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Abstract

Existing tone mapping operators (TMOs) provide good
results in well-lit scenes, but often perform poorly on im-
ages in low light conditions. In these scenes, noise is preva-
lent and gets amplified by TMOs, as they confuse contrast
created by noise with contrast created by the scene. This pa-
per presents a principled approach to produce tone mapped
images with less visible noise. For this purpose, we lever-
age established models of camera noise and human contrast
perception to design two new quality scores: contrast waste
and contrast loss, which measure image quality as a func-
tion of contrast allocation. To produce tone mappings with
less visible noise, we apply these scores in two ways: first,
to automatically tune the parameters of existing TMOs to
reduce the amount of noise they produce; and second, to
propose a new noise-aware tone curve.

1. Introduction

High dynamic range (HDR) images can easily be cap-
tured nowadays, even with consumer cameras. To properly
view this HDR content on low dynamic range displays, one
needs a tone mapping operator (TMO) to map it to the lim-
ited displayable range, while retaining as much of its orig-
inal contrast as possible [15]. The sheer number of differ-
ent algorithms proposed in the literature is testament to the
complexity of this task: they must adapt to different dis-
plays, be free of visual artifacts, and provide intuitive artis-
tic controls to allow users to achieve desired visual styles.

Despite these challenges, today’s powerful tone mapping
operators have been very successful and have found their
way into a wide variety of consumer photography applica-
tions. However, while they work remarkably well on im-
ages taken under daylight conditions or in well-lit indoor
scenes, they often produce very objectionable artifacts on
images taken under low light conditions because these im-
ages might contain significant sensor noise (fig. 1). Noise
gets amplified in ways that depend both on the particular

(a) � = 0.85,↵ = 0.2 (b) � = 0.9,↵ = 0.7

Figure 1. HDR images of low-light scenes contain camera noise
that can be amplified by TMOs. The amount of amplification de-
pends on the TMO and its parameters. This HDR image was tone
mapped using [3] with different parameters (�,↵), but the rela-
tion between the parameters and noise amplification or detail loss
is unknown to the users. We present new metrics that capture this
relationship, allowing a user to intuitively browse the parameter
space of a TMO and quickly choose a good combination.

TMO used and on the values of its parameters. This makes
tone mapping a tedious, trial-and-error process, where the
user must try several parameter settings individually to find
the desired result.

In this paper, we introduce two new quantitative met-
rics that capture how effectively a tone mapping operator
utilizes the available output (display) range to preserve the
original contrast while keeping the noise visually impercep-
tible. To develop these measures, we leverage existing mod-
els of camera noise and of human perception. We demon-
strate the usefulness of these metrics in two potential appli-
cations. First, we show how they can be used to automati-
cally find a combination of parameters which will yield the
best tone mapped result for a given noisy HDR input. Since
manually exploring the space of possible tone mapped im-
ages for a given TMO can be laborious, our method pro-
vides an intuitive way to visualize the space of TMO param-
eters in a noise-aware way. Second, we can design noise-
optimal tone curves which directly optimize these measures
to create a tone-mapped image that best exploits the output
range in the presence of noise.



2. Related work
Tone mapping has been an active research topic in com-

puter graphics for nearly two decades [15]. Early work
involved analyzing common practices of film development
and applying them to the field of HDR imaging. Reinhard et
al. [14] proposed applying a sigmoidal response curve glob-
ally and performing local operations to mimic photographic
dodging and burning. While this operator comprises local
components, its results are often a faithful reproduction of
the original scene’s contrast and colors as it would be expe-
rienced by a human observer. A different look with higher
local contrast can be achieved using a bilateral-filtering-
based tone mapping approach [2]. This method produces
a base layer from the input HDR image through bilateral
filtering. A corresponding detail layer is computed by the
ratio of the original HDR and the base layer. Tone map-
ping is achieved by applying a compressive tone curve to
the base layer and combining the result with the detail layer.
Reinhard and Devlin’s TMO [13] is inspired by the photo-
receptors response in the human eye. The parameters simu-
late in part the behavior of the human visual system with re-
spect to global and local adaptation to the overall luminance
and particular chrominance in the image. While there are
many tone mapping operators, in this work we focus on the
Photographic TMO [14] and the Bilateral TMO [2] as two
prominent representatives of global and local tone mapping
operators.

Previous tone mapping work focused on simulating
the visual perception of extremely dark and bright HDR
scenes [4, 7, 12]. The main aim was to model the lumi-
nance adaptation mechanisms of the human visual system
assuming an HDR image free of any artifacts, yet this as-
sumption does not hold for low-light scenes where camera
noise is significantly present. Another research area on low-
light tone mapping explores the hue shifts that occur in dark
scenes [10], but a solution for obtaining visually pleasant
results in the presence of camera noise is not provided.

The noise properties of digital cameras have been studied
in the field of optics and photonics [9]. The two principal
noise sources are shot noise, associated with the process of
light emission, and readout noise, which is an umbrella term
for several sources that affect the image capturing process.
These two sources affect each pixel individually. In this pa-
per, we apply a simplified noise model (see Sec. 3.1) that
takes into account these major sources and ignores other
spatially dependent sources. The parameters of this model
can be recovered from a set of calibration images [9] or
from regularly captured images [5, 11]. In this work, we
assume that a calibrated camera noise model is available.
The next sections explain how this model can be used to
measure the image quality of existing tone mapping oper-
ators, and how it enables noise-aware TMOs with greatly
enhanced performance on low-light images.

3. Evaluation of contrast utilization in TMOs

We begin by describing an approach to measure the ef-
fectiveness of a TMO in allocating the available display
contrast when tone mapping a high dynamic range image.
This is a challenging task that becomes more difficult in
situations where noise is dominant, such as low-light condi-
tions. In these cases, existing tone mapping operators may
inadvertently boost the noise in the image (see fig. 1). We
argue that an effective use of the contrast range means suc-
ceeding at two potentially conflicting tasks: preserving the
original contrast of the input image; while preventing the
amplification of noise. In this section, we first describe the
camera noise model and the visual perception model that
are the foundation of our work. Based on these models, we
then introduce two new quality measures to assess a TMO’s
performance: i) contrast waste, and ii) contrast loss.

3.1. A model of camera noise

By calibrating the noise parameters of a digital cam-
era, it is possible to predict the noise distribution of the
color values in the images it captures. To estimate image
noise, we apply the calibration method in [5] to the raw out-
put of digital cameras. This calibration needs to be per-
formed once, offline, for a given camera model; it could
also be provided by the manufacturer. Calibration yields a
noise model defined by camera-dependent and photograph-
dependent parameters. The four camera-dependent param-
eters are the camera gain at reference ISO level G

100

, the
black level v

min

, the saturation level v
max

, and the readout
noise �R. The two photograph-dependent parameters are
the ISO value S and the exposure time t. We can approx-
imate the variance of the Gaussian probability distribution
for a pixel p in an input image I at the ISO level S as [8]:

�2

I (p) ⇡ Gs(I(p)� v
min

) + �2

R, (1)

where GS =

S
100

G
100

is the camera gain at ISO level S.
This model predicts the noise distribution in raw images,

which have a higher bit depth than standard 8-bit displays.
It can also be used to predict the noise of HDR images ob-
tained from averaging raw multi-exposure sequences. Let
I = {I

1

, . . . , In} be a multi-exposure sequence with expo-
sure times ti and ISO values Si. Each image Ii provides the
irradiance estimate

Xi(p) =

I(p)� v
min

GSi · ti
, with variance (2)

�2

Xi
⇡

�2

Ii
(p)

(GSi · ti)
2

. (3)

An irradiance map, or HDR image, X can be obtained from
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Figure 2. Examples of the contrast waste and contrast loss maps for four different settings of the TMO in [13]. Each row shows a top and
bottom crop of the photograph shown in Fig. 3. High contrast loss (last row) occurs at pixel locations where the real image derivatives
(darker pixels in 2nd row) are no longer perceivable (bright pixels in 3rd row). High contrast waste (4th row) occurs whenever derivatives
attributable to noise are displayed in the tone mapped image (best seen in PDF).

the weighted average

X(p) =

P
i wi(p)Xi(p)P

i wi(p)
, with variance (4)

�2

X(p) ⇡
P

i wi(p)
2�2

Xi
(p)

(

P
i wi(p))

2

. (5)

In the remainder of the paper, we assume that the input im-
age I and its variance �2

I are known or recovered using a
similar calibration procedure. We discontinue the use of X
and use only I instead.

3.2. Detection of image derivatives caused by noise

Let the input image be an HDR image I : ⌦ ! R
where each pixel p is an observation of a random vari-
able that follows a Gaussian distribution with mean ˆI(p)
and standard deviation �I(p) (estimated accd. to Sec. 3.1).
Let p, q 2 ⌦ be two adjacent pixel locations, and let
D(p, q) = I(p) � I(q) be an approximation of the image

derivative at I(p). D(p, q) also follows a Gaussian distri-
bution with mean ˆD(p, q) = ˆI(p) � ˆI(q) and standard de-
viation �D(p, q) = �I(p) + �I(q). Whenever the image is
flat at I(p), ˆI(p) =

ˆI(q), the mean of the derivative’s dis-
tribution is zero. Therefore, to test whether the observed
derivative is caused by noise we define the null hypothesis
H

0

and the alternative hypothesis H
1

as

• H
0

: The observed derivative D(p, q) is generated by
the distribution N (0,�D(p, q)), and

• H
1

: The observed derivative D(p, q) is not generated
by the distribution N (0,�D(p, q)).

The probability of rejecting H
0

incorrectly (type I error)
should be bounded by a confidence value ↵ as

Pr (rejecting H
0

|H
0

is true) ⌘ Pr (Z > |zD(p, q)|) < ↵,
(6)

where Z is a random variable with normal distribution, and
zD(p, q) =

D(p,q)
�D(p,q) is the statistical standard score or z-

value of the observed derivative. The probability in Eq. 6



captures the percentage of derivatives due to noise that are
larger than D(p, q). Since our goal is to misclassify as few
derivatives due to noise as possible, the confidence value
↵ is set to an arbitrary low value (e.g., 1%). If the proba-
bility of observing a derivative larger than D(p, q) is larger
than ↵, we reject the alternative hypothesis and accept that
D(p, q) is generated by the distribution of the image noise.
The result of this test is encoded in a mask image

M(p, q) = 1{Pr(Z>|zD(p,q)|)>↵}, (7)

that assigns the value of 1 to derivatives D(p, q) that are
attributable to camera noise (see fig. 2, second row).

3.3. Detection of perceptible visual differences

Our visual perception model consists of a predictor that
tests if two intensities are visually indistinguishable to the
observer. Let It be a tone mapped version of the input im-
age I . Assuming a standard display with sRGB response
function, � ⇡ 2.2, and luminance range [L

min

, L
max

], we
construct the image ItL = (It/max(It))

1
� ·(L

max

�L
min

)+

L
min

whose values approximate the luminance emitted by
the display. For each value ItL, the contrast sensitivity func-
tion csf(L, ·) = �L predicts the minimum luminance offset
�L from an observed luminance L that is necessary for the
difference to be perceivable in 75% of the cases under stan-
dard illumination and adaptation conditions. This thresh-
old depends on the particular viewing conditions (e.g. the
viewing distance and the screen’s pixel size), and the fre-
quency of the signal (measured in cycles per degree). Since
we evaluate noise perception between pairs of adjacent pix-
els, our target frequency corresponds to half of the pixels
per degree (i.e. a cycle is produced at every pair of adja-
cent pixels)1. Based on the contrast sensitivity function, the
probability V (p, q) that a user detects a luminance differ-
ence is

V (p, q) = 1� exp

�
�|�z(p, q)|3

�
,where (8)

z(p, q) =

ItL(p)� ItL(q)

max {csf(ItL(p)), csf(ItL(q))}
, (9)

and � = (� log(1� 0.75))
1
3 [1].

3.4. Contrast waste score

The contrast waste score for a tone-mapped image It

measures how many pairs of adjacent pixels, whose col-
ors in the input image are indistinguishable under noise,
are mapped to screen values whose luminance differences
are likely to be detected by the user, in which case contrast
is wasted. For an adjacent pixel pair p, q, it is defined as

1In our experiments, we used a 20 inch display at 1600 ⇥ 1200 reso-
lution viewed at 25 inch distance, resulting into 45 pixels per degree, and
22.5 cycles per degree.

the normalized perceivable luminance difference between
the pixels times the probability that both pixels measure the
same luminance:

W (p, q) = M(p, q)V (p, q)
��ItL(p)� ItL(q)

�� . (10)

The aggregate waste score for the entire image is the av-
erage per-pixel waste score,

¯W =

1

|N (⌦)|
X

p,q2N (⌦)

W (p, q), (11)

where N is an 8-neighborhood system in the image domain
⌦. Fig. 2 (4th row) illustrates the contrast waste produced
by the same tone mapper [13] with different parameters.

3.5. Contrast loss score

The contrast loss score estimates how many luminance
differences are missing in a tone-mapped version It of an
image I . This loss of contrast occurs at image locations
whose derivatives are not attributable to noise, but their cor-
responding tone-mapped values are visually indistinguish-
able. For a pair of pixels p, q the score is computed as
the loss of perceivable luminance differences in the tone-
mapped image with respect to a standard tone mapping pro-
cedure, such as a linear intensity mapping.

L(p, q) = (1�M(p, q)) (1� V (p, q)) |Ir(p)� Ir(q)| .
(12)

Here, Ir is a reference tone mapping of I , such as Ir(p) =
(I(p)/max(I)). The aggregate contrast loss of the image
is the average of the per-pixel scores

¯L =

1

|N (⌦)|
X

(p,q)2N (⌦)

L(p, q). (13)

Fig. 2 (last row) shows the contrast loss produced by the
TMO in [13] with different parameters.

3.6. Constrast misuse score

The waste and loss scores can guide the choice of TMO
and parameters for a given scene (sec. 4.1), and can be used
to define criteria for globally optimal tone curves (sec. 4.2).
For these purposes, it is useful to define a single contrast
misuse score that represents the contrast waste and contrast
loss of a given image and additionally encodes the user-
preference regarding the balance between these two types
of artifacts

¯S = (1� �) ¯W + � ¯L. (14)
Here, � 2 [0, 1] represents the relative importance of con-
trast waste and loss. For � = 0, optimal tone-mapped im-
ages will not contain visible noise artifacts but may suffer
from detail loss. Conversely, at � = 1 the image will pre-
serve the details of the input HDR image but will display
noise artifacts. In our experiments, we set � = 0.9 to pre-
serve details while allowing some noise artifacts.



4. Results
We demonstrate the usefulness of our scores in two ap-

plication scenarios.

4.1. Application I: visualizing TMO parameters

To tone map an HDR image, users must choose a partic-
ular TMO and values for its parameters. To a novice, this
process is unintuitive, and may involve several iterations of
trial and error. To complicate the situation, TMOs can pro-
duce noise artifacts for a wide range of parameter configura-
tions (see fig. 1). The chosen operator may also not general-
ize well to other cameras or scenes. Accordingly, providing
users with a quick and intuitive way to navigate the space of
TMOs and their parameters would be beneficial. Our new
quality scores can provide the user with information regard-
ing the suitability of different values of TMO parameters,
and even suggest noise-optimal values.

Fig. 3 illustrates how a user can easily explore the TMO
parameter space in a noise sensitive way. This example ex-
plores the tone mapper from [13], which makes use of two
main parameters: the “contrast” and “intensity” parameters.
The 2D waste/loss plot in fig. 3 represents the space spanned
by these two parameters. Contrast waste (assigned to the
green channel) and loss (assigned to the red channel) scores
are computed for a discrete set of parameter combinations
regularly sampled over that space. By this means, the im-
pact of parameter combinations can be predicted without
having to scrutinize tone-mapped images directly: param-
eters that generate high contrast waste (bright green), high
contrast loss (bright red), or noise-optimal results (black)
can be identified at a glance. Fig. 3 shows four example lo-
cations where a user might click to observe the influence of
tone-mapping parameters on the quality of the results. The
best result is obtained when the sum of contrast waste and
loss scores is minimized (bottom right).

By design, our scores assess effective contrast preserva-
tion and noise suppression in an image, which are both re-
sults of complex and highly subjective cognitive processes.
As such, formulating metrics that cover their every aspect
is highly challenging, if at all possible. That said, practi-
cal metrics that achieve even some level of correlation with
these complex tasks are useful in practice, an example being
the SSIM metric for image quality assessment [16]. Simi-
larly, our measures provide a useful practical estimate cor-
relating with a highly challenging task.

Experiments To empirically test the use of the contrast
waste score for TMO parameter selection, we acquired a
set of 11 photographs in low light conditions using a Canon
EOS 5D Mark III with calibrated noise model (see sec. 3.1).
The photographs were taken either indoors or at nighttime,
and without a flash. All images were stored in RAW uncom-

pressed format. We consider these RAW images as HDR
images, since pixel values are proportional to scene lumi-
nance and stored at high bit depth.

Fig. 4, compares results for the same input image using
different tone mappers [2, 3, 13, 14] and parameters. For
each TMO, we empirically selected one or two of the most
relevant parameters of each algorithm2. We selected the
best and worst values for each set of parameters according
to the contrast misuse score, and show the images corre-
sponding to the best, worst, and default parameters of each
TMO. Fig. 4-d, localizes the best (green), default (blue), and
worst (red) parameter sets according to the contrast misuse
score in a 2D waste/loss plot (see sec. 4.1).

The runtime of the parameter selection depends on the
speed of the actual tone mappers. To construct each
waste/loss map, we sampled a 9 ⇥ 9 grid on the plane de-
fined by the two selected parameters for each TMO. For
each grid point, a tone mapped image and its contrast mis-
use score are computed. The scores for intermediate param-
eters are bilinearly interpolated. On average, the construc-
tion of a waste/loss map takes around two minutes using
unoptimized MATLAB code for a 1449⇥ 968 image.

We draw two conclusions from the results shown in
fig. 4. First, the perceived quality of the results is empir-
ically correlated with the contrast score in all TMOs since
the best result contains less visible noise than the worst re-
sult, without incurring detail loss. It could be argued that
the worst result of Durand and Dorsey [2] can be percep-
tually preferable, despite clearly visible noise, since darker
parts become brighter at this parameter setting. This per-
ceptible preference can be accounted for in our algorithm
by optimizing for contrast loss only. Experimentally, if con-
trast waste is ignored (i.e. setting � = 1), the former worst
parameter setting now obtains the best score on this scene
and TMO. Therefore, our algorithm has the flexibility to
express the user intent through selection of the � parameter.
Second, a TMO’s default parameters can significantly differ
from the optimal parameters, and our algorithm provides a
systematic way to select suitable values for a given input
image. Fig. 5 presents additional comparisons, and the sup-
plementary material shows a systematic comparison of our
method on four TMOs, on all of our 11 test images.

4.2. Application II: noise-aware tone curves

In this section, we propose another application of our
novel HDR noise metrics. That is, we present a simple,
yet effective strategy to generate a noise-optimal tone curve
that can be adapted to a given image. Our approach explic-
itly shapes the tone curve to avoid, as much as possible, the

2Since the method of Durand and Dorsey does not have parameters
that cause high variation in the results, we used the two first components
of the PCA model of camera response curves (see sec. 4.2) as parameters
to control the shape of the tone curve used to compress the base layer.
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Figure 3. Contrast scores for different configurations of the TMO in [13]. The central waste/loss plot shows a color map of the contrast
waste and loss scores obtained for combinations of two parameters of the TMO, contrast and intensity. Contrast waste is depicted in green,
contrast loss in red. Low scores correspond to values close to black. Noise is more apparent in images with high contrast waste (top left),
high contrast loss makes images look washed out (bottom left). Images with high contrast waste and loss scores look noisy and flat (top
right). When values for both scores are low, resulting images use the available display contrast optimally (best seen in PDF).

conditions of contrast waste and contrast loss in the result.
Fig. 6 presents the approach. First, we use the PCA model
of camera response curves from [6] to define the space of
possible tone curves. Then, we sample the first two compo-
nents of the PCA model, and select the component weights
p = (·, ·) that produce the minimum contrast misuse ¯S.
With an interface similar to the one presented in sec. 4.1,
the user can quickly browse the space of tone-curve param-
eters, and control the trade-off between contrast waste and
contrast loss by adjusting the parameter �.

5. Conclusion and future work

In conclusion, this paper proposed two metrics—contrast
waste and contrast loss—that measure the efficiency of ex-
isting TMOs in allocating the available display contrast.
The metrics are based on camera noise and contrast percep-
tion models. We further applied these models to propose a
principled way to 1) improve the robustness of TMOs in low
light conditions by allowing a user to intuitively navigate
the space of TMO parameters; and 2) create noise-aware
tone curves. Through an empirical validation, we showed
that the robustness of existing tone mapping operators can
be improved automatically by including these models in the
selection of adequate parameters. Our method enables users
to obtain feedback about the expected quality of existing
tone mappers, and to apply them reliably in automatic set-
tings, even for images in low light conditions.

Currently, contrast is only evaluated on adjacent pixels,
so we model only its high frequency content. Capturing
lower contrast frequencies would be possible with the use
of an image pyramid, which we plan to explore next. In
addition, the proposed visualization scheme in sec. 4.1 is
only practical for a pair of TMO parameters at a time, a
higher dimensional space could only be seen one 2-D slice
at a time. Similarly, the automatic selection of the optimal
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Figure 6. Tone curves with low contrast misuse sampled from a
PCA model of camera responses. Top row: waste/loss plot for
PCA parameters (red: high loss, green: high waste). Middle row:
tone curve (blue) with minimum contrast misuse S̄. Bottom: Im-
age tone-mapped with the optimal tone curve. The optimal tone
curve depends on the relative importance of contrast waste and
loss set by the user: (a) Ignoring contrast loss (� = 0), results
in a dark noiseless image. (b) Increasing the weight of contrast
loss (� = 0.9), reduces detail loss while suppressing noise. (c)
Ignoring contrast waste (� = 1) results in visible noise artifacts.

set of parameters for a given image would become expo-
nentially slower to compute for higher dimensional spaces.
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A more efficient (perhaps parallel) computation of our con-
trast metrics would be an interesting area of future work.
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