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Figure 1: Our method receives a set of images taken with different exposure times (smaller images) and reconstructs a ghost-free high
dynamic range image (larger images; tone mapped). The acrobat sequence on the left was captured hand-held with in-camera exposure
bracketing. To our knowledge, our method is the first in the literature to reconstruct plausible HDR images of both highly dynamic scenes
(left) and highly cluttered scenes (right) with both small and large displacements with little or no manual intervention.

Abstract

High dynamic range reconstruction of dynamic scenes requires
careful handling of dynamic objects to prevent ghosting. However,
in a recent review, Srikantha et al. [2012] conclude that “there is
no single best method and the selection of an approach depends on
the user’s goal”. We attempt to solve this problem with a novel
approach that models the noise distribution of color values. We es-
timate the likelihood that a pair of colors in different images are
observations of the same irradiance, and we use a Markov random
field prior to reconstruct irradiance from pixels that are likely to
correspond to the same static scene object. Dynamic content is
handled by selecting a single low dynamic range source image and
hand-held capture is supported through homography-based image
alignment. Our noise-based reconstruction method achieves better
ghost detection and removal than state-of-the-art methods for clut-
tered scenes with large object displacements. As such, our method
is broadly applicable and helps move the field towards a single
method for dynamic scene HDR reconstruction.
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1 Introduction

It is difficult to acquire high dynamic range images (HDR) of dy-
namic scenes without introducing ghosting. Even when using mod-
ern cameras with automatic exposure bracketing, the inter-frame
capture time between input images can be long enough to cause
significant object displacement between images of dynamic scenes
(Fig. 1). Early HDR research implicitly assumed that both the cam-
era pose and the scene remained static during the acquisition of
a set of low dynamic range (LDR) images [Burt and Kolczynski
1993; Mann and Picard 1995]. When these techniques average im-
ages of dynamic scenes, they introduce ghosting artifacts (Fig. 8,
right). Specialized HDR cameras have also been built, but these are
expensive and are not widely available [Tocci et al. 2011].

Deghosting has been addressed in the literature through three differ-
ent strategies: 1) aligning the scene before color averaging, 2) per-
forming joint alignment and reconstruction using one reference im-
age from the LDR set, and 3) detecting regions with moving objects
and excluding their images from the average. All of these strate-
gies fail under challenging real-life conditions. After performing
an experimental validation of state-of-the-art deghosting methods,
Srikantha et al. [2012] conclude that “there is no single best method
and the selection of an approach depends on the user’s goal”.

1) Scene alignment Bogoni [2000], Kang et al. [2003], and Zim-
mer et al. [2011] perform a dense alignment of the images using op-
tical flow prior to color averaging. Although optical flow methods
can correct short displacements caused by camera shake and mov-
ing objects, they typically fail to estimate large displacements, and
have difficulties with disocclusions occurring in highly cluttered
and highly dynamic scenes. Flow estimation is an active area of
research and has many limitations, and the success of these deghost-
ing methods depends on the availability of accurate flow fields.

2) Joint alignment and reconstruction Sen et al. [2012] per-
form simultaneous alignment and HDR reconstruction. Their
method defines a reference image to which all other images
are patch-wise aligned. Ill-exposed regions in the reference are
filled using an adaptation of the bi-directional similarity func-
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tion [Simakov et al. 2008] between the remaining input images and
the HDR result. Similarly, Hu et al. [2012] find dense and patch-
wise correspondences between a reference image and the remaining
images, and blend their aligned gradients using Poisson reconstruc-
tion for the final result. These methods can enhance the dynamic
range of moving objects in cases where the object deformation is
sufficiently small that reliable correspondences can be established,
and this is an advantage over methods based on motion detection
(including ours). However, correspondences might be difficult to
establish due to the differences in the noise distribution between
images (see Fig. 10). In such cases, the dynamic range of refer-
ence image objects cannot be completed. Further, a single reference
might not correspond to the desired output, and a better result could
be composited using parts from different images.

3) Motion detection Most HDR deghosting methods work by
detecting and excluding image regions that could produce ghost-
ing artifacts. In general, these methods assume that the images
are already aligned, and rely on an ability to test if the colors ob-
served for the same pixel in different images are consistent. Con-
sistency is tested with criteria such as pair-wise irradiance differ-
ence [Grosch 2006; Silk and Lang 2012], irradiance difference to
a background model [Granados et al. 2008], distance to the inten-
sity mapping function [Gallo et al. 2009; Raman and Chaudhuri
2010], variance of the irradiance estimates [Reinhard et al. 2005;
Jacobs et al. 2008], average ratio between images [Tomaszewska
and Markowski 2010], probability of the distance to a background
model [Khan et al. 2006; Pedone and Heikkilä 2008], correlation
with a reference image [Menzel and Guthe 2007], difference of the
entropy on local image patches [Jacobs et al. 2008], and difference
between gradient orientations [Zhang and Cham 2012]. However,
each of these consistency tests requires setting fixed thresholds that
are unlikely to generalize well to the noise properties of different
cameras and exposure settings.

Color quantization and bin matching techniques [Min et al. 2009;
Pece and Kautz 2010], and techniques that test whether intensity
increases monotonically with exposure [Sidibé et al. 2009], can be
seen as strategies for dealing with noise differences within the in-
put sequence (higher noise in shorter exposures, lower noise in the
longer ones). These invariants have high specificity but lower sen-
sitivity than other methods (Sec. 3).

In Sec. 3, we experimentally show that our method has higher ac-
curacy than the state-of-the-art methods based on motion detection.

Our approach We claim that HDR deghosting can be signifi-
cantly improved by modeling the noise distribution of the color
values measured by the camera. This has been largely neglected
in previous work, but provides a simple and principled approach to
solving the problem.

Colors are observed at the same pixel location across different ex-
posures in an LDR set. To test whether two colors correspond to
the same irradiance (and so correspond to the same object), we must
consider their noise distributions. Noise distributions depend on the
camera and exposure settings, and can be modeled using Gaussian
distributions. Distribution variance is proportional to the light in-
tensity and is inversely proportional to the squared exposure time,
and depends on camera parameters such as the gain factor and the
readout noise parameters (Sec. 2.1).

Given that the noise depends on the scene irradiance and the cam-
era parameters, no fixed threshold can be set reliably to detect im-
age differences across camera models and scenes. Following this
observation, we estimate the camera gain factor to predict the noise
distribution of the input images and use this to normalize the color
consistency tests (Sec. 2.2). This novel noise modeling approach
improves the discriminative power of ghosting detection.
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Figure 2: 1-D illustration of HDR reconstruction. An HDR image
can be reconstructed by averaging the irradiance estimates derived
from the color of corresponding pixel locations in the input images.
Ghosting artifacts appear whenever sets of inconsistent colors are
included in the average. The problem of HDR deghosting can be
defined as selecting consistent subsets of colors for every pixel.

In general, there can be multiple ghost-free HDR images that are
consistent with a set of input images. Among them, we choose
the final HDR image such that each pixel color 1) is reconstructed
from a consistent set of input images (a single one for dynamic
objects), 2) has high signal-to-noise (SNR) ratio, and 3) is spatially
compatible with its neighbors in other source images (Sec. 2.3).

In summary, to our knowledge our algorithm is the first HDR recon-
struction method to handle scenes with strong clutter and dynam-
ics without introducing ghosting artifacts. This is demonstrated on
very challenging scenes including crowded places with small and
large object displacements and low-light shots. All these scenes are
computed with fixed parameters. Furthermore, our algorithm per-
forms on par with state-of-the-art methods for image sets with only
small object displacements. As such, our method is broadly appli-
cable and helps move the field towards a single method for dynamic
scene HDR reconstruction. The contributions of our paper are:

1. A novel and simple method for estimating the camera gain
factor from arbitrary images. This enables the automatic pre-
diction of the image noise range.

2. To our knowledge, the first HDR imaging method to fully
automatically take advantage of a camera noise model for
performing reliable ghost-free reconstruction across different
cameras and scenes.

2 HDR deghosting method

Our algorithm input is a set of images taken with a static or hand-
held camera at different exposure times, where pixel values in the
images are the raw output of the camera, i.e., before any of the
camera’s internal processing. If captured hand-held, we robustly
register the images using a global homography computed with
RANSAC [Fischler and Bolles 1981] from sparse SURF keypoint
matches [Bay et al. 2008]. With an aligned image set, our method
estimates an irradiance image where each pixel is constructed as a
weighted average of colors of the corresponding pixels across the
input images. Ghosting artifacts would be generated by averaging
a set of pixels which includes an inconsistent subset. Our algo-
rithm identifies a consistent subset of images per pixel location and
reconstructs the final irradiance value as an average of consistent
pixel colors (Fig. 2). This avoids having to select a reference im-
age [Sen et al. 2012], or having to build a background model [Khan
et al. 2006], which requires that the background be more likely to
be observed at every image location — this is not necessarily true
for cluttered scenes. To begin, we discuss our noise model and our
automatic camera calibration procedure.



2.1 Image noise estimation

Even when assuming a static scene and constant camera parame-
ters, image noise varies by exposure time. The two main temporal
noise sources are known as shot noise and readout noise. Shot noise
is introduced by the process of light emission, which follows a Pois-
son distribution where the variance is equal to the mean. Readout
noise comprises several other signal-independent sources affecting
the acquisition process of digital cameras (including quantization
noise), and it is modeled well by a Gaussian distribution with zero
mean.

In CCD/CMOS sensors, the number of photon-electrons collected
by the camera at every pixel is linearly proportional to the incident
irradiance. This derives from the properties of the photo-electric
effect on silicon-based sensors for visible wavelengths [Janesick
2001]. The raw camera output is also linearly proportional to the
number of collected photon-electrons. This relation is known as the
camera response function f . The slope of this function corresponds
to the camera’s gain factor g. This factor is proportional to the ISO
setting (e.g., the gain at ISO400 is four times the gain at ISO100).

Since the response function f is linear for raw output, it is possible
to recover the number of photon-electrons collected by the camera
to approximate the probability distribution of each pixel measure-
ment [Granados et al. 2010]. For a non-saturated raw camera output
vi(p) on image i and pixel p, the inverse of the response function,
i.e., the amount of collected photon-electrons, is estimated by

f̃−1(vi(p)) =
vi(p)− bi(p)

g
= tix(p), (1)

where the dark frame bi is an image acquired with same exposure
time as vi but without incoming light (e.g., with the lens cap on).
The product tix(p) between the image’s exposure time ti and the
incident irradiance x(p) is known as the exposure, which is propor-
tional to the number of photon-electrons collected by the camera.

Dark frames measure the dark current, i.e., the pixel intensities in-
duced by thermal energy and not by light). We assume that the dark
current is negligible or, equivalently, that dark frame subtraction is
performed in-camera. Thus, in Eq. (1), we replace the dark frame
bi(p) with the black level L0 of the camera, and omit the contribu-
tion of dark current to shot noise in Eq. (2) below.

The exposure tix(p) follows a Poisson distribution, and the uncer-
tainty in its measurement corresponds to the shot noise. We approx-
imate this distribution using a Gaussian [Hubbard 1970] to model
the variance of the irradiance estimate x(p). From Eq. (1), the vari-
ance of x(p) in image i can be derived as

σ2
xi(p) =

g2tix(p) + σ2
R

g2t2i
, (2)

where σ2
R is the variance of the readout noise, which is also mod-

eled using a Gaussian. To evaluate Eq. (2), we need to estimate the
parameters g, L0, σ2

R, and ti. The exposure time ti can be obtained
directly from the digital image file; next, we explain the estimation
of the remaining parameters.

Readout noise The black level L0, and the readout variance σ2
R

are calibrated using the method described in [Janesick 2001; Grana-
dos et al. 2010]. This method estimates L0 and σ2

R as the mean and
variance, respectively, of the pixel values of a black frame, i.e., an
image taken with no incident light and no integration time (practi-
cally, a very short exposure time). In principle, this data could be
provided for every camera model by the manufacturer.

Camera gain If not provided by the manufacturer, the camera
gain g can be calibrated. Janesick [2001] and Granados et al. [2010]
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Figure 3: Image-based gain calibration. Red dots (top and bottom)
correspond to low-variance super pixels used for calibration. Yel-
low dots represent the remaining super pixels. Green lines show the
predicted noise by image-based calibration, blue dashed lines show
the prediction by flat-field calibration. Our deghosting method is
robust to calibration errors, so even in cases where the gain is over-
estimated (b), the final images are still free of ghosting artifacts (see
Fig. 10). See supplementary material for additional results.
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Figure 4: Confidence of camera gain estimation. The box plots
show the 1st, 25th, 50th, 75th and 99th percentiles of the distribu-
tion of gain factors obtained from flat-field calibration (a 36 sam-
ples of flat field images), and the distribution of factors obtained
from image-based calibration (a sample of seven images, each from
a different scene; two shown in Fig. 3). The gray line denotes the
true gain of the camera. The expected gain for both methods is very
close, but the variance of image-based calibration is higher. De-
spite this, our gain estimate can still be used to reconstruct ghost-
free HDR images (see Fig. 5). The red curve illustrates the depen-
dency between the gain factor and the image variance prediction.
In general, when the camera gain is over-estimated, the predicted
noise for the input images is under-estimated. This makes ghost de-
tection stricter, thus reducing the SNR of the final HDR image be-
cause smaller consistent subsets will be found. As such, no ghosting
artifacts are introduced by this error (see Fig. 5).

suggested to calibrate it using flat fields, i.e., images exposed with
a constant illumination at every pixel, such that every pixel color
can be assumed to be a sample of the same random variable. Under
this assumption, the mean and variance of the observed color can
be approximated using the spatial mean and variance of a flat field.
Using this approximation, the gain can be derived by exploiting
the equivalence between the expected value and the variance of the
exposure. This flat-field calibration is the best method available,
and it can be applied to any digital camera. However, in practice,
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(a) g − 6σg , SNR=28.5dB (b) g − 3σg , SNR=27.2dB

(c) g + 0σg , SNR=26.5dB (d) g + 24σg , SNR=21.1dB

Figure 5: Sensitivity of our deghosting method to gain calibra-
tion accuracy. Here, g, σg denote the mean and standard deviation
of the flat-field gain calibration. Our method is robust to slight
under-estimation (b) and large over-estimation (d) of the camera
gain: When it is under-estimated (which occurs seldom, see Fig. 4),
ghosting artifacts can appear (a, magenta arrow). Conversely,
when the gain is over-estimated, it leads to low SNR (d), but it does
not introduce ghosting artifacts. See supplementary material for
additional tests at intermediate error levels.

this requires additional flat field images, which may be cumbersome
for inexperienced users to acquire.

Therefore, we propose an alternative image-based calibration that
does not require flat fields at all and works directly from the input
image set of the scene. The idea is to use regions of constant illumi-
nation in the input images as proxies for the flat fields. We divide an
input image (e.g., the central exposure) into super pixels [Veksler
et al. 2010]; which have a predefined patch size and follow image
edges. From the mean-variance scatter plot of the super pixel colors
(Fig. 3–top), we select the minimum variance for each digital value,
and use RANSAC [Fischler and Bolles 1981] to fit a line that passes
through (L0, σ

2
R), i.e., through the expected variance at the black

level. The idea of using super pixels to estimate the lower bound
of image variance was first proposed in [Liu et al. 2008] for im-
age denoising. Our method uses a simpler noise model tailored to
raw camera output, and a simpler inference method (i.e., RANSAC
instead of Bayesian inference) that is very straightforward to imple-
ment. Figure 3 illustrates this process: The top row shows the mean
and variance color value of each super pixel (yellow and red dots).
Among them, we select the super pixels with minimum variance as
proxies for flat fields (shown in red). This selection is justified as
only shot noise and readout noise contribute to the variance of im-
age regions with constant illumination and, therefore, these noise
sources determine the lower bound of the color variance.

Figure 4 compares the performance of each gain calibration
method: Our image-based calibration is sufficiently accurate and
is comparable with flat-field calibration in terms of predicted image
noise. Importantly, since a wide range of scenes contain locally flat
regions, this calibration approach allows our deghosting algorithm
to be directly applied without requiring users to capture flat field
images. However, its accuracy is content dependent; Fig. 3b shows
an example image from which the gain could not be estimated pre-
cisely: Since flat regions in the image cover a limited color band,

the slope estimation is misled (Fig. 3b–top). That said, ghosting ar-
tifacts typically only appear when the variance within super pixels
(and thus the gain) is underestimated (e.g., 6σg below the true gain,
see Fig. 5), which is a highly unlikely scenario in practice.

2.2 Consistency test

Next, we introduce consistency measures for pairs of pixels and a
group of pixels, respectively: two pixels at corresponding locations
in different images are consistent if the corresponding color differ-
ence follows the predicted color difference distribution, and a group
of pixels is self-consistent if all the pixels are pair-wise consistent.

Consistency test for pairs of images Let us assume we are
given two irradiance observations xki (p), xkj (p) at pixel p and color
channel k, which are derived from the pixel colors vki (p), vkj (p)
on images i, j, respectively, using the inverse of the camera re-
sponse function (Eq. (1)). Detecting ghosting artifacts requires test-
ing whether these irradiance observations are consistent, i.e., if they
correspond to measurements of the same incident light. Existing
algorithms solve this problem by relying on pre-determined thresh-
olds, which are difficult to set. This requirement can be avoided by
exploiting the noise model discussed in Sec. 2.1.

Our approach is to estimate the probability distribution of a differ-
ence function dkij(p) = xki (p) − xkj (p); since xki (p) and xkj (p)

follow Gaussian distributions, dkij(p) has the same distribution type
which, for consistent pairs, has zero mean and has variance:

Var dkij(p) = Varxki (p) + Varxkj (p), (3)

where Varxki (p) and Varxki (p) are obtained from Eq. (2). Given
Var dkij(p), we can estimate the probability that observations at
pixel p on images i, j are consistent by comparing the correspond-
ing irradiance differences with the expected noise distribution on
every color channel:

Pr (p |{vi, vj}) = min
k∈C

Pr

(
−
|dkij(p)|

Std dkij(p)
≤ N ≤

|dkij(p)|
Std dkij(p)

)
,

(4)
where C = {R,G,B}, N is the standard Gaussian random vari-
able with mean zero and variance one. In practice, the estimate
Pr (p |{vi, vj}) can be noisy (e.g., when the image is taken under
low-light or when the camera has a high readout noise). For this
reason, prior to estimating the probabilities, we smooth the differ-
ence image dkij(p) using bilateral filtering [Tomasi and Manduchi
1998]. We refer to this step as noise-adaptive difference filtering
(DF). We use a distance kernel of large bandwidth, and a range ker-
nel with variable bandwidth σr = 2 Std dkij(p) that is proportional
to the predicted image noise. This filtering introduces dependen-
cies between the distributions of neighboring pixels. However, this
dependency occurs mostly between pixels that have already similar
distributions. Given this similarity, the net effect of the filtering is a
attenuation of the tails of the difference distribution. This allows us
to obtain a higher detection sensitivity for the same specificity level
(see Sec. 3 for experimental validation).

Since the noise variance Varxi(p) is different at every pixel and
image in the sequence, the variance of the difference function
Var dkij(p) also varies for every pixel and image pair. This ob-
servation is integral to our technique: As other reconstruction and
deghosting methods do not automatically model noise, they are not
likely to generalize well to the noise properties of different cameras
and exposure settings.

Consistency test for sets of images Let V = {vi}i∈T be the
set of images in the exposure sequence. Based on the pair-wise con-
sistency measure (Eq. 4), we define the probability that the images



in a given subset S ∈ 2V are consistent at a pixel p as the minimum
of the pair-wise consistency:

Pr (p |S) = min
{vi,vj}∈S×S

Pr (p |{vi, vj}) . (5)

For the case of a singleton S (i.e., |S| = 1) the corresponding con-
sistency probability is given as the probability that the correspond-
ing observation is well-exposed:

Pr(p| {vi}) = 1−max
{

min
k

Pr
ue

(vki (p)),max
k

Pr
oe

(vki (p))
}
, (6)

where Prue and Proe correspond to the under- and over-exposure
probability, respectively, of an observation according to the distri-
bution of the (Gaussian) readout noise, when centered at the black
level and saturation level, respectively. In this definition, the proba-
bility that an observation vi(p) is inconsistent is high in two cases:
When there is a high probability that all color channels are under-
exposed, or when there is a high probability that any color channel
is over-exposed.

2.3 Compositing of consistent sets

Since more than one subset of images can be consistent for a given
pixel location, the choice of a particular subset to be averaged is
under-constrained. We discuss regularizing this choice by requiring
that the selected subsets be also spatially color-consistent. Together,
the pixel-wise consistency test and the spatial consistency test cast
the HDR deghosting problem as a Markov random field (MRF)-
type global energy minimization. Consequently, to obtain a ghost-
free HDR image, we minimize an energy function that promotes
two criteria: Each pixel should be reconstructed from a consistent
subset (encoded in a consistency potential, see Eq. (7) below), and
given a pair of adjacent pixels, the image subsets used to recon-
struct each pixel should be mutually consistent (i.e., the union of
the subsets should be also consistent; encoded in a prior potential).
Additionally, to prevent noisy reconstructions, we promote the se-
lection of low-noise subsets whenever possible; this is encoded in
a noise potential. Each possible HDR image is represented by a
labeling F (p) : Ω → 2V that assigns to each pixel p in the image
domain Ω a subset Fp := F (p) of the input images. We obtain a
suitable labeling F by minimizing the energy functional:

E(F )=
∑
p∈Ω

(
1{Pr(p |Fp)<α}︸ ︷︷ ︸
consistency potential

+ γV (Fp)︸ ︷︷ ︸
noise potential

)
+

β
∑

(p,q)∈N 1{Pr(p |Fpq)<α∨Pr(q |Fpq)<α}︸ ︷︷ ︸
prior potential

,
(7)

where 1{·} denotes the indicator function, Fpq ∈ 2V denotes the
subset Fp ∪ Fq , and N corresponds to the 4-neighborhood system
in Ω. The scalar α denotes the confidence value (see below), and
the scalars β and γ are weighting hyper-parameters.

In the consistency and prior potentials, instead of penalizing the
consistency probability directly, we set a confidence value α to de-
termine whether a set of images Fp is consistent or not. This en-
codes an important design choice: We want to select any consistent
subset, not the most consistent one. This design gives more freedom
to the optimization algorithm to construct the final composite.

The noise potential prevents the generation of trivial solutions. In
Sec. 2.2, well-exposed observations from a single image are de-
fined as consistent. Under this definition, selecting a single well-
exposed image for reconstructing the whole image would create a
labeling with minimum energy. This selection is undesired since

the information contained in other consistent images is left out of
the average, thus degrading the SNR of the resulting irradiance es-
timates (see Fig. 6, top row). Instead, whenever two distinct image
subsets are consistent, we prefer the set that produces lower-noise
estimates regardless of the set size. The noise potential V (S) en-
codes this preference by assigning higher costs to sets that provide
noisier estimates. The relative noise of each estimate is:

V (S) =
σS∑

S′∈2V σS′
, (8)

where the variance of each image set is approximated as σ2
S =

(
∑
i∈S 1/t2i )

−1.

Parameter selection There are three hyper-parameters to be
tuned in Eq. (7): The weight γ for the noise potential, the confi-
dence value α of the consistency tests, and the weight β of the prior
potential. We set the parameter γ to 0.1 to ensure that the noise po-
tential in Eq. (7) produces order-of-magnitude lower costs than the
consistency potential. This design instructs the algorithm to pre-
fer consistent subsets, but when presented with several consistent
options, it will prefer the one with the least noise. The other two
parameters were determined based on a performance evaluation us-
ing the challenging busy square sequence (Fig. 8). The confidence
value α was set to 0.98, which provides a good trade-off between
sensitivity and specificity of ghost detection when compared to a
manual annotation of the scene (see Sec. 3 for details). In our pre-
liminary experiments, variations of α did not affect the results sig-
nificantly. We set parameter β to 20, which is the lowest value that
did not introduce visual discontinuities on the test sequence (see
Fig. 6). Once determined, the parameters α, β, γ were fixed for all
experiments presented in this paper.

Figure 6 shows the effects of varying parameters β and γ. When
noisy subsets are not penalized (γ = 0; top row), the algorithm
mostly selects a single image as source except for ill-exposed re-
gions (white arrows), as only such regions are considered inconsis-
tent. This behavior holds regardless of the weight β given to the
prior potential. If noisy subsets are penalized mildly, i.e., less than
inconsistent subsets (γ = 0.1; middle row), the remaining subsets
of larger SNR (shaded in blue and green colors) are preferred pro-
viding they are consistent, resulting in labelings that adapt more
to the scene. In this configuration, as β of the prior potential in-
creases, visual discontinuities (marked by yellow arrows) are elim-
inated from the deghosted image (e.g., in β = 10, 20). When noisy
subsets are penalized as much as inconsistent ones (γ ≥ 1; bot-
tom row), it becomes affordable to include objects that are partially
ill-exposed (pointed by purple arrows) if they appear on the longest
(less noisy) image. These results support our choice of γ.

Optimization and final reconstruction To obtain a mini-
mum cost labeling F ∗, we apply the expansion-move algorithm
[Boykov et al. 2001; Boykov and Kolmogorov 2004]. With the re-
sulting labeling, the final irradiance map is estimated as a weighted
average:

µ̂kx(p) =

∑
i∈F∗(p) Pr(p| {vi})Wi(p)x

k
i (p)∑

i∈F∗(p) Pr(p| {vi})Wi(p)
, (9)

where Pr(p| {vi}) is the probability that vi(p) is well exposed (see
Eq. (6)). The weighting function Wi = (

∑
k∈C Varxki (p))−1

leads to a result close to the maximum likelihood solution [Robert-
son et al. 2003], and it is constraint to apply identical weights to
every color channel in a given pixel.

Summary of pipeline The proposed pipeline for HDR deghost-
ing is summarized as follows: (a) Take an input set of images and
align them if taken hand-held; (b) if not provided by the manufac-
turer, estimate the readout noise using an additional black frame,
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Figure 6: Effect of varying the parameters β and γ in Eq. (7). The right-hand side colors correspond the estimated labeling, which is
proportional to the noise of the selected subset (blue: higher SNR, red: higher SNR). We chose β = 20, γ = 0.1 (outlined in red) since these
produce a good trade-off between low noise and spatial consistency. We kept these parameters fixed in all our experiments.

Figure 7: Small displacements in the acrobat and street traffic
scenes. The left of each pair is the mean registered input image,
thus ghosting shows small displacements. Our method on the right
of each pair handles shifts of just a few pixels between exposures.

and the camera gain using one input image; (c) select a consistent
subset of images for every pixel, and (d) reconstruct the irradiance
of each pixel from the consistent sets.

3 Experimental validation

We acquired several sequences (see Table 1) using a Canon Pow-
ershot S5IS (10bit ADC) and a Canon EOS 550D (14bit ADC).
Following the method in [Granados et al. 2010], the camera’s black
level (L0 = 32 and L0 = 2048, respectively) and readout variance
(σ2
R = 2.655 and σ2

R = 61.01, respectively) were estimated from
a black frame. The gain factor (Table 1) was estimated indepen-
dently for every sequence using image-based calibration (Sec. 2.1).
Although the gain needs to be estimated only once per camera
model, we calibrate it per sequence to validate the robustness of
our method. For reference, the gain factors obtained from flat-field
calibration were g = 0.2394 and g = 0.4795, respectively.

Per scene, we captured three or five images in RAW mode at steps
of one or two stops, respectively. A color image is constructed from
the RGB measurements found on each 2× 2 pixel block of the un-
demosaiced raw image (one of the measurements is not used). If
captured hand-held, we robustly register the images using a global
homography computed with RANSAC from sparse SURF keypoint
matches. After HDR reconstruction, the images were white bal-
anced and tone mapped using Drago et al. [2003] (square at night

Sequence HH SC SD LD LL Camera Est. gain factor

Acrobat (Fig. 1) × × × Canon 550D 0.6597
Street traffic (Fig. 8) × × Canon 550D 0.3753
Flower shop (Fig. 1) × × Canon S5 0.2390
Busy square (Fig. 8) × × × Canon S5 0.2417
Café terrace (Fig. 9) × Canon S5 0.2250

Square at night (Fig. 10) × × × × Canon S5 0.4125

Table 1: Summary of test sequences. HH: Hand-held, SC: scene
clutter, SD: small object displacements, LD: large object displace-
ment, LL: low light. Gain factor for ISO100 setting.

sequences) and Fattal et al. [2002] (all the remaining sequences).

The acrobat (Fig. 1) and street traffic (Fig. 8) scenes show hand-
held capture with both small displacements (trees, people shift-
ing their weight) and large displacements with fast motion (acro-
bat, cars). We focus on our small displacement quality in Fig. 7,
showing that our method produces convincing results. The flower
shop (Fig. 1) and busy square (Fig. 8) sequences show how strong
scene clutter can cause severe ghosting artifacts in an HDR re-
construction which includes every image into the irradiance aver-
age. In addition, the square at night (Fig. 10) sequence shows that
our algorithm is robust to high image noise. The café terrace se-
quence (Fig. 9) and the additional Christmas market sequence (sup-
plementary material) contain relatively small object displacements
for which previous reference-image-based methods are designed
[Sen et al. 2012]. Even under small displacements, which are well-
handled by reference-image-based methods, our method produces
results with less washed out regions and lower noise.

Comparison with reference-based methods We compare our
approach to the state-of-the-art methods of Sen et al. [2012], and
Zimmer et al. [2011] on the busy square sequence using their own
implementations. The method of Sen et al. finds patch-wise corre-
spondences between the reference and the remaining input images.
As the reference image is of low dynamic range, regions that are
ill-exposed or contain high noise might not be matched correctly to
other exposures. This is demonstrated in Fig. 9, where the dynamic
range of over-exposed regions could not be enhanced (indicated
by arrows). Additionally, Fig. 10 shows that strong noise in the
reference may restrict correspondence finding in other images for
range enhancement, leading to a noisy HDR image. In contrast, our
method is designed to select sets of images that are both consistent
and have low noise, resulting in HDR images with comparatively



Naive averaging Our method

Figure 8: Left: Hand-held capture via in-camera bracketing. The dynamic car motions are reconstructed ghost free. Right: Cluttered busy
square sequence, where naive averaging produces severe artifacts (left-hand side) and our result is ghost free (right-hand side).

less noise. In general, our method could also generate noisy image
regions (see Fig. 8, right) if this guarantees consistency, as this is
weighted more than achieving low noise (see Eq. (7)).

Zimmer et al. establish correspondences using optical flow, which
will fail on objects that undergo large displacements or disocclu-
sions. This failure case is shown on the person in Fig. 11, where
ghosting artifacts are introduced after two instances of a person un-
dergoing local motion cannot be properly aligned. In contrast, our
method selects a single self-consistent image, thus preventing the
introduction of ghosting artifacts.

Comparison with detect-and-exclude methods We compare
our method against the top four performing methods reported by
Sidibé et al. [2012], according to their sensitivity score: Grosch
[2006], Sidibé et al. [2009], Heo et al. [2010], and Pece and Kautz
[2010]. We used our own implementation of these methods us-
ing the exact parameters specified by the respective authors; since
Grosch does not provide a difference threshold, we set it robustly
to the median difference plus three median absolute deviations. All
detect-and-exclude methods, including ours, work in two stages:
Detect inconsistent regions, and reconstruct the HDR image us-
ing consistent parts only. Since the inconsistency detection is of-
ten noisy, they apply different regularization techniques before the
reconstruction stage (e.g., Gaussian smoothing, morphological op-
erations, or MRF priors; our method applies the latter). Therefore,
to exclude the effect of different regularization strategies (i.e., of
different image priors), only the detection stage of every method
is compared (see Fig. 12). For the comparison, we used the first
two input images of the busy square sequence. As ground truth, we
constructed a manual segmentation of their differences (Fig. 12a).
Table 2 summarizes the sensitivity and specificity achieved by each
method in classifying pixels as consistent or inconsistent wrt. the
ground truth. For a fair comparison, we present results with and
without applying the difference filtering (DF) step of our method.

Among previous methods, Grosch’s approach achieved the best
sensitivity (43.5%) by thresholding the absolute irradiance differ-
ence between the images (Fig. 12g). The methods of Sidibé et
al. (Fig. 12f) and Pece and Kautz (Fig. 12h) achieve the highest
specificity (99.4% and 99.9%) but the lowest sensitivity (24.6%
and 15.8%). This occurs as both methods are based on invariants
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Figure 10: Comparison with the method of Sen et al. on the Square
at night sequence (top). The second exposure was selected as ref-
erence for Sen et al.’s method. Due to noise, their method finds few
similar patches in other exposures. This implies that the dynamic
range cannot be effectively extended using other input images (mid-
dle). Our method selects consistent sources with as low variance as
possible, preventing the appearance of noise in the result (bottom).

that are satisfied whenever two pixels correspond to the same light
intensity, but this is not always violated by moving objects.

We tested our method with confidence values α = {0.95, 0.98,
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Figure 9: Comparison to Sen et al. on the Café terrace sequence (top). The third image was selected as reference for the method of Sen et
al. Here, their method encounters difficulties extending the dynamic range of ill-exposed regions, which results in a washed-out appearance
(indicated by arrows). In contrast, our method automatically selects well-exposed sources for every region.

(a) Manual segmentation (b) Proposed method α = 95% (c) Proposed method α = 98% (d) Proposed method α = 99.9%

(e) [Heo et al. 2010] (f) [Sidibé et al. 2009] (g) [Grosch 2006] (h) [Pece and Kautz 2010]

Figure 12: Comparison of our consistency detector with other state-of-the-art ghosting-detection methods. Here, the differences between a
pair of images of the busy square (Fig. 8, right) are shown in red on top of their average color.

(a) (b) (c) (d)

Figure 11: Comparison with the method of Zimmer et al. on the
busy square sequence: (a) Reference image, (b) optical-flow align-
ment of an additional input image to the reference, (c) result after
HDR reconstruction using (a) and (b), and (d) our result.

0.999}, and with and without applying noise-adaptive difference
filtering (DF) (see Sec. 2.2). In all cases, our was higher than previ-
ous methods (46.7–58.3% vs. 43.5% for Grosch). With our adap-
tive DF, the specificity was comparable to that of other methods, in-
cluding those methods based on invariants. The best trade-off was

obtained at α = 0.98 with sensitivity and specificity of 51% and
95%, respectively (Fig. 12c). Our method achieves the best sensi-
tivity, which is crucial for removing ghosts, without compromising
the specificity, which is crucial for producing low-noise HDR im-
ages.

4 Discussion

Handling of challenging scenes and motion blur Our method
produces plausible HDR images of scenes with small and large ob-
ject displacements and clutter (Figs. 1, Fig. 8, 9 and 11), scenes
taken hand-held (Fig. 1, left, and Fig. 8, left), and scenes taken dur-
ing the night (Fig. 10). To the best of our knowledge, this is the first
method which demonstrates ghost-free results in all of these scenar-
ios. Furthermore, the parameters used for all results were identical.
However, our method does not detect motion blur, and so blurred
objects in long exposures could be selected by our algorithm. In the
future, blur-detection methods can be used to exclude such objects.

Handling of HDR moving objects Our method cannot recover
the dynamic range of moving HDR objects, i.e., objects that can-
not be properly captured in a single exposure, as it only performs



Detection strategy Sensitivity Specificity Avg. diff. SNR (dB)

Proposed method (-DF), α = 95.0% 0.583 0.750 1.0x 28.30
Proposed method (-DF), α = 98.0% 0.542 0.881 1.2x 28.39
Proposed method (-DF), α = 99.9% 0.480 0.979 1.7x 28.46

Proposed method (+DF), α = 95.0% 0.536 0.899 1.2x 28.41
Proposed method (+DF), α = 98.0% 0.513 0.947 1.4x 28.44
Proposed method (+DF), α = 99.9% 0.467 0.987 1.8x 28.47

Absolute difference [Grosch 2006] 0.435 0.928 2.3x 28.38
IMF probability [Heo et al. 2010] 0.254 0.949 5.5x 28.38
Monotonic ordering [Sidibé et al. 2009] 0.246 0.994 9.8x 28.47
Median threshold [Pece and Kautz 2010] 0.158 0.999 9.7x 28.47

Table 2: Comparison with existing ghost-detection methods. Un-
like existing techniques, our method automatically estimates an ap-
propriate range kernel bandwidth to bilaterally filter image differ-
ence images. This improves sensitivity for a given specificity. Other
methods would require a user in the loop to estimate the filtering
bandwidth and accomplish the same improvement. For compari-
son, we show results with and without applying difference filtering
(denoted by +DF and -DF). The avg. diff. column shows the aver-
age color difference between true-negative detections (i.e., dynamic
objects detected as static) as a factor of the best method’s detection,
where smaller factors imply a more accurate detection. The last
column illustrates the decrease in SNR caused by false-positives
(i.e., static objects detected as dynamic).

a global image alignment and not a local alignment between mov-
ing objects in different exposures. As a result, moving objects are
likely to be reconstructed from a single image. This could be alle-
viated using a correspondence-based method [Sen et al. 2012] that
accounts for noise. However, in dynamic scenes with deforming
objects and occlusions, there is never a guarantee that the same ob-
ject surface will be observed in different exposures, and without
this guarantee, correspondence-based reconstruction is sometimes
impossible.

Handling of hand-held capture Our method successfully han-
dles hand-held capture (Fig. 1, left, and Fig. 8, left) whenever the
camera motion can be approximated using a homography. Other
objects moving independently are not registered but are implicitly
handled through a optimization procedure which selects one of the
instances available in the input (usually their best exposure with
respect to noise).

Time complexity The C++ implementation of our algorithm
takes between one and five minutes to deghost sets of three to
five LDR images at 1648 × 1236 resolution on an Intel Core i5
3GHz CPU. Larger image stacks will lead to higher run times as
our method considers every possible combination of input images.
In practice, stacks of three to five images are sufficient to recon-
struct the dynamic range of most scenes if their exposure times are
sufficiently separated. In addition, exposure selection methods that
work at acquisition time [Gallo et al. 2012] could be used to select
the best five-image-or-less subset.

Interaction for handling semantic inconsistencies In some
cases, our method may produce semantic inconsistencies, such as
half-included objects, or twice the same object in the final image.
This may occur in three cases. In the first case, objects at the same
location in different images that have consistent colors could be-
come merged in the final HDR image. This is because observations
can only be compared up to the noise level of the signal. This case is
illustrated in Fig. 13–top, where the color of the shirt of the person
indicated is consistent with the background color. This results into
a partial inclusion of the person, as the algorithm prefers the lower-
variance background image. The second case arises when all ob-
jects at a given location on different images are ill-exposed. In this
case, no object can be fully included without averaging ill-exposed

(a) Deghosting (b) Labeling (c) After editing

Figure 13: Semantic inconsistencies and interactive correction:
Our algorithm may produce semantic inconsistencies (a). These
can appear when the color difference falls below the noise level
(top), when all objects in a given image region are partially ill-
exposed (middle), or when objects are partially occluded (bottom).
These inconsistencies can be corrected interactively by editing the
labels (b). The results after editing are shown in (c).

pixels, which leads to visual discontinuities. Resolving this situa-
tion requires deciding between using ill-exposed pixels or splitting
objects in half. This is illustrated in Fig. 13–middle, where we pro-
voke this case by performing the deghosting excluding the shortest
and longest exposure of the busy square sequence. In the deghosted
image, only the legs of the persons at the right are included (en-
closed in red). In the last case, our algorithm may produce semantic
incongruencies, either by including multiple instances of the same
object, or by including only some parts of visually disconnected but
conceptually whole objects. This is visible in Fig. 8–right, where
the person holding a suitcase appears twice in the final HDR image,
and in Fig. 13–bottom, where only the part of a person occluded by
a lamp post is included. In general, these three cases can be cor-
rected with user interaction by editing the automatic labeling (see
Fig. 13). Except for the flower shop sequence (Fig. 1, right), all the
results presented in this paper were computed fully automatically.

5 Conclusions

We have presented a robust method to model image noise and pro-
duce ghost-free HDR reconstructions. Our algorithm uses a new
consistency measure that exploits the estimated noise distribution
in images. This avoids the need for any reference image or a back-
ground model. The resulting consistency measure is combined with
a spatial coherence prior and constitutes an MRF-type energy mini-
mization framework. Experiments demonstrated that our algorithm
can be applied to challenging dynamic and cluttered scenes which
cannot be handled with existing algorithms, and also performs on
par with state-of-the-art techniques for less challenging scenes. As
such, our algorithm moves towards a widely-applicable algorithm
for ghost-free dynamic scene HDR reconstruction.
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