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A Discussion on Refinement of Feature
Matching

As discussed in Section 4.1 in the main paper, we have observed
that when simultaneously examining more than two pairs of frames,
correct feature matches are more consistent with other correct
matches than with other incorrect matches. As an example, when
frame I1 correctly matches frame I2, and frame I2 correctly matches
frame I3, then it is very likely that I1 also matches I3. For incorrect
matches, this is less likely. This context information can be ex-
ploited to prune incorrect matches.

Similarly to the main paper, results of feature matching can be rep-
resented as a graph G(F ,E) which defines frames as its nodes. The
existence of an edge between two nodes implies that feature match-
ing for the corresponding frames is valid.

A naive context-based filtering approach would assign a local
context-dependent confidence to an edge (I,J) and remove it when
the confidence is lower than a threshold. For instance, we could
define the confidence of (I,J) as Γ, the degree of overlap of the
neighbourhoods NG (I) and NG (J) of I and J, respectively:

Γ(I,J) =
|NG (I)∩NG (J)|
|NG (I)∪NG (J)|

(1)

For instance, if I is neighbouring J and K, it is likely that J and K
are each other neighbours (see Figure 1). While this approach may
be reasonable when the neighbours of I and J consist of frames in
a spatially localized scene, it may mistakenly disconnect I and J if
the camera viewpoints are starkly different. For example, a camera
operator walks along a path and takes a panning shot from location
A, through to location B, and finally to location C. The footage
taken from A and B may contain the same landmark. Now consider
location C. The footage from B and C overlaps while the footage
from A and C does not (see Figure 1). In this case, A and B should
not be disconnected just because the subgraph composed of A, B,
and C shows low connectivity. The same reasoning continues to
cases with more than three nodes.

This specific example can be dealt with by adopting a small thresh-
old value for Γ(I,J). However, this may leave incorrect matches
in high-density regions. Furthermore, for edges joining nodes in
regions with the same density, we could still distinguish correct
matches from incorrect ones depending on how these edges are ge-
ometrically collocated. In our A, B, C example, the edges joining
the nodes are aligned with the same orientation. This orientation
consistency and the variations in local density can be used as clues
for verifying given connections. To better illustrate this property,
let’s assume that frames are embedded in a vector space X which
has a metric structure and an underlying probability distribution P.
Suppose that distribution P is elongated along a specific axis in X .
In this case, an edge parallel to that axis should be more likely to be
a correct match than ones oriented orthogonally (Figure 2). In gen-
eral, the lengths and orientations of edges do not have to be directly
related to real geographical locations and camera orientations as in
our example in Figure 1.

Given this context, we motivate the use of spectral clustering as
follows: given the semi-norm of a vector f ∈ Rn, whose elements

represent the assignment of a cluster index (as a real value, before
the quantization by k-means) to each data point:

‖ f‖L : = f>L f

=
1
2

n

∑
i, j=1

k(Ii, I j)( f i− f j)2.
(2)

This norm penalizes the first order variation of f across the set of
frames, weighted by k. If we assume that k is (inversely) propor-
tional to a distance in a space embedding, the frames F , ‖ · ‖L can
be understood as a measure of the first order variation weighted by
the density of F in that space. Then, minimizing ‖ f‖L tends to
place two points I and J in the same cluster (i.e., | fI − fJ | ∼ 0) if
there is at least one high-density path connecting them (e.g., nodes
lying in the upper cluster in Figure 2). Furthermore, when the num-
ber of images n→∞, L converges to the Laplace-Beltrami operator
on a compact manifold M in which the data resides [von Luxburg
2007], which is the generator of the diffusion on M. The previously
mentioned orientation consistency can be understood in the context
of diffusion flow. The corresponding smallest eigenvectors span a
subspace of vectors which represent the least penalization by ‖ ·‖L.

In general, the function k is not positive definite (pd) and does not
lead to a distance measure. However, the elements of the matrix K
are positive and, empirically, the corresponding diagonal elements
mostly dominate (i.e., ∑i K(i,i) ≥ 2∑i6= j K(i, j)). Accordingly, all K
in our experiments were pd. When this is not the case, we could
instead take its exponential eβK = limn→∞(I+

βK
n )n with a positive

constant β , which is always pd (see [Kondor and Lafferty 2002] for
details).

The results of spectral clustering (i.e., the clusters) cannot be used
directly to identify portals or supporting sets of frames matching
portals. By design, a cluster identified by spectral clustering con-
tains spatially distinct data points. This is not desirable for iden-
tifying portals or for identifying sets of appropriate frames to use
for the corresponding portal geometry reconstruction. In our A, B,
C example, the frames of scene A might not be necessary for the
reconstruction of scene C.

We investigated the performance of the graph Laplacian-based con-
nectivity analysis method by comparing it to the local analysis ap-
proach. For this algorithm, we randomly sampled 100,000 edges,
measured their scores, and removed them when the scores were
smaller than a threshold. The threshold was set at 0.4 to result in
recalls comparable with our proposed method. Since the order of
visiting edges can affect the results, we performed the same ex-
periment 20 times and averaged the error rates. Table 1 shows the
results. The precision of local analysis shows an improvement over
the results obtained without any connectivity analysis. However,
this is still a lower precision and recall than that of our Laplacian-
based graph method.

B Time Synchronization

To provide temporal navigation, we perform frame-exact time syn-
chronization between videos in the collection. We group video can-
didates by timestamp and GPS data if available, and then try to syn-
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Figure 1: An example of a hypothetical local connectivity-based confidence assignment (not used in the current system). The diagram on the
left shows the subgraph of G consisting of neighbours of I and J respectively. Solid lines correspond to existing edges, while dashed lines
show missing edges which would have supported the edge (I,J). The corresponding confidence value is 2

6 . The diagram on the right shows a
case where this confidence assignment would not be applicable (see text for details).

Phase Recall Precision

Spectral analysis 0.53 0.98
Local analysis 0.51 0.95
No connectivity analysis 0.58 0.92

Table 1: Performance of spectral analysis and local connectivity
analysis. ‘No connectivity analysis’ corresponds to just the holistic
and feature matching phases (see Table 2, main paper).
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Figure 2: Example graphical embedding of frames and their con-
nections. Even though (I,J) and (I,K) show the same local connec-
tivity, (I,J) is more likely to be a correct match than (I,K) since the
former is in accordance with the flow direction (elongatedness) of
the distribution while the latter is not. The underlying distributions
P (displayed as ellipses) are not known and should be estimated
from frames.

chronize their audio tracks similar to Kennedy et al. [Kennedy and
Naaman 2009]. Videos which are positively matched by their audio
tracks are aligned accurately to a global clock (defined from one
video at random); hence, portals between these videos create spa-
tial transitions where time does not change (similar to those from
Ballan et al. [Ballan et al. 2010]). Videos which are not matched
by their audio tracks can only be aligned loosely from their times-
tamps, and hence create spatio-temporal transitions. This informa-
tion allows the user interface to optionally enforce temporal coher-
ence among generated tours and to indicate spatial-only and spatio-
temporal transition possibilities (Section 5, main paper).

C Discussion of Transitions

C.1 Camera Tracking

In our experiments, KLT feature tracking worked well for tracking
videos that are mostly steady. Aligning the KLT features to feature
points used in the 3D reconstruction yields smooth sequences of
cameras from different videos that are aligned to the 3D geometry
with sub-pixel errors. However, in the case of shaky video segments
(possibly with rolling shutter artefacts), the quality deteriorates con-
siderably and videos may no longer be accurately aligned with the
3D geometry, leading to ghosting artefacts in the 3D transitions; see
videos for Scene 4 in the supplemental material.

For our databases, standard KLT tracking was sufficient for track-
ing around portals, but other databases may require exposure-
compensated KLT tracking. This is a simple swap and does not
change any of the computation steps.

C.2 Transition Camera Motion

Ideally, the motion of the virtual camera during the 3D reconstruc-
tion transitions should match the real camera motion shortly before
and after the portal frames of the start and destination videos of the
transition, and should mimic the camera motion style (e.g., shaky
motion). To this end, we use the camera poses of each registered
video and interpolate them across the transition. This produces con-
vincing motion blending between different motion styles.

C.3 Transition Timing Differences

When constructing all transition types, it is difficult to match their
frame timings exactly as they use different techniques to generate
new frames. Given a pair of portal frames that are known to visually
match, we must choose where in the video transition to place the
portal frames. Video frames leading up to and following on from
the portal frames may not provide visual matches due to camera
motion (such as panning), and so only the portal frames are reliable.

In the simplest case, the cut transition switches at the portal frames.
Next, the dissolve, plane, ambient point clouds, and full 3D – dy-
namic transition types all have the pair of portal frames in the mid-
dle of their transitions. As the full 3D – static transition does not
play video through the transition, this type places the portal frames
at the start and end of the transition. In this transition type, all ge-
ometry through the camera sweep is projected with only the portal



Figure 3: Perceptual scaling analysis for all scenes/view condi-
tions in our user study.

Significance Cut Dissolve Warp Plane APC Full 3D dyn. Full 3D sta.

Cut 2.65E-05 2.89E-05 1.34E-02 3.38E-04 7.17E-06 5.84E-05
Dissolve 2.65E-05 5.57E-02 4.31E-01 5.61E-01 6.49E-02 9.89E-03

Warp 2.89E-05 5.57E-02 2.26E-02 8.20E-02 8.11E-01 1.82E-01
Plane 1.34E-02 4.31E-01 2.26E-02 6.79E-01 7.42E-02 7.46E-03
APC 3.38E-04 5.61E-01 8.20E-02 6.79E-01 3.16E-02 1.23E-02

Full 3D dyn. 7.17E-06 6.49E-02 8.11E-01 7.42E-02 3.16E-02 2.51E-02
Full 3D sta. 5.84E-05 9.89E-03 1.82E-01 7.46E-03 1.23E-02 2.51E-02

Table 2: Student’s t-test matrix for significance of preference, with
p− value < 0.05. Green cells denote significantly better, and red
cells denote significantly worse. The table should be read as fol-
lows: Column ‘Cut’ with row ‘APC’ is red, which denotes that Cut
is significantly less preferred than APC. Column ‘APC’ with row
‘Cut’ is green, which denotes that APC is significantly more pre-
ferred than Cut.

frames. Finally, as the warp transition type is image based it starts
and ends with the portal frames.

These effects can be seen in the side-by-side comparison of transi-
tion types for Scene 3 in our video. In our experiment, we choose
to trigger the transitions simultaneously to make it easier for the
participants to compare. This leads to some transition clips starting
and ending on different frames.

D Transition Experiment Analysis

In Figure 3, we present the perceptual scaling analysis of our user
study for all scenes together. Figure 4 shows the perceptual scal-
ing for slight view change cases, and Figure 5 shows the percep-
tual scaling for considerable view change cases. Table 2 presents
the significance matrix for the all scenes case, and Tables 3 and 4
present the significance matrix for the slight and considerable view
change cases respectively. Even though the warp transition is not
significantly preferred against the full 3D transition types, we be-
lieve it is a good choice as the default transition for slight view
changes because it a) is the only transition significantly preferred
against any other transitions in this case, and b) has a very low per-
ceptual scale variance among participants (Figure 4).

In Figure 6, we show the perceptual scaling analysis for each indi-
vidual scene and view change of our experiment.

E Label Propagation

We augment the browsing experience by providing semantic labels
to objects or locations in videos. This feature has been demon-
strated in photo exploration applications [Snavely et al. 2006; Kopf

Figure 4: Perceptual scaling analysis for all scenes with slight view
changes in our user study.

Significance Cut Dissolve Warp Plane APC Full 3D dyn. Full 3D sta.

Cut 6.58E-03 6.13E-05 2.66E-01 7.16E-02 1.11E-02 3.09E-02
Dissolve 6.58E-03 4.01E-03 6.55E-01 4.84E-01 1.35E-01 1.58E-01

Warp 6.13E-05 4.01E-03 1.08E-02 1.36E-02 3.57E-01 9.86E-01
Plane 2.66E-01 6.55E-01 1.08E-02 9.32E-01 1.92E-01 1.33E-01
APC 7.16E-02 4.84E-01 1.36E-02 9.32E-01 7.06E-02 1.42E-01

Full 3D dyn. 1.11E-02 1.35E-01 3.57E-01 1.92E-01 7.06E-02 3.73E-01
Full 3D sta. 3.09E-02 1.58E-01 9.86E-01 1.33E-01 1.42E-01 3.73E-01

Table 3: Slight view change sets student’s t-test matrix for signif-
icance of preference, with p− value < 0.05. Green cells denote
significantly better, and red cells denote significantly worse.

et al. 2008], and we adapt it here to the Videoscape. For instance, if
given the names of landmarks, we can allow keyword-based index-
ing and searching. Viewers may also share subjective annotations
with other people exploring a Videoscape (e.g., “Great cappuccino
in this café”).

A Videoscape provides an intuitive, media-based interface to share
labels: During the playback of a video, the viewer draws a bound-
ing box to encompass the object of interest and attaches a label to
it. Then, corresponding frames {Ii} are retrieved by matching fea-
ture points contained within the box. As this matching is already
performed and stored during Videoscape computation for portal
matching, this retrieval reduces to a fast search. For each frame Ii,
the minimal bounding box containing all the matching key-points is
identified as the location of the label. These inferred labels are fur-
ther propagated to all the other frames (matching Fi). If more than
two bounding boxes are identified for a single label in a frame then
we simply construct a superset box. As the quality of individual
key-point matches varies, the inferred bounding box may contain
only a part of the object of interest. Thus, we show the center of
the box as the location when superimposing tags to video frames
(as can be seen in our supplementary video).

F Study Interfaces

This section presents additional results on video browsing experi-
ments (see Section 6.2 of the main paper). In addition to the ques-
tion described in Tables 6 and 7 of the main paper, we asked par-
ticipants 10 questions. The questions were: “For the Videoscapes
interface, how useful...”

Q1a: “...were the portal eyes?”
Q2a: “...were grey trails showing from where the video was

taken?”
Q3a: “...were the white camera field of views showing from where



Figure 6: Scaling analysis for each individual scene and view in our user study.



Figure 5: Perceptual scaling analysis for all scenes with consider-
able view changes in our user study.

Significance Cut Dissolve Warp Plane APC Full 3D dyn. Full 3D sta.

Cut 6.60E-04 2.19E-02 2.84E-02 5.94E-05 1.22E-05 2.34E-04
Dissolve 6.60E-04 8.48E-01 5.46E-01 9.63E-01 3.07E-01 2.94E-03

Warp 2.19E-02 8.48E-01 5.88E-01 8.76E-01 5.18E-01 3.65E-02
Plane 2.84E-02 5.46E-01 5.88E-01 5.90E-01 2.61E-01 1.38E-02
APC 5.94E-05 9.63E-01 8.76E-01 5.90E-01 6.83E-02 1.59E-02

Full 3D dyn. 1.22E-05 3.07E-01 5.18E-01 2.61E-01 6.83E-02 2.06E-02
Full 3D sta. 2.34E-04 2.94E-03 3.65E-02 1.38E-02 1.59E-02 2.06E-02

Table 4: Considerable view change sets student’s t-test matrix for
significance of preference, with p− value < 0.05. Green cells de-
note significantly better, and red cells denote significantly worse.

the video was taken?”

Q4a: “...was the search box for text searches?”

Q5a: “...was the search box for image searches?”

and “In general, how useful do you think...”

Q1b: “...the portal eyes would be for browsing video collections?”

Q2b: “...the grey trails would be for browsing video collections?”

Q3b: “...the white camera field of views would be for browsing
video collections?”

Q4b: “...the search box for text searches would be for browsing
video collections?”

Q5b: “...the search box for image searches would be for browsing
video collections?”

Table 5 summarizes the results, which support the observations in
the main paper that are based on the video browsing experiment:
The participants found that interfaces provided by Videoscapes are
‘useful’. The portal eyes and image-based searches were especially
preferred while the text search and showing camera field of views
features were not as preferred as the other interfaces. However,
most participants regarded them as useful features for general video
browsing systems. This suggests that our prototype interface has
some merit beyond the specific task of the experiment.

F.1 Web-based Experiment Components

We show screenshots of the web-based interfaces and question-
naires used by participants in all four of our studies in Figures 7,
8, 9, 10, 11, and 12. The video browsing experiment also included
time with each of the three different interfaces tested, and examples
of these can be seen in the main paper and supplementary video.

G Photography credits

The photographs of people using video cameras in Figure 1 of the
main paper are credited to the following Flickr users:

Man crouching: ‘cogdog’, http://www.flickr.com/
photos/cogdog/4728847341/.

Woman in red jacket: ‘ramoncutanda’, http://
www.flickr.com/photos/ramoncutanda/
4096132827/.

Woman with red hair: ‘garryknight’, http://www.flickr.
com/photos/garryknight/6667784953/.

Cyclist: ‘goincase’, http://www.flickr.com/photos/
goincase/3324038130/.
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Figure 7: Image of the webpage which explains the experiment to participants. It includes an embedded video showing an example of
the transitions that participants are likely to see (in this case, dissolve transitions between video clips that are unused elsewhere in the
experiment). We also collect the self-assessed skill level of the participant in media production.



Figure 8: Image of the webpage for ranking video transitions. Each transition type is randomly ordered onto the page. Participants can drag
and drop the videos into order, using the ranking labels to the left to keep track. Comments can be left for each ranking, of which there are
10 in total (5 scenes, each with two view changes) shown in a random order. The region outlined in blue is replaced by the region outlined in
red for the final ranking, allowing participants to submit their results remotely.



Question / Utility Very useful Somewhat useful Not useful Did not use

Q1a: Portal eyes for task 14 0 1 5
Q2a: Grey trails for task 7 4 1 8
Q3a: View frusta for task 6 6 1 7
Q4a: Text search for task 6 4 0 10
Q5a: Image search for task 11 1 0 8

Q1b: Portal eyes in general 13 7 0 0
Q2b: Grey trails in general 6 13 1 0
Q3b: View frusta in general 10 10 0 0
Q4b: Text search in general 12 7 1 0
Q5b: Image search in general 16 2 2 0

Table 5: Further questionnaire results of Video browsing experiments showing the number of participants who responded for each choice.
Bold signifies the most frequent answer for each question.

(a) Initial webpage with explanatory text. (b) Questionnaire webpage.

Figure 9: Spatial awareness experiment website.



(a) Participants see a static map, pin, and view frustum for 8 seconds as
orientation.

(b) A countdown appears for 3 seconds.

(c) A video plays, then transitions into another video. This transports the
viewer to a new world position and view direction. The two conditions in
this experiment show either a cut or a 3D rendered transition.

(d) The participant marks on the map with the red pin/frustum from where
they think the second video was taken.

Figure 10: Spatial awareness experiment website.



(a)

(b)

(c)

Figure 11: Video tour summarization experiment website. (a) Initial webpage with explanatory text. (b) Videos which appear in a random
order before the questionnaire. These can be replayed at will. (c) Questionnaire webpage.



Figure 12: Questionnaire website for the video browsing experiment. Page appears as one column online.


