We observed that this correction step

4.2. Blending Weight Transfer

4.3. Blending Weight Correction

We transfer the mouth motion of the dubber to the actor
at a timet by combining the actor's blend shapes as follows:

. mo b signi cantly improved the quality of the expression tragsf
e = nr + Qbpjbryy + @ brjbrj. (2 between different individuals.
j=1 j=mt+1

Iz} [—e— [Ty

hesized d dubb d . .
Mo et e 5. Detail Synthesis
Here,b;.j andby;j, 1 j b, are the captured blending We add ne-scale skin detail to the synthesized target
weights of the actor and the dubber, amd andb; ;; de- meshesM { by assuming that wrinkles and folds are cor-

note the rest pose and thieh blend shape of the actor. The related to the underlying facial expression, which in tua a
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to the blending weights. Detail in the top parthts is not similar change w.r.t. the previously retrieved Weightg 1),
in uenced by the blending weight transfer and can thus be In other wordsj(t) andi(t 1) have to minimize
assumed identical to that of the captured mdsh . De-
tail in the mouth region, on the other hand, changes under
the effect of the new blending weights and must be synthe- ( it 1) i(t)) ( t1 ot ) ©6)
sized appropriately. This detail has to be actor-speci d an T T s s/ 2
will be generated by searching for similar expressionsénth  This measure assumes that similar changes in expression in-
captured target sequence and transferring the high-fregue ~ duce similar changes in skin detail. We remark that the re-
detail layer from the retrieved target geometries. trieved indices(t 1) andi(t) do not have to be consecutive

in the original target sequence, since the search is global.

dn( D 0 LY =

5.1. Target Frame Retrieval 5.1.3. Frame Distance

We wish to retrieve a captured target mesH(" with a sim- Strong transitions in the retrieved detail are more likély i
ilar mouth expression and motion as the current synthesized jt 1) andi(t) lie far apart in the original target sequence. To
meshM . Here,i(t) 2f 1;:::; fg stands for the retrieved  enforce smoothly varying detail, we penalize the temporal
frame index in the target sequence that corresponds to the gistance of the retrieved neighboring indices, as follows:
current index in the synthesized sequence. To this end, we

look for similarities in the blending weights that drive the di(it 1);i()=1 exp(j it 1) i®)j) . (7)

: t
mouth motion of the mesh sequendds; andM . This measure assumes that the captured detail of close-by

Letbj, 1 j m, denote the set of blending weights frames is more similar than that of distant frames.

that are responsible for the mouth motion, as identi ed in
Sec.4.2 Then we can represent the synthesized mouth ex- 5.1.4. Global Energy Minimization

; ; ; t =
pression at a frame by the blending weight vectors = The optimal rearrangement of target indices is then found by

> .
bl.1i:::bs:m ~ and the synthesized sequence of mouth minimizing the energy in Eqd, which is the weighted sum

expressions bB s = ( Lo Sf). Our retrieval problem of the three distances over all frames:
aims at nding an optimal rearrangement of target indices EB-B. = wal d ( (. 3
(i(2);:::;i(f)), such that the corresponding sequence of cap- Tes T ba=1%t 75 s
L s i i(f)y o it 1. i
tured expressionB ; =( 'T(l);:::; 'T(f)) is as close as pos- + Wmatle dm( 'T(t ); 'T(t); s L $)
sible toB s . We can write this f)ptlmlzatlon problem as: + W étf=1 d(it 1):i(t) ®)
(i(l)r;q':?(f)) EBriBs ) wherewy, Wm, andw; control the in uence of each term.

whereE denotes a multi-objective function that measuresthe A greedy approach _COU|d n_d the unknown indices se-
similarity of blending weights along with their change over quentially by progressively retrieving the currently resr

time, and the adjacency of frames, described as follows. one. A better solution that solves for the complete sequence
(i(L);:::;i(f)) at once could be obtained by nding the
5.1.1. Blending Weight Distance shortest path in a weighted directed graph where each node

represents a target index and each edge is weighted by the
The similarity between a target and a synthesized mouth ex- distances described above (see Fg.A solution can be
pression is computed as thg-norm of their difference. The  found using Dijkstra’s algorithm, but since the startinglao
indexi(t) of the target mesh, that is closest to the current s unknown, its complexity i©( %) in the number of frames,
synthetic mesh at frante has to minimize which prohibits its use for long sequences. Instead, watreso

0. ty_ i@ t to methods based on hyper-heuristiB$lK 10] to arrive at
A w75 )= 7 s 2 ®) an approximate solution that lies provably close to the gllob

This distance measure is based on the assumption that, for aoptimum. Hyper-heuristics are automated methods for se-
given person, face meshes with similar expression, and thus lecting or generating local search operators to solve a hard

underlying blending weights, have similar skin detail. combinatorial problemBGH 13]. In our particular imple-
mentation, we de ne three local operators which indepen-
5.1.2. Motion Distance dently minimize the three terms in E8.as well as a fourth

operator that randomly disrupts the local optimum at a ran-
To regularize the retrieval, we consider the change in ex- dom index location. The latter ensures that the algorithm ca
pression over time, i.e., the difference between conseeuti  explore new solutions, avoiding stagnation in local minima
blending weights ' *and . Given the expression change  To guide the search for the optimal solution, we de ne a
fromt 1totin the synthesized sequence, we enforce that hyper-heuristic approach that adaptively selects these fo
the currently retrieved blending weighté(t) must undergo a operators by reinforcement learning, as@(13.
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target {
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Figure 5: Shortest path in a graph of candidate indices.

Blend shape models can be overcomplete and multiple

6.1. Audio Alignment

To determine the precise time instances of visually salient
speech gestures, we analyze the audio of the dubbing se-
guence independently of the video stream. Since the content
of the utterances spoken by the dubber is known, we seg-
ment the audio into phonetic units using an automatic speech
recognizer in forced-alignment mod¥EG 06]. In the re-
sulting phonetic segmentation, lip closure events areatig

by analyzing all instances of bilabial consonants /p/,dhd

blend shape combinations may produce the same expression/M/. In many cases, the automatically determined segment

We observed that different actors can activate distinatdle

boundaries are suf cient, but where reverberation or back-

shapes when uttering the same words. As a consequencegdround noise in the recording affects the reliability of the

facial expressions can not be compared reliably using a dis-
tance between blending weights. We overcome this by per-
forming Principal Component Analysis (PCA) on our blend
shape model and replacing the blending weights inSwy

the set of PCA weights that explains 99% of the mouth mo-
tion. Note that PCA does not change the face model; it only

removes redundancy to make the frame retrieval more accu-

rate. In the motion transfer step in Sdchowever, a blend
shape representation is still preferred since the dimassio
are spatially localized and easier to interpte&R 14]. This
provides an extra level of control to the user who can glob-
ally scale the blend shape curves to modify the expressive-
ness (see the supplementary video).

5.2. Detail Transfer

automatic segmentation, we manually correct the lip cl®sur
intervals using visual and acoustic cues in the phonetit ana
ysis software PraaBWO01]. The output is a sequence of time
intervals associated with all speech-related lip closuents

in the video sequences, at a precision far higher than can be
achieved when analyzing only the dubber video footage.

The detected intervals are used to improve the timing of
bilabial consonants in the synthesized video by forcing the
blending weights responsible for lip closure to zero. Ta@vo
jerky motion, enforcement is done in a small Gaussian win-
dow centered around the detected intervals (seegig.

6.2. Rendering the Synthesized Geometry

Although complex light transport mechanisms, such as sub-
surface scattering, in uence the perceived skin color, g« a

Once a sequence of target indices has been retrieved, wesume pure Lambertian skin re ectance, which is suf cient

transfer the skin detail of the retrieved target m&st to
the current synthesized mebh? . The detail is added as a
per-vertex displacement expressed in the local vertexd¢oor
nate frame (see Se4.1). We only transfer new detail in the
in uence region of the mouth, given by the mask of Fa.
Outside this region we preserve the original detail of the ca
tured mestv tT . At the mask boundary, we ensure a smooth
transition between both detail layers using alpha blending

Despite temporal regularization, the retrieved indiceg ma
still introduce slight jumps in the transferred detail (ptiie
original ordering of target indices produces smooth detalil
over time, but does not resemble the dubbing performance).
Thus, we temporally smooth out the transferred detail layer
by ltering the displacements in a sliding Gaussian window
of 5 frames. The detail transfer is illustrated in Fg.

6. Speech Alignment and Rendering

We improve the synchronization of the lip motion and the
dubbed audio by modifying the blending weights to enforce

under most conditions. To this end, we use the following for-
mulation of the rendering equation:
z

B(x) = r(x) WL(W)V(x;w) maxw N (x);0)dw , (9)

whereB is the irradiancer the skin albedoN the normal
at vertexx, L the incident lighting from directiow sampled
on the hemispher@/ andV the visibility.

The facial performance capture method G\VWT13]
estimates the lightind. in the target scene and a coarse,
piece-wise constant estimate of the actor's skin albede (se
Sec.4.1). However, this coarse albedo is insuf cient for a
convincing rendering of the actor and we require a per-xerte
albedor (x) instead. We estimate the dense skin albedo by
projecting each vertex of the captured meskl ¢ into the
target framd! and assigning the intensity &(x ) in Eq.9.
Dividing the irradiance by the integral on the right thenegiv
us an estimate af(x). We then render the synthetic mesh
by solving the rendering equation for each verteivbof .

If the dense albedo is estimated for each frame indepen-

lip closures where needed. The synthesized meshes are therdently, it may suffer from small imprecisions in the captlre
rendered into the target camera using the estimated sceneface geometry and lead to undesirable intensity changes

lighting and a per-vertex estimate of the skin re ectance. |

in the rendered images. To avoid this, we assume that the

a last step, the mouth cavity and the teeth are rendered andalbedo is constant over time and estimate a single value in

combined to produce the nal composite.

¢ 2015 The Author(s)

each vertex via a least squares t over all captured meshes.
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@ (b) (© (d) (e) ®

Figure 4: Motion transfer and detail synthesis for the example of EigThe facial performances of the actor (a) and the
dubber (b) are captured and the estimated mouth-relatedddhgy weights are transferred from the dubber to the actothis
case opening the actor's mouth (c). Fine-scale facial détaim the captured mesh in the current frame (d) and detaifrfithe
captured mesh in the retrieved frame (e) are combined toymea detailed synthetic mesh (f).

To improve spatial sampling, albedo computation and ren-
dering are performed on upsampled versions of the face
meshesr{= 200000).

6.3. Teeth, Inner Mouth and Final Composite

The rendered face lacks teeth and a mouth cavity. For the
upper and lower teeth, we create a 3D proxy consisting of
two billboards that are attached to the blend shape model
and move in accordance with the face under the control of
the blending weights (see Fi). They are colored with the
static texture of a target frame in which the teeth are visi-
ble. The inner mouth is created by warping a single image of
the mouth cavity using the facial landmarks obtained from
the synthesized facial performance. We uniformly adjust th
brightness of the teeth and inner mouth according to the de-
gree of mouth opening to create a realistic shading effect.

The rendered face, rendered teeth and warped inner mouthFigure 6: Speech alignment and rendering. Lip closure is
layers are blended in with the target image by feathering enforced to improve audio-visual quality (upper row leftlan
around the boundaries to assure a smooth transition (seecenter). The textured 3D tooth proxy attached to the blend
Fig. 6). We only blend the synthesized face inside the pro- shape model (upper row right). The rendered face, the inner
jection of the mask of Fig3, while preserving the original mouth and tooth layers and the nal composite (bottom row).
face elsewhere. The result is the synthesized sequénce

7.1. Dubbing Results

7. Experiments Fig. 7 presents our result for a target actor reciting a dialog

We applied our method to three target sequences of German-Of @ movie in German. This sequence is 1.5 min long and the
speaking actors recorded under constant, unknown illumina actor remained mostly still while speaking. The upper row in
tion. A dubbing studid’ translated our scripts and recorded the gure shows example frames from the target sequence,
a new English language track for each sequence using a prO_whlle the_ middle row shows the corresponding frames from
fessional dubber. We Imed the dubber in the studio with the the English dubber sequence. These are assumed to be cor-
set-up of Figl. The central camera is used for performance Fectly aligned in time such that the English and German sen-
capture, while the two satellite cameras are only used for th  {€Nces overlap. As most professional dubbing studios decor
3D reconstruction needed for the blend shape creation. All Single sentences in separate takes, we had to perform this
videos where shot with an SLR camera at 25 fps in HD qual- alignment manually (only at the beginning of the takes).
ity. The German audio was recorded with a USB microphone The bottom row of the gure shows the corresponding syn-

and the English audio with the dubbing studio equipment. thesized results. The mouth motion, the actor appearance,
and the mouth interior are plausibly synthesized. The sup-

plementary video further demonstrates that the synthesize
Y SPEEECH Audiolingual Labsyww.speeech.de mouth motion matches the dubbed audio track well.

C 2015 The Author(s)
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Figure 7: Target (top), dubber, and synthesized (bottom). Figure 9: Target (top), dubber, and synthesized (bottom).

7.2. Validation

Target Frame Retrieval To quantify the in uence of the
energy terms in EcB, we compared several retrieval results
obtained with different values for the weightg, wm, and

w;. To this end, we recorded a control sequence for the ex-
periment of Fig.7, in which the target actor is reading the
English dubbing transcript under target conditions. The ta
get and control sequences thus depict the same actor gecitin
the same dialog, both in German and in English. Based on
the English audio, we selected the corresponding words in
the dubbing sequence and control sequence that had a com-
parable timing, and identi ed 142 frames in which the visual
utterance of the actor was identical to that of the dubber.

These 142 control frames were compared to the frames
that were retrieved by our method from the German target
sequence. If our frame retrieval is successful, the control
frame and the retrieved target frame should depict the same
utterance and look very similar. As a similarity measure, we
used the average PSNR over all 142 frames. Small differ-
ences in the actor's pose were accounted for by warping the
faces to a common reference pose. Retrieving the closest

Another result for a different target actor performing a frames in time 4, = wm = 0) was least successful with an
scene of a passion play can be seen in &ig.his sequence average PSNR of 22 dB. Retrieval purely based on the simi-
is challenging due to the fast head motion and the expres- larity of the PCA weightswWm= w;= 0) was more successful
sive facial gestures. As can be seen in the gure and the (28.0 dB), while adding the motion distance (28.2 dB) and
supplementary video, the new mouth motion and appear- the frame distance (28.6 dB) increased the similarity frth
ance are plausibly generated and much of the emotional con- We attained the best results by using the combinatipn 1,
tent is preserved, which demonstrates that out method is ca-wm = 10 andws = 1000, which was utilized in all of our ex-
pable of dealing with fast and expressive motion. Finally, periments. Note that we did not compare the control frames
Fig. 9 shows the same actor answering interviewer's ques- directly to our nal synthesized images, since the rendgrin
tions. This video attempts to simulate a television intemwi and the compositing can affect the PSNR adversely.
where the spoken lines are spontaneous and not scripted be-
forehand. Also for this result, the expressions of the aoter User Study We conducted a user study in which we asked
cluding laughter and pondering gestures, are preservdd wel users with an understanding knowledge of English to com-

Figure 8: Target (top), dubber, and synthesized (bottom).

c 2015 The Author(s)
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pare our results of Fig¥-9 with those of traditional dub-
bing. Traditionally dubbed results were provided by the stu
dio that recorded the dubbing actor and consist of the origi-
nal German target video overlaid with the English language
track, which was further modi ed by an expert for a better
audio-visual alignment (included in the additional video)

45 participants, from countries where dubbing is both
a common practice (Germany, France) and not (US, UK,
Chile), rated the results on a Likert scale from 0 (very bad)
to 5 (very good) based on their audio-visual experience, in-
cluding viewing discomfort and how natural the video-audio
combination was perceived. Our modi ed videos and the tra-
ditionally dubbed videos were displayed side-by-side in a
web form. Over all three sequences, traditional dubbing re-
ceived an average score of 3.2, while our system received
a score of 2.7. Overall, 35% of the respondents said they
felt more comfortable watching our modi ed video. These
scores seem low at rst, but actually indicate a big step dhea
in solving this extremely dif cult problem. The human eye
is tuned to the slightest visual artifact in a rendered faak a
it is very hard for an automatic system to produce visually
plausible results that do not fall in the uncanny valley,gesp
cially in a side-by-side comparison against real video.

Despite the professional quality, traditional dubbing was
not favored by everyone. In fact, our result of Figvas pre-
ferred by 47% of the users and we believe this shows con-

Figure 10: Rendering with (left) and without detail (right).
Without added detail the face looks too smooth.

Rendering Fig. 10 and the supplementary video demon-
strate the importance of facial detail synthesis for photo-
realistic rendering by comparing our result with a system
that renders the face using a blend shape model without ne-
scale detail. This corresponds to facial replacement tech-
nigues that use a coarse 3D parametric model without a de-
tail layer [DSJ 11]. In contrast to our method, important skin
features, such as laugh lines, are hardly visible and t&alis
shading effects on the chin and upper lip are missing. The
supplementary video also compares alternative stratégies
create the inner mouth, showing that ours is the best.

7.3. Discussion

Our work takes a notable step ahead over previous facial
expression transfer or facial video modi cation approache

siderable progress towards a system that can replace facialUnlike video rewrite or model-based replacement methods
performances in video. The same result received an absolutethat mix identities PSJ 11], we can synthesize results when

score of 2.7, which is only slightly less than the 2.9 score of
traditional dubbing. In overall, our result shown in Féye-

ceived the highest score of 3.0. All p-values were lower than
0.01, except for Fig. 7, whose preference was close to 50%.

Comparison to Image-based MethodsWe compared our

target and dubbing actor ad#ferent which is essential for
any practical application. The use of an accurate paramet-
ric face model, along with detailed lighting and albedo in-
formation enables photo-realistic synthesis of face appea
ance, even on long videos with moderate out-of-plane head
motion. As shown in the experiments, our 3D model-based

3D model-based approach with an image-based approachresynthesis approach bears several advantages over purely

that rearranges the input target frames and only applies 2D
face warping to produce the nal composite. To this end,
we modi ed VDub to use the image reordering and non-
rigid warping strategy of VR 14] to generate a temporally
smooth target performance that is close to the dubber's per-
formance. Such a method is similar to a purely image-based
technique, like Video RewriteBCS97, but with better im-

age warping. We refer to the additional document for details
on how we turned VDub into an image-based approach.

The additional video shows the image-based result for
the sequence of Fi@. Although the performance matches

or model-assisted image-based methods, which often ¢xhibi
ghosting artifacts or temporal aliasing, merely show rssul
without compositing, and can only handle marginal out-of-
plane head motior§CS97L011, ASWC13.

We also take a step towards easing and streamlining the
work ow of traditional dubbing: we no longer require a
translation of the original text that matches the visual ut-
terances in the target video on a viseme level. Since we
resynthesize the mouth motion entirely, the translatiam ca
be more free. Furthermore, our method relies on very little
manual preprocessing, most notably the creation of thedblen

the dubbed audio, the synthesized animation is much less shape model and teeth proxy; otherwise, it is fully automati

expressive and suffers from temporal ghosting artifacts
and inner mouth instabilities. It also struggles with sgron
head motion and the compositing introduces stretching and
shrinking of the face. Our result has a higher temporal res-
olution, and the use of a full 3D face model and geometric
face detail combined with detailed albedo enables us to bet-
ter merge synthesized and original performance underrarge
head pose variations, as well as appearance changes.

and can be integrated into an industrial pipeline.

7.4. Limitations

Our approach is a step towards a challenging goal and thus
has limitations. First, a static 3D face reconstructionuiich

the blend shape model may not be available for every actor,
e.g., in vintage movies. Model reconstruction from video is

C 2015 The Author(s)
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an interesting problem for future work. Our approach cur- mances are synthesized by using a new motion parame-
rently transfers idiosyncrasies of the dubbing actor to the ter transfer step between dubbing and target actor, and a
target actor and our renderings may thus re ect the charac- space-time retrieval method that synthesizes plausilgle-hi
teristics of the dubber rather than of the original actor. Fo frequency shape detail. The synthesized results, indudin
instance, in our test data we measured an asymmetry in thethe interior of the mouth, are photo-realistically rendeaed
blending weights of the dubber as part of his natural way attention is paid to a proper synchronization of the mouth
of speaking and this asymmetry was reproduced in the actor motion with salient events in the audio track. Resynthagizi
(refer to the result of Figz in the supplementary video). We  facial motion at video quality is extremely challenging as o
believe that more sophisticated expression transfer mstho perception is attuned to the slightest inaccuracies. Tdirou
(e.g. BLS 12]) would also transfer dubber characteristics qualitative comparison and a user study we showed that we
and think that this is rather a question of user control. Cer- can create plausible results and that we have taken an impor-
tain aspects and weights can be manually ampli ed to con- tant step towards solving this challenging problem.

trol expressiveness (see supplementary video), or diftere

between the two actors could be learned in order to achieve Acknowledgments

a certain style; all of this is feasible in our representatio ' . )
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