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We present a novel approach for the automatic creation of a personalized highis attuned to quickly detect inaccuracies in face appearance and
quality 3D face rig of an actor from just monocular video data, e.g. vintage motion, animation artists spend tremendous effort to model and
movies. Our rig is based on three distinct layers that allow us to model animate high quality facial animation rigs, in particular when photo-
the actor's facial shape as well as capture his person-speci ¢ expressionrealism is the goal. A common practice for an artist is to design a
characteristics at high delity, ranging from coarse-scale geometry to ne- face animation rig with custom-made control parameters that steer
scale static and transient detail on the scale of folds and wrinkles. At the facial expression, face shape, and possibly face appearance and soft
heart of our approach is a parametric shape prior that encodes the plausibldissue deformation. The de facto standard to parametrize expression
sub-space of facial identity and expression variations. Based on this prior,control is a blendshape model that linearly combines a set of basis
a coarse-scale reconstruction is obtained by means of a novel variationalexpressions [Lewis et a22014]. Professional rigs often feature hun-
tting approach. We represent person speci ¢ idiosyncrasies, which can not dreds of control parameters, and it often takes many weeks of work
be represented in the restricted shape and expression space, by learning a sév create such a rig for a speci c actor, for instance from a laser scan
of medium-scale corrective shapes. Fine-scale skin detail, such as wrinklesof a face. The face rig is often animated from face motion capture
are captured from video via shading-based re nement, and a generativedata, a step requiring frequent manual intervention.

detail formation model is learned. Both the medium and ne-scale detail ~ To simplify this complex animation pipeline, researchers devel-
layers are coupled with the parametric prior by means of a novel sparse oped different methods to automate some of its steps (see also
linear regression formulation. Once reconstructed, all layers of the face rig Sec. 2). For instance, algorithms that use dense camera arrays and
can be conveniently controlled by a low number of blendshape expressiondense lighting arrays to reconstruct face geometry, facial perfor-
parameters, as widely used by animation artists. We show captured facemance and/or face appearance were developed [Beele2élal;

rigs and their motions for several actors Imed in different monocular video Beeler et al2011; Alexander et aR009]. Approaches that extract
formats, including legacy footage from YouTube, and demonstrate how they components of face rigs from densely captured animation data, such
can be used for 3D animation and 2D video editing. Finally, we evaluate our as blendshape components [Neumann.€2@l3; Joshi et aR003],
approach qualitatively and quantitatively and compare to related state-of-the-were also proposed, but despite its practical relevance, automatic
art methods. rig creation received much less attention in research. Meanwhile,
performance capture methods were further enhanced to work with
. ) . : L only two or even one RGB or a depth camera, e.g. [Weise 204al;
Dimensional Graphics and Realismaaimation Garrido et al2013; Cao et ak014; Shi et al2014]. However, to
General Terms: Algorithms our knowledge, there is still no approach that fully-automatically
combines both steps: reconstruct a detailed personalized modi able
face rig,as well adts animation, from only a single monocular RGB
video of an actor Imed under general conditions.
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and Theobalt C. 2015. Reconstruction of Personalized 3D Face Rigs from (S€€ Fig. 1). At the heart of our method is a new multi-layer para-
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15 pages. facial identity, person-speci ¢ expression variation and dynamics,
DOI = 10.1145/XXXXXXX.YYYYYYY and ne-scale skin wrinkle formation (Sec. 4). On a coarse level,
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY shape identity is parametrized using a principal component model,

and facial expressions are parametrized with a generic blendshape
model. Person-speci c idiosyncrasies in expression and identity,
which are not modeled in this generic space, are captured by a sec-
1. INTRODUCTION ond layer of medium-scale corrective shapes. A generative model of
The creation of believable face animations for virtual actors in wrinkle fo_rmation in the face constitutes the nal most detailed layer.
movies and in games, or for avatars in virtual reality or telecon- 1€ medium and ne-scale layers are coupled to the coarse layer
through a new sparse regression model learned from video (Sec. 6).

ferencing scenarios is a challenging task. Since human perceptionThe parameters of this model are personalized to an actor's video
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Facial Reenactment

Fig. 1. Our approach reconstructs a fully personalized 3D face rig of the president of the United States of America given a single monocular video as input and
learns medium, as well as ne-scale actor-speci c idiosyncrasies. The facial rig can, for example, be used for reenactment.

by using a new variational tting approach to recover the coarse medium and ne-scale detail layer just from monocular input data.
and medium layers, and a shading-based re nement approach undeSuch a dependency has not yet been recovered by any other approach
general lighting to extract ne-scale detail (Sec. 5). The output of in the context of monocular video data. We show captured face
our algorithm is the personalized face model, blendshape expressiorrigs and their motion for several actors reconstructed from various
parameters from the input video, as well as a detailed face albedomonocular video feeds ranging from HD input to vintage video from
map and an incident lighting estimate. New face expressions of the YouTube. New face animations can be generated with these rigs and
rig with proper ne-scale detail can be created by simply modify- they can be used to realistically edit video footage. Additionally,
ing the blendshape parameters, which ts nicely into an animator's our combined face modeling and capturing approach compares
standard work ow. Our method captures detailed, personalized face favorably to alternative monocular and multi-view methods in terms
rigs from arbitrary monocular video of actors, even from vintage of reconstruction accuracy.
footage, for which it would be impossible to automatically create a
rig or capture the performance by any other means. 2. RELATED WORK

Our method improves over existing state-of-the-art approaches . .
in several important ways. Unlike single-view or multi-view meth- __Static and Dynamic Face Captur&everal methods capture
ods that only capture detailed deforming face meshes [Beeler et alNigh quality static [Beeler et a2010] and dynamic [Beeler et.al
2011; Valgaerts et a2012; Suwajanakorn et.&014], our approach 2011] fac_e geometry using de_nse RGB camera rlgsTln controlled
additionally captures a personalized, modi able parametric face rig. Surroundings; some commercial systems, e.g. from Mbyalso
Some previous methods employed generic parametric expressioriall Into this category. If, in addition, the face is recorded under
and identity models for monocular facial performance capture. How- controlled lighting, highly detailed facial appearance or skin detail
ever, generic blendshape models and identity models alone [CagMOdels can be captured, e.g. [Wenger e28DS; Graham et al
et al 2014; Garrido et aR013; Shi et al2014] fail to capture im-  2013; Klaudiny and Hilton 2012]. Huaref al. [2011] combine
portant person-speci c expression and identity details learned by ma_rker-based motion capture and high-qualiy scanning for
our approach. None of these approaches learns a generative wrinkléac'al performance reconstruction, but no generative wrlr)kle quel
formation model from video. Generative models of face wrinkle IS l€arned. In contrast, our approach is designed for lightweight
formation were learned from high-quality expressions (out of a ca@pture with a single RGB camera. »
vast set of examples) captured with a dense sensor array [Bermano, 1Dere is a large body of work in computer vision on face detec-
etal 2014; Cao et aR015] or with depth cameras [Li et.&1015], tion, face. recognition, and sparse facial landmark tra.ckllng [Easel
or also by interpolating dense high-quality scans in a video-driven and Luettin 2003]. A detailed survey of all these works is infeasible,
way [Fyffe et al 2014]. In contrast, our approach learns such a model nd we focus on recent performance capture methods that recon-
from monocular RGB video alone. Some methods capture facial per-Struct detailed moving geometry models. Valgaetsl. [2012]
formances [Weise et 82011] and person-speci ¢ corrective shapes took a step towards oﬁ-llne Ilghtwglght capture ofa deformlng face
from RGB-D data [Bouaziz et aP013; Li et al 2013], whereas mesh without an underlying face_rlg by using template tracking and
our approach only requires monocular RGB video. Note also that shadlng-basgd re nement from bl.nocular stereo. Other mgthods can
our approach is fully-automatic and requires no manual interven- track deforming face meshes using depth data from active triangu-
tion during model creation or tracking, as required in [Alexander lation scanners or RGB-D cameras [Wand e2al9; Popa et al
et al 2009; Bouaziz et aR013]. Our method needs no additional 2010], also at real-time rates [Zodfer et al 2014], but require
input other than a face video, meaning no speci ¢ sequence of face pre-deggned mesh templates and do not build a detailed parametric
expressions [Ichim et a2015; Weise et aR011], no densely cap- face rig. Weiseet al. [2011] capture facial performance in real-

tured static face geometry [Fyffe et @014; Valgaerts et a2012; time by tting a parametric blendshape model to RGB-D data. The
Ichim et al 2015], and no face detail regression model learned Model needs to be personalized by tting it against a set of captured
off-line [Cao et al. 2015]. static face poses of an individual, and the approaph cannot capture
The main contribution of this work is theutomatic extraction ne-scale detail. Recently, the rst methods for facial performance
of a parametrized rig that models the correlation between coarse- €@Pture from monocular RGB footage were proposed. Suwajanakorn
scale blendshape weights and person-speci ¢ idiosyncrasigae et al. [2014] use monocular mesh deformation tracking and an iden-

tity PCA model learned from a large corpus of images captured
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Fig. 2. Pipeline Overview: Starting from monocular video data, we rst reconstruct the actor's identity and motion parameters based on a novel tracking
energy, resulting in a multi-layer 3D rig. Finally, we learn the coupling between coarse-scale expression changes and medium as well as ne-scale surface detail.

under general illumination conditions to reconstruct a moving face to capture person-speci c expression details, which is why some

mesh, but they do not simultaneously build a detailed parametric recent approaches estimate identity and blendshape parameters from

face animation rig. Garridet al. [2013] adapt a generic template  captured face animations, and also person-speci ¢ correctives on

to a static 3D scan of an actor's face, then t the blendshape model top of this generic face model [Bouaziz et2013; Li et al 2013;

to monocular video off-line, and nally extract surface detail by Hsieh et al2015]. However, all these approaches require RGB-D

shading-based shape re nement under general lighting. However,camera input. Our model uses a corrective layer, too, but we learn

a wrinkle formation model is not learned, nor is a person-speci ¢ it from monocular RGB video alone. Also, none of these previous

corrective layer built. Based on this model-based approach, Garrido methods capture a predictive ne-scale detail layer. Multi-linear

et al.[2015] presented a method for virtual dubbing on monocular models represent both identity and expression variations, and can be

video. Shiet al.[2014] use a very similar tracking approach, but learned from laser scan databases [Vlasic.2@05]. Such a model

do not extract a high- delity parametrize2D rig that contains a  was tted to monocular video in [Shi et &2014], but is unable to

generative wrinkle formation model capturing the person-speci ¢ capture person-speci ¢ idiosyncrasies in expression, as well as a

idiosyncrasies. Recently, Thies al.[2015] presented an approach  wrinkle formation model.

for real-time facial reenactment, but the method can not handle Generative models of wrinkle formation were learned from a

ne-scale surface detail and requires RGB-D camera input. Cao large corpus of facial performances [Bermano e@ll4; Cao et al

et al.[2014] use a learned regression model to t, in real-time, a 2015], or from depth camera data [Li et 2015]. Wrinkles can also

generic identity and expression model to RGB face video. However, be approximated in monocular video by video-driven interpolation

no person speci ¢ correctives are learned, which reduces tting accu- of an actor-speci ¢ set of static face scans [Fyffe eR8l14]. Small-

racy, and no appearance and wrinkle models are built. In follow-up scale transient detail was learned by a collection of local mappings

work [Cao et al2015], a regression model for face wrinkles learned using a data-driven framework [Huang et2012]. Maet al.[2008]

on dense data from [Beeler et 2D11] approximates but not truly  infer facial detail displacement maps using a generative model,

reconstructs face detail, again without corrective and appearancebut require high-quality data captured with a professional camera

modeling (see comparison in Sec. 7). and lighting setup for training. In contrast, our approach directly
couples detail layer and blendshape weights by learning a generative

Face Modeling.Animation artists are used to manually creat- geometric wrinkle model from monocular RGB video only.

ing face rigs of actors with custom-designed control parameters. Related to our method is the approach by Icletral. [2015]

They commonly resort to facial expression control using a set of that ts a generic identity and blendshape model to a structure-

blendshapes that span intuitive atomic face expressions and ardrom-motion-based reconstruction of the head in a static pose. They

linearly combined to obtain a new pose [Lewis et2dl14]. Alter- adapt the blendshape basis using monocular video of a sequence of

natively, physics-based muscle models can be used for animationspeci ¢ expressions exercising the blendshape dimensions, making

control [Sifakis et al2005], either separately, or in conjunction with it unsuitable for legacy video footage. A parametric dynamic bump

a blendshape model. map is also learned from video to simulate some face detail. Several

The facial anthropometry across people can also be modeledsteps require manual intervention.

e.g. as a parametric PCA space learned from a database of laser To our knowledge, our approach is the rst to fully-automatically

scans [Blanz and Vetter 1999; Blanz et2003]. We employ such capture from general monocular video alone, without an initial 3D

an identity PCA model as one component in our multi-layer face scan or a set of prescribed face expressions, a fully personalized face

model. Automatically tting a personalized parametric expression rig which is composed of a generic identity and blendshape model

and identity model to an actor is a challenging problem. Dimen- at the coarse level, a corrective personalized layer at the medium

sionality reduction techniques were applied to face animation data level, and a ne-scale generative detail layer.

reconstructed with dense scanner setups to obtain parametric ex-

pression models [Tena et &011]. However, such models lead to 3. OVERVIEW

control dimensions that are often of global support and lack the se-

mantic meaning and localized control built into blendshape models In this section, we provide a brief overview (see Fig. 2) of our

designed by artists. Generic blendshape models are used by somaew approach to learn a high-quality personalized 3D face rig of

face tracking methods from monocular RGB video [Garrido et al an actor from unconstrained monocular video input, including TV

2013] or RGB-D video [Weise et a2011], but need to be deformed  programs or vintage movies. Our personalized face rig (Sec. 4)

into a static face scan or a set of scanned static expressions of arencodes the actor-speci c facial geometry, appearance and motion

actor prior to tracking. Such generic blendshape adaptation fails on three layers: coarse-scale shape, medium-level correctives and
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ne-scale detail on wrinkle level. To obtain this model, we rst terms of the illumination coef cients :
track a generic actor model from video by using a novel tracking

energy (Sec. 5) that jointly optimizes for facial shape, expression %2
and illumination parameters such that a photometric consistency B(n;cj )=c¢ pYp(n) . (1)
measure is maximized. In this process, we also estimate camera b=1

parameters. Starting from this initial shape and motion estimate, the
quality of the tis further improved based on linear person-specic Here,Y,(n) 2 R is theb-th SH basis function evaluated on the
correctives. In addition, we use inverse rendering to solve for a surface orientatiom. The irradiance is encoded usiBf = 9

wrinkle-level detail layer based on shading cues in the input images.vector valued SH illumination coef cients = ( 7; v oB2)7
A new sparse regression technique uses the recovered data as inpyith |, = ( ;2 D)> athree dimensional vector that controls

to learn an actor-speci ¢ prediction model (Sec. 6) for the medium- the jrradiance separately for each color channel, leadiBgde= 27
scale correctives and the wrinkle-level detail based on coarse-scaleyarameters in our illumination model.

expression changes. The output of our method is a person8lized
rig, including all extracted parameters as well as a face albedo map. . .
New realistic expressions of the rig can be conveniently created by 4-3 ~ Coarse-Scale Identity and Expression Model

sim_ply modifying the blendshape weight_s, i.e.a sm_all sub-se_t of t_he The head is represented as a triangle mdsk (V ; C;G) with
available control parameters, that are widely used in face animation.ine set ofN verticesV = fvag\., , the set of per-vertex skin
h=1

We evaluate the accuracy and prediction performance of our face rig gipedosC = fc,g\., and the mesh connectivig vV V. In
qualitatively and quantitatively on seyeral test sequences.(Sec. 7)addition, we associate with eagh a normah,, which is computed
The recovered models seamlessly tinto the toolbox of animators pased on itd-ring neighborhood. We parametrize the mesh's spatial
and can be used in several applications, e.g. expression transfepmpeddingy and its per-vertex surface re ectan€e using the
photo-realistic expression modi cation in video, and all elds of 3D giatistical head prior of Blanz and Vetter [1999] that encodes the

face animation where even vintage actors can be revived. space of plausible human heads assuming a Gaussian distribution
in the population. This linear head model is basedPoincipal
4. MULTI-LAYER PERSONALIZED 3D MODEL Component Analysi@?CA) and has been constructed fr@®0

high-quality scans of Caucasian heatl8{males and. 00 females).
Our reconstruction process inverts the image formation and recoversHence, vertex positions, = P3( ) and skin re ectances, =
the camera's extrinsic parameters, the scene lighting, and the faceP; ( ) can be parametrized as follows:
rig comprised by the actor's appearance, identity (shape) and expres-
sion (deformation) parameters. We parametrize facial identity and ShapeP®( )= as+ Es s ; (2)
expression variation based on three different layers: a coarse-scale ReectanceP'( )= a + E, , : @)
linear parametrization of identity and expression, medium-scale
corrective shapes based on manifold harmonics and a ne-scale
wrinkle-level detail layer, see Fig. 3. In the following, we explain
these components in more detail.

Here,as, a, 2 RN encode the per-vertex shape and re ectance

of the average head. The shape and re ectance spaces are respec-
tively spanned by the matric&; 2 R3N Ks andE, 2 R3N K

L that contain theKs = K, = 160 rst principal components

4.1 Camera Parametrization of the shape and re ectance functions in their columns. Varia-

We assume a standard perspective pinhole camera with world spacdions in shape and re ectance are Controllecri< using the cor}zespond-
positiont 2 R3 and orientatiorR 2 SO(3). Hence,Q(v) = ing shape and re ectance parameters2 R*®s and 2 R"r.
R (v t)mapsaworld space poiat2 R® to the camera'slocal ~ 1he diagonal matrices s = diag( ,; :::;  )and . =
coordinate frame. An image of the face rig3® world space is ~ diag( ,; :::; ) encode the standard deviations correspond-
formed by projecting each surface poinbf the model to the point g to the principal directions. Note, this scaling by the standard
C(v) 2 R? on the camera’s image plane, using the camera’s deviations guarantees a similar range o_f variation for ;he control
full perspective transformation : R® | R2. To obtain , we parameters. No_rmally, we search for identity parameters in thg range
estimate optimal intrinsic camera parameters in a pre-processingl 3 ;*3 ], since this accounts for more th@8% of the varia-
step by jointly optimizing for the principal point, focal length and  tion and allows the model to rule out unlikely head shapes and skin
the actor speci ¢ parameters based on a sparse set of detected facidl€ €ctances.

landmarks [Saragih et.82011] over the rstLOOframes of the input We extend this linear shape model to also cover facial expressions
video sequence. by addingK ¢ = 75 delta blendshapes (i.e., displacements from the

rest pose) taken from a combination of tamily model [Alexander
4.2 Lighting and Appearance Model et al. 2009] and théaceWarehousdatabase [Cao et al. 2014]:
We assume a pulleambertianskin re ectance model as in [Garrido ExpressionP®( ; )= P3( )+ E. . ; 4
et al 2013] and later works, e.g. [Shi et &014; Suwajanakorn
et al 2014; Ichim et al2015]. This is a simpli cation of true skin where the matriE, 2 R3N Ke contains thé . delta blendshapes
re ectance that offers a good trade-off between complexity and qual- in its columns, 2 [0; 1]€¢ contains the expression weights and
ity of the obtained results. Since the scene is assumed to be purely . is a diagonal matrix of empirically determined scale factors. The
Lambertian, the global illumination in the scene is represented using delta blendshapes have been transferred to the topology of the model
a spherical environment based $pherical Harmonic¢SH) basis from [Blanz and Vetter 1999] using deformation transfer [Sumner
functions [Muller 1966]. In spirit of Ramamoorthi and Hanrahan and Popovic 2004]. Note that the blendshapes in the Emily model
[2001], we use the rsB = 3 SH bands to express the irradiance are redundant (i.e., the rows Bt are not linear independent). We
at a surface point with surface orientatiorand skin albedae in therefore use a sparsity prior orn(see Sec. 5).
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Fig. 3. Scene Description: We use a novel multi-layer person-speci ¢ rig
to parametrize the identity as well as motion of an actor's face based on

monocular video input. In addition, extrinsic camera parameters and the

scene's illumination are extracted.

4.4 Medium-Scale Corrective Shapes

coupled in the per-face deformation gradieins gle , WhereJ

is the number of triangles in the mesh, this representation does not
allow for direct linear interpolation. We use polar decomposition
[Higham 1986] to decompose the af ne matrioks = Q; S; into

their rotationQ; and sheafs; components, and parametri@gg
based on the matrix exponenti8lgarameters) [Alexa 2002]. From

S; we extract the scaling factor8 parameters) and the skewing
factors @ parameters), which represent the scale and parallel dis-
tortion along the coordinate axis, respectively. In total, this leads
to 9 parameters per triangle, each allowing for simple direct linear
interpolation. We stack these per-face representations in a feature
vectorp 2 R¥ , which is used for storage and interpolatiorfs
ne-scale surface detail.

5. IDENTITY AND EXPRESSION

RECONSTRUCTION

For a given vided= = (f,){_; of T image frames,, we seek to

nd the parameters of our personaliz8® model that best explain
the shape (identity and expression) and skin re ectance of the actor's
head, as well as the incident lighting at every framé& offe divide

this task into two separate sub-problems:

The coarse-scale model restricts the facial identity and expression

toaKs = K, =160 andK ¢ = 75 dimensional linear sub-space,
respectively. Variations falling outside of this low-dimensional sub-
space cannot readily be expressed with the modedt al.[2013]

and Bouazizt al.[2013] showed that it is bene cial to leave this
limited sub-space to model characteristics in physiognomy and
expression. In the spirit of [Bouaziz et &013], we useMani-

fold HarmonicgVallet and Levy 2008; levy and Zhang 2010] to
parametrize a medium-sca3® deformation eld:

CorrectivesP¢( )= E. )

Here,E. =[H; I3 3; iHk. 13 3] 2 R3N 3Ke contains
three copies of th& . linearManifold Harmonicsbasis functions
Hyx 2 RN as columns and the parameters: [ 7; ; ;c i
allow the control of the shape of the deformation eld. Since we
control a full 3D deformation eld, each deformation coef cient

« 2 R®is a vector. Note that the spectral basis generalizes the

Fourier Transformto the mesh domain. Herél, represent the
K. = 80 lowest-frequency eigenvectors of the Laplace Beltrami
operator g on the average face. We usetanweights to dis-
cretize  and obtain a symmetric positive semi-de nite linear

operator. The eigenvectors are ef ciently computed using the band-

by-bandshift invert spectral transforrfVallet and Levy 2008; Llevy

and Zhang 2010]. We apply the deformation eld on vertex level,
i.e.vp + PE( ). Note that Bouaziet al.[2013] infer correctives
based on RGB-D data, while we robustly estimate them from RGB
video alone (see Sec. 5). Ichiet al. [2015] do not learn correc-

—Recovery of the rigid head po¢R ;t), the illumination , and
the coars€ ; ; ) and medium-scale parameters

—Re nement on top of the recovered medium-scale reconstruction
to obtain the corresponding ne-scale detail laper

We cast the rst step as an energy minimization problem and recover
the detail layer using shading-based re nement.

5.1 Energy Minimization

We seek the model parametexs = (R;t; ; ; ; ; ) in
SO(3) R3® RKs RKr R3B? RKe R3Kepagedonan
analysis-by-synthesapproach that maximizes photo-consistency
between a synthetically generated image of the head and an input
RGB framef ;. We formulate this as a constrained multi-objective
optimization problem:
h i
X = argmin Edala (X)+ Eprior ( ooy )

sit 0

(6)

1

The data objectivéE 4,;a measures the photo-consistency of the
synthetically generated image with respect to the input frigne
Epior IS @ statistical prior that takes into account the likelihood of
the identity and expression estimate. We imposexaconstraint
on the expression parameterdo keep them in the rand®; 1].

To make the optimization more tractable, we relax the Hemd

tives from RGB video but modify the blendshapes themselves; they constraint on the expression parameters and model it as a soft-

mention that learning full correctives, as we do, will lead to better
personalization but more involved optimization.

4.5 Fine-Scale Detail Layer

Correctives are well suited to capture medium-scale detail varia-

tions among individuals, but lack the ability to represent static and
transient ne-scale surface detail such as wrinkles. To alleviate this

problem, we make use of an additional per-vertex displacement

eld to account for such effects. These ne-scale deformations are

constrainE poung  directly in our reconstruction ener@oa - This
leads to the following un-constrained highly non-linear optimization
problem: )
i
X =argmin Egaa (X)+ Eprior ( 5 5 5 5 )+ Epouna () :
* {z }
Etotal (X)

(@)

encoded in the gradient domain based on deformation gradients Data Objective.The data term measures how well the personal-

[Sumner and Popovic 2004], which capture the non-translational

ized 3D model explains the input franfe. To this end, we consider

surface deformation. Since rotation, scale and shear are inherentlya photo-consistency measuEg,., as well as the alignment to
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salient facial features poineature
Edata (X) = Wt Efeaure (X) + WpEphoto (X) : 8

The weightsw; andw, control the relative importance of these

two objectives. Photo-consistency is measured on a per-vertex level.

At vertexv, Ps( ; )+ PS( ), with associated re ectance
Cn P ( ) and normaln, dependent on same parameters, it
compares the surface colBfn,;c, j ) synthesized according to
model (1) with the actual coldr,[ C(v,)] in the input image.

The corresponding energy reads:

Ephoto (X) = kfdl C(va)l B(nnicaj )k : (9)

n=1

In addition, we take the alignment of salient facial features into

account. To this end, we measure the distance between image projec-

tionsf  C(vn.)g-., of aselection of = 66 feature vertices on
the model and correspondihgdistinct detected facial landmarks
fy-g-, inthe inputimage:

Efeature (X) = k
o1

C(Vn.) y k3: (10)

We track the2D facial features with an off-the-shelf algorithm
[Saragih et al2011] and improve the landmark trajectories by using
optical ow between automatically selected key-frames [Garrido
et al 2013]. To select th8D feature points$ v,. g on the model, we

automate and extend the strategy proposed by Gaetidb[2013].
In a pre-processing step, we synthedize = 75 different facial

re ectance coef cients to stay statistically close to the mean using

" ,-regularization. Since we do not know the standard deviations
of the lighting coef cients , we imposeTikhonowregularization
constraints [Hoerl and Kennard 2000] by setting, = [1;1; 1] .

In addition to the coarse scale parameters, we also regularize the
medium-scale shape correctives based on their standard deviations
(squared eigenvalues of ti, (Sec. 4.4)) and enforce temporal
smoothness with respect to the corresponding result of the previous
frame PV :

2
+ wik

Xe
Eprob 2( ): Wz
k=1

k

G (19)

k

with component-wise divisions in the rstterm. Hekg; andw; are

the weights controlling the importance of the different objectives.
Following [Bouaziz et al2013], we also imposg -regularization

on the expression weightsto enforce sparsity. This avoids potential
blendshape compensation artifacts due to the inherent redundancy
in the expression basis:

Xe
Esparse ( )= Wy J okl
k=1

(14)

Boundary ConstraintThe blendshape parameters are re-
stricted to a reasonable range (2 [0; 1]) by adding a sofbox
constraint with a weight ofv, to the energy:

Xe
Ebound ( ) = Wp
k=1

() (15)

expressions of the average person by activating one expression

weight ¢ at a time and render frontal views under a xed user-
de ned illumination. Afterward, we run the off-the-shelf face tracker
to detect the2D landmarks in the synthetically generated images.
Landmarks are back-projected to the nearest vertices oBRhe
model, discarding those that fall outside of the face region or inside
the mouth cavity. Finally, th8D positions corresponding to the

The function adds a penalty to the energy if and only if its param-
eter leaves the trusted region:

8
2 x?2 if x< O,
xX)=_0 if0 x 1, (16)
>
T (x 1?2 ifx> L

same landmark are averaged and assigned to the nearest valid vertex

of the model.

Prior Objective. 3D reconstruction from monocular RGB in-
put is an ill-posed problem (depth ambiguity), since many spatial
con gurations of mesh vertices lead to a similar projection in the
camera. We tackle this issue by incorporating suitable pEQFs,
into our energy. This allows to disambiguate reasonable from un-
reasonable con gurations and steer the optimization into the right
direction. To this end, we use two probabilistic shape priBisd, , ,

Eprob ,) @nd a sparsity pricEsparse 0N the expression coef cients:

Eprior ( oo ) = Eprob 1( v s )+ Eprobg( )+ Esparse ( ) :
(11)

The probability of a certain scene con guration is accounted for by

assuming multiple Gaussian distributions over the parameters:

Xs K 2 Xr ‘ 2
Eprobl( v ):Ws — + W, —
k=1 k k=1
. ) (12)
+w b ;
b=1 b

with the division in the last term being component-wise. Herg,
w; andw, weigh the different objectives. As in [Blanz and Vetter
1999; Zollrbfer et al 2014], we restrict the shape weightsand

We use a symmetric quadratic penalizer outside of the trusted region

to tightly enforce the bounds of this constraint.

5.2 Optimization

Given the input vided= = ff,g/., , we nd the best parameters

X by minimizing the non-linear objectii€ i,y (X) using a multi-
step optimization strategy based on multiple Levenberg-Marquardt
[Levenberg 1944; Marquardt 1963; Mol978] optimization stages.
The individual steps are summarized in Alg. 1. The rigid head pose
(R andt) is initialized using the POSIT algorithm [David et al
2004] on the detected facial landmarks, and () are initialized by
solving Eq. 10 with the parametric prioEsyob 1( ), Esparse ( ),
andEpoung ( ), i-e., we optimize for (, ) using only the facial
feature point subspace. The other parameteys ( ) are initially

set to zero. We start by using the r3;s 100 frames of

the sequence to reconstruct a coarse-scale estimate of the actor's
person-speci c identity (; ) and of the illumination in the scene.
This step does not consider the corrective parametehngnce the
corresponding terms are removed from the energy. The resulting
per-frame estimates of the actor's identity are combined using a
oating average.

Before we track the complete sequence in the next stage, we
generate an actor-speci ¢ skin re ectance m@p that replaces the
per-vertex re ectance estimates from the parametric actor model. To
this end, we follow a similar strategy as in [Garrido et28115], and
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Reconstruction of Personalized 3D Face Rigs from Monocular Video 7

Algorithm 1 Multi-Step Optimization Strategy

(Rt ;) Initialize();
2:
3: for (the rst Ty framesf,) do . Identity Estimation
4 while (not convergedjlo
5: (R;t) EstimateHead Pose();
6: ( ; ;) Estimateldentity And_lllumination();
7 () EstimateExpression();
8 end while
9: end for
10:
11: (Cp)  Build_PersonSpeci c_AlbedaMap();
12:
13: for every framef 2 F do
14: while (not convergedjlo . Coarse-Scale
15: (R;t) EstimateHeadPose();
16: () EstimateExpression();
17: end while
18: while (not convergediio . Medium-Scale Fig. 4. Shape Re nement: We exploit shading cues in the input image
19: (R;1) EstimateHeadPose(); (top) to augment the medium-scale model (middle) with ne-scale static and
20: () EstimateCorrectives(); transient surface detail (bottom).
21: end while
22: (p) ComputeDetail Layer(); . Fine-Scale between the medium-scale resMit and the re ned high-quality
23: end for geometryM' using our deformation gradient-based feature vector

representatiop introduced in Sec. 4. Comparedib, the result-
ing high-quality reconstructions exhibit a considerable amount of

compute per pixel albedo values by dividing through the lighting ne-scale surface detail (see Fig. 4)

term (sum on the right hand side of (1)) on a subsettGframes.
The resulting albedo values are averaged in the nal @gpusing
the aligned model. This re ned appearance step drastically improves 6. LEARNING TO PREDICT THE DETAIL LAYERS
the subsequent tracking performance, since the generated re ectanc

map better resembles the actor's appearance (i.e. facial hair and neﬁ—he output of the previous processing step is a personalized

scale skin detail are explicitly accounted for, see also [2déh modelM' , for each of theT framest, that includes a coarse-scale,
et al 2014]). Then, we keep the identity parametersced and the medium-scale and ne-scale detail layer. While the coarse-scale
complete sequence is tracked again, starting from the rst frame. Parametric blendshape rig allows for intuitive modi cation of the rig
For each framé,, we rst re-estimate the head po¢R ;t) and —e.g. by an artist — there is no equally convenient and semantically

compute the best tting blendshape coef cientsThe coarse-scale ~ Meaningful way to create medium and ne-scale details that match
shape estimate and the head pose are then improved by optimizing'€W expressions. To alleviate this problem, we learn the correlation
for the best corrective parametersas well aRR andt, based on etween blendshapes and the higher detail layers, thus enabling full
the full reconstruction energy (see Eq. 6). Note that in this step the control of all detail levels by only using the blendshape coef cients.
blendshape coef cients stay xed.

The next processing step (see below) reconstructs a ne-scale de6.1  Input Data
tail layerp based on shading-based shape re nement by exploiting

shading cues in the input RGB frame. Our learning algorithm takes as input the reconstructed sequence

of blendshape weights ¢ = f (gl | the correctivesTy =

. f (Ugl_, and the deformation gradier®g = fp(g/_, encoding

5.3 Shading-based Re nement the n[e-lscale detail layer. In the following, we p[répose a novel
Given the medium-scale reshit (at every frame) of the previous ~ Sparse and af ne regression strategy to learn a mapping between
optimization, ne-scale static and transient surface details (i.e. wrin- activated blendshape weights and the detail layers that takes account
kles and folds) are recovered from shading cues in the input RGB ©f the local support of the expression basis.

images by adapting the shading-based re nement approach under

unknown lighting and albedo proposed by Garrédal.[2013]. We 6.2 Afne Parameter Regression

compute shading-based re nement on a per-vertex level, yielding

a high-quality re ned mesi/' . We use the previously estimated ing sequence of detail$ 2 fT ¢ : P g, we seek to nd an af ne map-

re ectance and iIIumination|as initialization. A re nement optimiza- ping to encode their correlation. To this end, we stack the weights
tion then adapts the mesh's vertex positions via inverse rendering ¢ thak = 75 blendshapes in a matrix/ :
e — .

optimization such that the synthesized shading gradients match the
gradients of the illumination in the corresponding input RGB im- @ ji ™

- . .S w=__J J @ oRKet) T. (17)
age as best as possible. To further regularize this ill-posed problem, 1 i1
spatial and temporal detail smoothness is enforced as a soft con-
straint [Garrido et al2013; Valgaerts et a012]. The nal vertex Note, the last row oV implements a constant bias in the estimation
normals are computed by averaging over a temporal window of size that is especially important if certain blendshape weights are not
5 for stability [Nehab et al2005]. We store the deformation eld  activated in the training set. The detail lay¢is stacked accordingly

Given a sequence of input motion parametegsand a correspond-
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Fig. 5. Sparse vs. global ne-scale detail prediction: Our novel sparse
regression formulation (top) obtains more realistic results than global re-
gression (bottom). Note the wrong transient detail around the right eye (red)
when the left eyebrow's blendshape is triggered.

in a corresponding matrid 2 R" 7. We remark that the ne-
scale detaiH =9J (with J the number of mesh triangles), since

strategy for ne-scale details produces superior results, as illustrated
in Fig. 5.

6.4 Synthesizing Medium-Scale Correctives

Given new blendshape weights (witrappended§' 2 [0; 1]Ke*? |

the medium-scale corrective layer is predictedas X ", where

X isde ned as (19) wittH = Tg. Afterward, we reconstruct the
deformation eldP¢(”) and apply it on a per-vertex level to the
coarse-scale model, yieldigg, = P¢( ;") + PS(*). Since the
regresse@D displacements are not rotation invariant, this step is
executed in canonical model coordinates.

6.5 Synthesizing High-Frequency Detail Variation

The high-frequency detail is synthesized on top of the medium-
scale resul,, leading to the nal embedding, . Given the new
blendshape weights, we predict the detaj; = X " for thej -th
triangle, whereX; is de ned as (20). From the 9-dimensional vector

we regress the per-face deformation gradients. For the medium-scald?; - We recover the per-face af ne transformation mafix. Finally,

detail layer, we regress the weightsthereforeH = 3K, = 240.
The task is to learn an af ne mapping 2 R (e*D that maps
the blendshape weights to the corresponding deXas = H.

we use the deformation transfer approach by Sumner and Ropovi
[2004] to augment the medium-scale result with the ne-scale sur-
face detail. For rotation invariance, we apply this transformation in

We solve this problem in a least-squares sense by adding a ridgec@nonical model coordinates. Note that we do not learn nor regress

regularizer orX:

X =argmin kKXW HkZ+ kXK ; (18)
X
wherejj : jjr denotes the Frobenius norm, ang= 1:0 is a user-
de ned ridge parameter. Such a linear model is known as ridge

ne-scale detail for the surface region inside the eyes. Instead, we
compute the mean deformation over the entire sequence and keep it
xed in the synthesis.

7. RESULTS

regression [Hoerl and Kennard 2000]. A closed form least-squares I this section, we show applications for the reconstrugidig,

solution forX is given by:

X =(W W + 1) W H ; (19)

wherel denotes the identity matrix.

6.3 Sparse Af ne Regression of Fine Scale Details

For the medium-scale layer of correctivés € Tg), simple af ne
regression is suf cient to obtain high-quality results, since the spec-

present a qualitative and quantitative evaluation and perform a thor-
ough comparison with respect to the state-of-the-art (see also sup-
plementary video). First, we give a general overview of the used test
sequences, parameter values and runtime requirements.

Input. We demonstrate the robustness of our approach for a wide
range of scenarios, from controlled studio setups to uncontrolled
legacy video footage. In total, we evaluated our approach on 9
test sequences; three indoor sequences captured in a controlled
setup 6UBJECTL, SUBJECT2, SUBJECT3), two outdoor sequences

tral basis has global support. However, the same strategy leads thUBJECﬂ' SUBJECTS) and four legacy videos (NOLD Y OUNG,

artifacts when used for the prediction of small-scale surface detail
(H = Pg), e.g. detail showing up even if the triggered blendshape

does not in uence the corresponding surface region (see Fig. 5). To

alleviate this problem, we exploit the spatial support of the blend-
shape basis during training and nd the best af ne mappfgfor
each trianglé independently:

X, =argxmin kX;DjW H; kB+ kX; k& ; (20
i

whereH; = [pf;  ;p{”1 2 R®T and 0:1. The
spatial support of thé-th blendshape with respect to theth
triangle is encoded in the diagonal discriminator mabix =
diag(d’; ; dic ;1) 2 R (Ke*D  This allows each trian-
gle to switch on or off certain blendshapes based on their in uence:

1 if « inuences thg -th triangle,

d, =
k 0 otherwise.

ARNOLD OLD, OBAMA, BRYAN) freely available on the Internet

and downloaded from YouTube (see additional document for links to
all sequences and their specs). The reconstructed facial rig consists
of N = 200k vertices andl = 400k triangle faces.

Parameters.The facial performance capture stage of our
pipeline relies on weights that specify the relative importance of the
different objectives. During our tests, it turned out that our approach
is insensitive to the speci c choice of parameters. We use the fol-
lowing xed weights in all our experimentsy; = 0:5, w, =1,
ws =0:01L,w, =1,w, =0:1,w, =40,w; =4,wy =100 and
Wy = 109

Runtime. Overall, our CPU implementation takes several hours
to process a sequence XX frames when executed on an Intel Core
i7-3770 CPU 8:4 GHz). Per frame, our approach requiBfms for
facial landmark extractiori,:5sec for landmark re nemen#Osec
for identity tting (only run for the rst 100 frames),15sec for
coarse-layer trackin@sec for medium-layer correctives ah#iOsec

Due to some outlier support regions in the blendshapes, we usefor ne-scale shape re nement. Our sparse regression thes
K e = 75 manually corrected support masks rather than the actual for the medium layer anésec for the ne-scale detail layer. We

spatial support to compui®; . This novel af ne sparse regression

believe that a drastic reduction of the computation time is possible
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Reconstruction of Personalized 3D Face Rigs from Monocular Video 9

Fig. 6. Facial performance capture results ar®A (left) and ARNOLD OLD (right) sequence: Given a monocular video of an actor as input ( rst row),
our approach obtains a high-quality reconstruction of his shape and motion on multiple parametrized layers: Coarse-scale shape and motion (second row),
medium-scale correctives (third row) and ne-scale wrinkle-level surface detail (forth row).

by harnessing the data parallel processing power of modern GPUsrig with the video in a photo-realistic way, as shown in Fig. 9 (see
as recently demonstrated for non-linear optimization [Thies.et al also accompanying video).

2015; Wu et al. 2014; Zolibfer et al. 2014]. . . . L
] Facial ReenactmentSince the facial rig is completely

parametrized, we can transfer facial performances between different

7.1 Application Scenarios actors, see Fig . 8. Note that we infer the target actor's person-
) ) ) speci ¢ medium and ne-scale detail for every transferred expres-
Our method automatically creates a fully parametrized f&flalig  sjon. This leads to more natural and realistic results, since it pre-
of an actor given just monocular video data as input. The obtained seryes person speci ¢ idiosyncrasies. The creation of the rig and the
rig can be exploited for many different application scenagas, in- animation is fully automatic and solely based on one single monoc-
teractive modeling, video modi cation and facial reenactment. ular video sequence, i.e. neither a high-quality face scan [Garrido

. . . et al 2013] nor a community photo collection [Suwajanakorn et al
Interactive Editing.To demonstrate the versatility of our 2014] of the actor has been used in the process.

representation, we allow the interactive modi cation of blend-

shape parameters to explore the rig's expression space, see Fig. 7 5 Qualitative and Quantitative Analysis

(SuBJECT2). The automatically predicted person-speci ¢ medium

and ne-scale surface detail plausibly matches the new coarse-scaleOur approach is based on a monocular performance capture method

facial expression. Note that these novel expressions are not includedhat estimates the actor's facial identity and tracks his facial expres-

in the training set that was used to learn the regressor. sions. Tracking progresses in a coarse-to- ne manner on the three

layers: Coarse-scale shape, medium-scale correctives and ne-scale

Video Modi cation. Since we recover an estimate of the scene wrinkle-level detail. Fig. 6 shows the output tracking results on the

lighting as well as the intrinsic and extrinsic camera parameters, three layers of our personaliz8® rig for OBAMA and ARNOLD

we can exploit our high-quality faci@D rig to photo-realistically OLD. Note, the ner scale layers do not only lead to more realistic

modify the face in the original video. To this end, we render a modi- results in terms of high-frequency detail, but also deliver tracking

ed face model under the estimated lighting and then overlay the results of superior accuracy. In addition, we evaluate the geometric

correctly lit face on top of the video. For instance, we exchange the accuracy of the reconstruction in a neutral pose (the mean error is

regressed ne-scale detail layer oRAIOLD YOUNG and SUBJECT2 1:8mm, as shown in Fig. 10). For this comparison aye$eCT1,

with that of the ne-scale layer learned onrRAOLD OLD which a sequence of high-quality ground-truth meshes has been gener-

contains more face wrinkles. We then overlay the resynthesized faceated using the binocular facial performance capture approach of

that contains Arnold Old's wrinkles on top of the original video, Valgaertset al.[2012].

akin to a virtual aging edit. Keeping the medium and ne-scale  To evaluate the prediction accuracy, we trained our sparse af ne

detail layer of &1BJECT2, we additionally change the expression of regressor on the rsf00frames of the test sequen@0Q0frames

this subject by lifting the left eyebrow and overlay the modi ed face in total) and regressed the medium and ne-scale detail layers on the
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10 P. Garrido et al.

Fig. 7. Interactive Editing: Our high-quality parametrized 3D rig allows the creation of novel and expressive poses of an actor by interactively adapting the
corresponding blendshape weights. Here, we sbipases of 8BJECT2 without (top) and with texture (bottom). Note that the medium and ne-scale details
(top) have been automatically predicted using the learned sparse af ne regression model.

Fig. 8. Facial Reenactment: We retarget the rigid and non-rigid head motion of an input actor (top row) to the high-quality 3Drigs1ad ®LD (middle)
and GBAMA (bottom). Note that the target actor's characteristics are maintained, since we regress the detail layers.

Fig. 9. Video Modi cation: We exchange the ne-scale detail layer acfMoLD YOUNG and SUBJECT2 with that of the ne-scale layer estimated orRROLD
OLD, thus adding slight wrinkles to the sequence. We also virtually lift the left eyebrowBfiSc12 (see the complete sequences in the accompanying video).

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Reconstruction of Personalized 3D Face Rigs from Monocular Video 11

While reconstructions can be obtained at video rate, they lack ne-
scale surface detail and do not capture person-speci c idiosyncrasies
in identity and motion, see Fig. 11. In contrast, our off-line approach
reconstructs person-speci ¢ medium and ne-scale surface detail
and additionally learns the correlation with respect to the performed
expression. Therefore, our reconstructions t the input more closely
as seen in the overlays. Our approach thus estimates a high-quality

Fig. 10. Geometric Accuracy: Our monocular approach obtains similar andintuitively controllable faciaBD rig.

quality (1:8mm mean error) to that of the high-quality binocular approach

of Valgaertset al.[2012]. Comparison to [Cao et al. 2015]Recently, an extension to
[Cao et al 2014] that additionally regresses a wrinkle-level displace-
ment map has been proposed [Cao 2@l 5]. This approach learns
the correlation between image patches and surface detail from a
database 08D scans. While this augments the coarse-scale recon-
struction with detail, the inferred geometry is not metrically correct.
Thanks to the medium-scale corrective layer, our face model over-
lays with the input better, even if the ne-scale detail is ignored
for a moment. Furthermore, our inverse rendering approach obtains
detail reconstructions that match the true detail in the image closer
than the regression result, which can only approximate as close as
possible (see especially the shape of the eyebrows in Fig. 13). Please
note that the ne-scale pores in the meshes from [Cao. &(4I5]
are not reconstructed but part of the high quality template model
used for learning their representation. The detail regression of Cao
et al.[2015] is based on cues in the input image; therefore, it can
not generate a detail layer for an arbitrary novel expression speci ed
by user-de ned blendshape weights. In contrast, our approach lever-
ages the inherent semantics of the blendshape weights and allows
for this scenario, which is the de facto standard for creating novel
animations.

Comparison to [Garrido et al. 2013]We are able to obtain
similar or even higher quality reconstructions than those of the off-
line monocular state-of-the-art facial performance capture method
of Garridoet al. [2013], see Fig. 14. This method is able to track
facial expressions including ne-scale surface detail, but it heavily
relies on a static high-quali§D scan of the actor as prior. Therefore,
unlike our method, theirs is not applicable to reconstructing rigs
in legacy video footage. Also, Garrid al's approach is a pure
capture method that does not learn any generative model for person-
speci ¢ correctives and ne-scale details. Thus, person-speci c
idiosyncrasies are also better captured by our method.

Fig. 11. State-of-the-art comparison to [Cao eR&i14]: Monocular input

('rst row), result obtained by the approach of Ceipal.[2014] (second row),

our medium-scale result (third row) and our nal ne-scale reconstruction
(forth row). Note that our medium-scale result matches the actor more closely
and the ne-scale reconstruction adds even more realism.

second half. As ground truth for the comparison, we use the actually Comparison to [Shi et al. 2014]Finally, we compare to the
tted medium and ne-scale layers by running our reconstruction high-quality monocular approach of Sttial. [2014]. Their method
pipeline on the complete dataset. Fig. 12 shows the qualitative and€Mploys a multi-linear face model for reconstruction and can be

guantitative results. We are able to generalize well beyond the set of@pplied to legacy footage, see Fig. 15. We attain higher-quality re-
expressions used for training. constructions on the coarse as well as on the ne-scale due to the

use of dense correspondences to jointly optimize for identity and ex-
7.3 Comparison to Performance Capture pression. Addltlorjally, we qbtaln a better model persqnallzatlon and

expression tracking by using medium-scale corrective shapes. On
Approaches the other hand, Stet al. mainly resort to sparse correspondences to

We compare the reconstruction part of our approach to related state£stimate large-scale deformations, which are then slightly improved
of-the-art monocular performance capture methods. Additional com- Using normal maps estimated in their shade-from-shading frame-
parisons to monocular and multi-view methods can be found in work. This leads to a less accurate head pose, as well as less accurate
the supplemental document. Remember that the person-speci ¢ rig €0arse and ne-scale surface reconstructions. Please refer to the the
building, which is an important contribution of this paper, is not supplemental document for further comparisons. We remark that Shi

performed by any approach we compare with in this section. etal.do not learn a correlation model for person-speci c correctives
and ne-scale details. Thus, their approach is unable to automati-

Comparison to [Cao et al. 2014]The state-of-the-art  cally adapt the detail layers to match person-speci ¢ idiosyncrasies,
monocular performance capture approach of €aal.[2014] is which is the foundation for realistic video editing (see Fig. 9) and
able to reconstruct the actor's identity and motion at a coarse-scalereenactment tasks (see Fig. 8).

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



12 P. Garrido et al.

Fig. 12. Evaluation of the prediction accuracy: Our novel sparse regression strategy infers high-quality medium and ne-scale detail layers given a novel
expression. Note that we compare quantitatively to the tracked ground truth reconstruction which is accurately reproduced. The prediction error of the medium
and detail layer together is always smaller tBaBmm (Imm mean an@:16mm standard deviation). The error is mainly explained by residuals in the medium

layer, while the error of the detail layer is mostly negligibte Q:4mm on average).

Fig. 13. State-of-the-art comparison to [Cao eR8l15]: While the regression-based approach of &aad. [2015] infers some of the actor's ne-scale details,

it produces less accurate results if poses and identities are far from the training set. In particular, note the overall less accurate reconstruction of identity (left), as
well as the only approximate reconstruction of some wrinkles and the shape of the eyebrow (right). In contrast, our reconstruction-based approach delivers
results closer to the real input video. Please note that ne-scale pores in the resultsaifal§2015] are merely hallucinated, as they are part of the model

learned from high-quality face scans.

7.4 Comparison to Detail Prediction Methods Bermancet al's method requires a bespoke set of expressive train-
. . ing sequences that are captured with a multi-view camera system

We compare our two-layer detail regression approach to the stateynger controlled lighting from which the ne-scale detail and actor-

of-the-art method by Bermaret al. [2014] for the prediction of  gpeci ¢ expressiveness are extracted. In contrast, we are able to train

actor-speci c idiosyncrasies and detail. Fig. 16 demonstrates that or sparse regression technique using only a subset of frames of the
our sparse regression formulation for medium and ne-scale de- ponocular input footage.
tail prediction achieves results of comparable quality. Note that
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Fig. 14. State-of-the-art comparison to [Garrido eRal13]: Compared to the off-line approach of Garratal.[2013], our reconstructions better match
the actor's static and transient small-scale surface details. Note, the method of @agidequires a high-quality laser scan of the actor as input, making it
unsuitable for legacy video footage.

Fig. 15. State-of-the-art comparison to the approach by [Shi 20aK]:
Our approach obtains a closer t than Stial's method. Note the higher
amount of ne-scale surface detail obtained by our approach.

Fig. 16. State-of-the-art comparison to the approach by [Bermano et al
2014]: Our approach obtains predicted correctives and ne-scale detail
comparable to Bermaret al's method, which requires a tailor-made set of
training sequences to enhance ne-scale detail and expressiveness.

8. DISCUSSION Limitations. Our approach assumeambertianre ectance. Al-

We presented the rst approach to create a high-quality modi able though this is a fairly common assumption also made in other works,
facial 3D rig of an actor from just monocular video data along with it introduces artifacts in the presence of specular highlights, as
the captured facial performance. Related to our approach is the reshown in Fig. 17 (a). In addition, we do not model sub-surface
cent paper by Ichinet al.[2015] which aims at building a 3D face  scattering effects; the scene's light transport is parametrized using
avatar from video. Our approach differs in several ways. Firstly, their a low-dimensional SH representation which assumes smooth dis-
approach requires a structure-from-motion 3D face reconstruction tant illumination and no shadows. Extreme lighting (e.g. directional
from several hundred frames of video taken around the static head tospotlights) and cast shadows lead to artifacts.

which a default model is tted. The expression basis is then learned  Since our reconstruction approach is based on temporal frame-to-
from a speci ¢ video sequence of facial expressions. Some of their frame coherence, videos that exhibit lots of cuts are hard to handle
steps also need manual intervention. In contrast, our approach onlyautomatically, requiring re-initialization of the parameters. Recon-
needs an RGB video of a general unscripted facial expression sestructing multiple actors from a single video also requires an extra
guence as input and is automatic. Secondly, Ichiral. do not learn face detection and recognition component to keep the approach au-
medium scale correctives, but optimize the blendshapes themselvegomatic. Mild occlusions on the face, such as hair can be handled
They discuss that learning a full personalized corrective layer, as we by our approach, but may be wrongly learned as facial features, see
do, would lead to better personalization. Fig. 16. Strong occlusions, such as a dense beard, pose a problem to
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that accounts for static and transient ne-scale detail. We explicitly
learn the correlation between expression variation and the detalil
layers, yielding a detail prediction model. This enables an intuitive
control of the rig based on a small set of control parameters familiar
to artists. We demonstrated the high delity of our reconstructed rigs
for several actors from different sources of video, including YouTube
footage, and show their use in animation, expression transfer and
video editing. We see our approach as a step towards automatic rig
creation from monocular video, e.g. legacy footage from feature
Ims, and hope that it will inspire further research.
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