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ABSTRACT
Modeling realistic skin deformations due to underneath muscle bul-
ging has a wide range of applications in medicine, entertainment
and art. Current acquisition systems based on dense markers and
multiple synchronized cameras are able to record and reproduce
fine-scale skin deformations with sufficient quality. However, the
complexity and the high cost of these systems severely limit their
applicability. In this paper, we propose a method for reconstructing
fine-scale arm muscle deformations using the Kinect depth cam-
era. The captured data from the depth camera has no temporal
contiguity and suffers from noise and sensory artifacts, and thus
unsuitable by itself for potential applications in visual media pro-
duction or biomechanics. We process noisy depth input to ob-
tain spatio-temporally consistent 3D mesh reconstructions show-
ing fine-scale muscle bulges over time. Our main contribution is
the incorporation of statistical deformation priors into the spatio-
temporal mesh registration progress. We obtain these priors from
a previous dataset of a limited number of physiologically different
actors captured using a high fidelity acquisition setup, and these
priors help provide a better initialization for the ultimate non-rigid
surface refinement that models deformations beyond the range of
the previous dataset. Thus, our method is an easily scalable frame-
work for bootstrapping the statistical muscle deformation model,
by extending the set of subjects through a Kinect based acquisi-
tion process. We validate our spatio-temporal surface registration
method on several arm movements performed by people of differ-
ent body shapes.

∗Currently at Technicolor Research & Innovation, Rennes, France

1. INTRODUCTION
Reconstructing high-quality muscle deformations in a non-intrusive
manner is a key problem in the areas of entertainment, human biome-
chanics and human-centered design. Depth cameras like Microsoft
Kinect, that recently appeared on the consumer market, provide a
relatively cheap and easy mechanism to capture 3D images. How-
ever, the captured depth images have significant artifacts due to
sensor noise, occlusions and the lack of temporal contiguity in cap-
ture. As such, these are unusable for researchers in biomechan-
ics or human-computer interfaces who want to build accurate user-
specific models of muscle deformations. In the current paper, we
propose a method for reconstructing high quality and temporally
aligned 3D meshes from depth images captured by the Kinect cam-
era, for the human shoulder-arm region. Thus our method bridges
an important gap and enlarges the research scope for many areas
concerned with modeling muscle deformations, making them cap-
italize on cheap consumer hardware. For example, realistic vir-
tual humans and their muscle movements can be modeled for vi-
sual media production in a cost-effective manner, through the use
of cheap acquisition systems and fewer hours of manual work by
artists. Sports scientists and medical practitioners can observe the
physiological action of muscles on a day-to-day basis and provide
personalized advice to sportsmen and patients without the use of
expensive and intrusive sensors.

At present, modeling realistic muscle deformations of virtual hu-
mans remains a highly labour intensive task. Commercial systems
use specialized kinematic rigs for virtual characters, which have
hundreds of control parameters to derive localized bulging effects
on a fine scale by approximating them with a set of bones. As an
alternative, bio-mechanically based simulation of human anatomy
and physics-based muscle deformation can be performed. How-
ever, this remains computationally very expensive and such rigs are
hard to control and adapt to new characters. Thus, data-driven sim-
ulation methods have been developed in order to overcome some of
these limitations. Based on a training set of artist-given deforma-
tion examples or 3D scans acquired directly from the real world, an
artistic interface can be developed that is simple to use, but which
reproduces complex muscle deformation behavior as visible in the
training set. These data-driven simulation methods bridge an im-
portant gap in the artistic production pipeline. However, acquiring



Figure 1: Overview of our capture pipeline: depth measurements are first filtered and then used for an initial surface reconstruction. A
statistical deformation model based on two different datasets is built and then used to clean the initial reconstruction within the space of
learned deformations. A last refinement step is used to capture fine scale details not captured by previous shapes in the database.

the training set of spatio-temporally aligned muscle deformation
examples remains a challenging problem. In order to acquire fine-
scale deformation, a lot of markers have to be placed on the hu-
man body and tracked using expensive imaging systems [9]. The
complexity of this acquisition process places a high limiting bar-
rier for novice artists and practitioners from taking advantage of
the research advances in data-driven muscle simulation. Further-
more, people exhibit an enormous statistical variation in muscle
deformations with respect to body pose. The data-driven simula-
tion methods are, by their very design, restricted in their modeling
ability to the limited set of human subjects captured in the training
data. Unless the acquisition process becomes cheap and simple to
use, it is difficult to capture a substantially large set of people and
model the statistical variation in their muscle deformations. In this
paper, we make a contribution in this regard by proposing a novel
acquisition method based on the Kinect depth camera.

The Kinect depth sensor has been deployed with great success for
various tasks by researchers in robotics, computer vision and human-
computer interaction. However, most of these tasks have been re-
stricted to reconstructing a static world [6] or recovering the motion
dynamics only at a coarse scale [15]. Modeling fine scale non-rigid
surface deformation, with using a consumer-grade depth sensor like
the Kinect, remains an immense challenge. The noise artifacts that
occur in the depth image make the simultaneous recovery of ac-
curate 3D geometry and motion severely under-constrained. The
artifacts in the depth image can arise from limitations in the imag-
ing process, the limited resolution of the capture sensor, and due to
surface occlusions that naturally occur during motion. In this pa-
per, we propose a method to process these noisy depth images and
reconstruct high-quality spatio-temporally aligned 3D meshes. Our
main observation is that a previously acquired dataset of muscle de-
formations (from a set of 10 subjects captured with a multi-camera
acquisition system, kindly made available by [9]) provides useful
priors for initializing the 3D registration, and ultimately to recon-
structing fine-scale 3D surface deformations beyond the previous
dataset. We make the following key-contributions to push the re-

search agenda in this field.

1. We provide a method for filtering three-dimensional corre-
spondence estimation in the noisy depth map input, by using
geometric priors of deformation and statistical priors learned
from a capture dataset.

2. We provide a framework for extending the generalization
scope of a statistical model of deformation, by capturing more
people than present in the initial dataset.

2. RELATED WORK
Modeling fine-scale muscle deformations has long been an active
research topic in computer graphics. We refer the readers to the
related work section in [9] for an elaborate review of muscle defor-
mation models: skinning approaches, physiologically-based simu-
lation models and data-driven simulation models. In the following,
we review only certain important related works in data-driven mod-
eling of muscle deformations.

In 2006, Park and Hodgins [10] developed and demonstrated an
acquisition system for capturing fine-scale muscles deformations
at high-speed motions on several actors. They used a very large set
of reflective markers (350 against 40-60 previously used) placed on
muscular and fleshy parts of the body. They first captured the rigid
body motion of the markers and then used the found residual defor-
mations to deform a hand-designed subject-specific model. How-
ever, the marker application time and acquisition complexity were
extremely high. This inhibits the acquisition of a larger number
of subjects, which can contribute with more muscle data and skin
motion. Another limitation of their system is the impossibility to
generalize the acquired dynamic captured motion for different body
types. In their later work in 2008 [11], they presented a data-driven
technique for synthesizing skin deformation from skeletal motion.
Using the same input data they used in the previous work, they
build up a database of deformation data separately parametrized by
pose and acceleration. Afterward they learned respectively pose



and acceleration specific deformation using Principal Component
Analysis (PCA) and built a statistical model. Because of the com-
plexity of the acquisition step, they filled the database with a huge
amount of poses from a single subject, causing the statistical model
again to be highly shape dependent. Although they introduced the
possibility to generate novel motions of subjects with similar body
shapes as the one contained in their database. Using similar ac-
quisition system and pipeline, a later work presented by Hong et
al. in 2010 [5] showed an improved skeleton configuration that,
combined with standard skinning algorithms, generates a more vi-
sually pleasing and physically accurate skin deformation. Focusing
on the shoulder complex, consisting of shoulder, elbow and wrist
joint, they concluded that inserting one additional segment between
the chest and the upper arm greatly improves the motion simulation
of the shoulder. The main drawbacks are caused by the generality
of their learning algorithm, highly dependent on the completeness
of the captured poses. Furthermore, their model is subject-specific
and suffers from the same limitations as the previous discussed
work.

A recent work proposed by Neumann et al. [9], addresses some
of the limitations in previous work, and builds a more generalized
statistical model across multiple people with different body shapes.
As Hong et al. [5] they focused on the shoulder complex, first cap-
turing shape variations, using a novel acquisition and reconstruc-
tion approach, and secondly modeling the deformations as a func-
tion of body pose, shape and external forces. Even though using
only a low number of parameters, their model is capable of repro-
ducing fine-scale muscle deformations in novel poses and shapes,
and for the first time, under the action of several external forces on
the arm. Because of its efficiency, the model can be interactively
used by artists to reproduce appealing complex skin deformations
effects. However, the complexity of the acquisition system limited
their acquisition to just a small number of 10 subjects. In this work,
we use the dataset kindly made available to us by [9] to derive sta-
tistical priors for registering the template mesh showing the human
arm to a noisy depth image captured from the Kinect camera. Thus,
we propose an easily scalable framework for extending the statisti-
cal model by capturing more subjects in a much easier acquisition
setup Please note that, unlike [9], we do not consider the problem
of modeling the effect of external forces on surface deformation,
owing to the capture limitations of the depth sensor. We limit our-
selves to modeling arm muscle deformations due to body pose and
body shape variations amongst people.

3. OVERVIEW
Our method aims for the reconstruction of high quality spatio-temporally
aligned 3D meshes of the human arm from noisy depth images. We
expect the human subjects to stand closely to the Kinect camera
and perform arm movements through shoulder and elbow joints in a
slow and natural manner. As argued by [9] (please also refer to [8])
these movements can be interpreted as quasi-static with respect to
their underlying biomechanics, without the need to consider dy-
namics, such as jiggling of the flesh or skin in rapid motions.

As input to our method, we take depth image frames which are
disconnected depth measurements affected by noise and quantiza-
tion artifacts, that together with low resolution, poorly represent
the original captured shape. Further, they lack measurements on
the back side of the arm, which is invisible from the sensor point of
view. From this input, we produce a sequence of temporally consis-
tent 3D mesh reconstructions that show the arm motion at fine-scale

detail. The overview of our acquisition and reconstruction pipeline
is shown in Figure 1.

We start by performing depth data cleaning to improve its quality
(section 4). After that, we fit a template arm mesh to the depth
points, by registering the template against the measurements (sec-
tion 5). This step allows to overcome limitations such as unknown
overall shape, including the interpolation of measurements from
unseen areas, like the back side. Furthermore, the use of the tem-
plate allows to describe the motion by explaining the relation be-
tween depth measurements taken at different time steps. For the
registration phase, we perform an improved version of the clas-
sical Non-Rigid Iterative Closest Point (ICP) algorithm. Specifi-
cally, we filter the correspondences through a statistical deforma-
tion model (section 6) which predicts local muscle bulging with re-
spect to change of pose and shape as a prior for tracking. For each
subject, we obtain an initial template mesh from the model that rep-
resents the subject’s specific shape, and restricts the motion to the
allowed pose deformations described by the model. This way we
prevent unwanted distortions caused by the general Non-Rigid ICP
approach and obtain a good looking arm which roughly aligns to
the measurements through time. At this point, when the arm mesh
and the measurements are close enough to each other, we perform
a final refinement step (section 7), deforming the mesh towards the
measurements, which are already filtered and temporally coherent,
without any restriction imposed by the model. This way, we can
capture new fine scale detail, even when it lies outside of the space
represented by the current statistical arm model and we can fead
that additional detail back into the mathematical model to extend
it.

4. DEPTH-MAP ACQUISITION AND PRE-
PROCESSING

(a) (b)

Figure 2: The capturing depth maps (a) are first segmented which re-
moves unwanted background objects (b). The small box on the top-right
side shows the corresponding RGB image from the image sensor (which
we do not use for reconstruction). Distance is color coded using the scale
on the right. The dark blue pixels are missing measurements.

Experiments have shown that Kinect’s measurements suffer mainly
from two limitations: random uncontrolled noise, that increases
with increasing distance to the sensor, and missing data. There are
multiple reasons that cause the sensor to miss depth measurements
on certain scene areas. Some of them are connected with the sensor
range and some other with the so-called “shadows” [1, 2, 7], which
are due to the disparity between the camera and projector of the
Kinect. In order to improve the initial depth-map quality, we first
perform segmentation. Our goal here is to retain measurements
that are placed on the subject’s arm, which are our main and only
interest (see Figure 2). Our segmentation algorithm uses simple
thresholding based on the distance from the sensor.

Next, we improve the segmented depth-data quality by running



(a) (b)

Figure 3: Depth map smoothing: (a) input depth map, (b) depth map after
the smoothing. Notice how in (a) structural/quantization artifacts are visi-
ble, whereas the result in (b) shows a smoother surface that is better suited
for surface reconstruction.

well-studied filtering algorithms: a median and a Gaussian filter.
The median filter removes outliers arising from random noise, and
the Gaussian smoothing reduces structural noise caused by the quan-
tization of the data (see Figure 3). We get rid of flying pixels around
the borders, by morphological thinning.

5. SURFACE REGISTRATION
In order to reconstruct the original surface from disconnected mea-
surements obtained from the Kinect, we use a surface fitting based
approach. Such approach guarantees consistent surfaces with fixed
topology, which are optimal for tracking fine-scale skin deforma-
tions over time. Our algorithm is similar to the one proposed by
Stoll et al. [14]. In particular, after performing an initial align-
ment, which rigidly aligns the template mesh to the sampled points,
we start a non-rigid ICP method, that iteratively deforms the tem-
plate mesh towards the measurements. The deformation process is
guided by local point correspondences.

5.1 Rigid Alignment
In this step, we fix the space within which the human subject moves
the arm relative to the location of the template mesh, such that the
imaged point cloud is close to the template mesh. This step is par-
ticularly important in the registration process, where we are going
to register the template against the measurements. Accurate initial
surface approximation (in terms of vicinity) of the sample points,
obtained from the Kinect, considerably increases the probability
of succeeding in generating high-quality reconstructions. By con-
straining the subject’s position and orientation with respect to the
sensor (e.g. facing the sensor roughly in a fronto-parallel orien-
tation) to be fixed throughout the entire arm motion sequence, it
is possible to find a global rigid transformation (scaling + rotation
+ translation) relative to the template mesh, and we apply this to
all the point clouds in the sequence. We ask the subject to orient
the arm and shoulder joints at the first frame such that the imaged
point cloud is already near to the template mesh, which can later be
tracked over the sequence.

5.2 Finding and Filtering Correspondences
The problem of finding correspondences between a source and a
target representation set has been intensively studied, particularly
in surface matching and registration. If correct correspondences are
known it is possible to find the correct transformation that aligns the
sets. Since we have already quite close surface and measurements,
coming from the previous step, we can proceed by computing the
closest point correspondences. For each mesh vertex we find the

Figure 4: Finding and filtering correspondences example. (Gray) The tem-
plate mesh, (Red) Point cloud measurements, (Green) Nearest correspon-
dences, (Black) Filtered correspondences.

nearest point sample and set it as possible good correspondence.
The next step is filtering the correspondences [12]. We propose the
following filtering strategies to suit to our specific problem setting.

Arm vertices only: Our mesh model is composed of the arm and
part of the chest encompassing biceps, triceps, deltoid and pec-
toralis muscles. A hand is attached to the arm for aesthetic visu-
alization but not explicitly considered for tracking or deformation
modeling. As we would like to focus on deforming the arm shapes,
we need to restrict the considered pairs to the ones placed on the
arm.

Front side only: We remove all the correspondence pairs com-
ing from the back side of the arm model. In fact, from the sensor’s
point of view only half of the arm is visible (the front-side), and
possible pairs should lie on the same model side. To this end, we
compare vertex normals nv directions with the known sensor’s view
direction s, and reject all inconsistent pairs, that do not satisfy the
condition:

arccos(nv · (−s))<
π

2
(1)

Normals check: We compute the normals at both end points of
each correspondence (from surface vertices with normal nv and
their correspondent sample points with normal np) and check their
angular distance. We retain a pair only if the angular difference
does not exceed a given threshold of maximum angle TN ,

arccos(np ·nv)< TN . (2)

We estimate the normal at a point by fitting a plane in the neigh-
borhood around the point and then take the normal among the two
possible (one pointing upward and one downward), which is con-
sistent with the known sensor’s view direction s.

Neighbors check: We filter out geometrically incompatible cor-
respondences in a neighborhood that cause twisting or other un-
desirable artifacts. Specifically, we compare each correspondence
vector ci, which starts at a vertex and ends at a sample point, to all
the closer ones in a neighborhood. We retain a pair only if the me-
dian angle deviation α of the correspondence vectors in the neigh-
borhood does not exceed a given threshold of maximum angle TNg,

α = median
(
{arccos

(
ci · c j

‖ci‖‖c j‖

)
, j ∈ N(i)}

)
< TNg . (3)

Length limitation: We require the correspondences to not stretch



the neighborhood around the point beyond a given threshold. We
impose this constraint by requiring the correspondence vector ci
between mesh vertex and the target point to not deviate in length
beyond a threshold TL over the median length ` in the neighbor-
hood.

`= median
(
{‖ci‖,‖c j‖, j ∈ N(i))}

)
< TL (4)

Duplicates elimination: In the last step, we deal with duplicates.
Duplicated correspondences are most frequently close to the depth
map borders, and are caused by the quantization of the measure-
ments. We retain the point for which the normals of the mesh vertex
and that of the point normal agree best. We check for each potential
match point, the angular distance arccos(nv ·np) between the cor-
respondent normals (vertex normal nv and correspondent sample
point normal np), and take the pair with smaller angular distance.

5.3 Non-Rigid Registration using Mesh Defor-
mation

Figure 5: Non-Rigid Registration using As-Rigid-As-Possible deforma-
tion for regularization. (Gray) The initial template mesh, (Black) The final
mesh obtained after registration. (Red) Point cloud measurements.

Using the correspondences found in previous section, we now de-
form the template arm model into the target point cloud. To this
end, we apply the algorithm proposed by Sorkine and Alexa in
2007 [13]. This method proposes a geometric deformation scheme
that preserves local surface detail as encoded by the mesh curva-
ture. Physically, this is similar to deforming an elastic membrane
with a thin-plate spline bending energy with certain preset mate-
rial properties. From now on, in the paper we refer to [13] by
the term ARAP (“As-rigid-as-possible”) deformation. Although
the arm muscles do not deform exactly as an elastic membrane,
this simple geometric prior approximates the deformation well (see
Figure 5). We use more elaborate statistical priors for arm muscle
deformation in the later section.

ARAP deformation is robust under noise as it tends to create smooth
surfaces rather than introduce details. This limits the ability of the
algorithm from generating fine scale skin deformations. Further-
more, unless all correspondences are correct, ARAP deformations
might explain the arm motion incorrectly, and introduce distortions.
This happens because the volume is not preserved and there is
no additional constraint that forces sections of the arm to deform

rigidly, for instance points between the shoulder and the elbow. In
the next section, we are going to discuss a way to overcome these
limitations by using a template mesh generated from the statistical
model as prior for tracking.

6. MODEL-BASED FILTERING
ARAP deformations alone are not able track muscle bulging. ARAP
techniques focus on minimizing localized surface deformations,
making the whole mesh deform elastically, and thus lose sharp
features. Especially in the case of fast motion, where correspon-
dences may be inaccurate, ARAP deformations introduce several
irreversible unwanted artifacts, such as arm distortions, which com-
promise the entire remaining sequence (see an example in Figure
6(a)). In order to avoid such distortions, we project the obtained
ARAP mesh estimate to the closest mesh in the plausible space of
deformations, which we represent by a statistical model learnt from
a previous dataset [9]. This requires the computation of the phys-
iological and body pose parameters of the statistical model such
that the corresponding mesh model best fits to the mesh template
registered to the point cloud using the previous step. The mesh pre-
dicted by the statistical deformation model is artifact-free, because
it stays within the plausible space of deformations in the training
set. Depending on the model accuracy and the precision by which
parameters are computed, the resulting mesh is already close to
the measurements. Furthermore, in presence of strong motion, the
model does not introduce elastic deformations, as ARAP does, and
therefore sharp features are preserved.

6.1 Learning
In order to build a statistical arm deformation model that suits our
needs, we use an existing dataset comprising a variety of performance-
captured arm motion sequences, which was made available by Neu-
mann et al. [9]. The dataset constitutes a discrete amount of various
upper limb movements (30-40), recorded from 10 physically differ-
ent subjects using a dense make-up of markers on the skin captured
under a multi-camera acquisition system . Each movement is stored
as a sequence of detailed geometrical mesh representations plus
underneath skeleton and blend skinning weights, recorded and for-
matted by means of an advanced high-quality acquisition system.
Based on this dataset, we build a regression model based on two
biologically motivated input parameters (shape θ and pose ρ). We
learn a linear mapping Ψ between the chosen parameters, in order
to simulate sufficiently good meshes M for tracking purposes:

M = Ψ(θ ,ρ) (5)

Shape parameters are studied in terms of BMI, muscle proportion
(or muscularity), height and arm length, while pose parameters in
terms of joint angles.

We represent a shape (i.e, vertex coordinates of our template mesh)
as residual vertex displacements from an initial given base mesh.
The base mesh is obtained from the arm section of the average mesh
of a set of human full body scans, originally generated by Hasler et
al. [4]. This base mesh is particularly suitable for our needs, since it
has the same geometrical and skeletal representation as the meshes
collected in Neumann’s dataset. It is composed of the arm and part
of the chest encompassing biceps, triceps, deltoid and pectoralis
muscles (see Fig. 9). A hand is attached to the arm for aesthetic
visualization but not explicitly considered for tracking or deforma-
tion modeling. We select a restricted amount of meshes (2-3) from
each subject in the dataset in the same pose as the base mesh pose



(base pose). We check for this by comparing joint angles. After-
wards, for each extracted mesh we compute vertex displacements
di from the base mesh and learn a linear regression model that con-
nects this data to physiological body shape parameters. We aim to
find weights w1, w2 and w3 relative to BMI β , muscularity µ and
height η respectively (plus the intercept weight w0), such that each
vertex displacement di can be obtained by computing:

di = w0 +w1 ·β +w2 ·µ +w3 ·η , (6)

(for simplicity we write di to denote vector component x, y, and z).
Specifically, for each vertex i separately, we minimize the sum of
the square residuals:

minimize
w0,w1,w2,w3

∑
j

(
di− (w0 +w1 ·β j +w2 ·µ j +w3 ·η j)

)2
. (7)

Because of the insufficient amount of data in the dataset (only 10
people), we cannot rely on Neumann’s dataset for estimating the
required arm length to initialize the arm to a new subject in the
base pose. We instead make use of Hasler’s dataset [4], which con-
stitutes far more subjects (114 people in static poses) across shape
and age. We find the wanted vertex displacements, by solving for
weights w j a simple linear system of equations, similar to equation
(6), given by:

di = ∑
j

w j · e j (8)

where e j are eigenvectors obtained learning PCA on Hasler’s dataset.
The found approximate solution results from a least squares min-
imization of the original problem, with a regularization term in-
cluded (Tikhonov-Miller regularization):

minimize
w j

∑
j

(
di−

(
w j · e j

))2
+
(
q ·w j

)2 (9)

Here q is the regularization weight that allows us to control the
strength of the regularization.

In order to learn deformations with respect to pose, we proceed
similarly. For each subject in Neumann’s dataset, we first bring
each mesh in the base pose by setting the base pose joint angle
parameters and using dual quaternion skinning, and then compute
vertex displacements from the base mesh. Skinning might intro-
duce so-called skinning artifacts, causing the surface to present se-
vere distortions. Therefore, in our situation, we learn both vertex
displacements arising from pose specific deformations and those
arising from skinning artifacts indistinctly. Since we are going to
use skinning during the reverse process as well, i.e, bring the base
mesh to the wanted pose, skinning artifacts are going to cancel out.
We learn the resulting displacements using linear regression, and
find pose weights wi relative to each 3 joint angles (shoulder JS,
elbow JE and wrist JW ) coordinate (x,y,z) respectively (plus the in-
tercept weight w0), such that each vertex displacement di can be
obtained by computing:

di = w0 +w1 · JSx +w2 · JSy +w3 · JSz

+w4 · JE x +w5 · JE y +w6 · JE z

+w7 · JW x +w8 · JW y +w9 · JW z

(10)

6.2 Mesh Projection
Shape parameters are constants that depend on the particular sub-
ject’s physiology, and can be measured once at the beginning of
the captured motion sequence. Pose parameters instead need to be

(a) (b)

Figure 6: (a) Registered mesh using Non-rigid ICP. (b) Mesh projected
using the statistical deformation model. The mesh after projection into the
learned model space has less distortions.

updated along with the arm movements. We estimate the pose pa-
rameters (joint angles) of the resulting ARAP deformed mesh in
the current step, which is already close to the actual pose. The ap-
proach we use here was discussed by Neumann et al. [9] during
the motion estimation step. We proceed finding for each body part
separately (torso, upper arm, forearm and hand) the rigid transfor-
mation that maps the vertices of the base mesh p = {p1, . . . , pn} to
their deformed positions in the ARAP deformed mesh p′= {p′1, . . . , p′n},
and then solve for joint position and orientation. The problem of
finding an orthogonal mapping between p and p′, is known as the
orthogonal Procrustes problem. It can be solved by minimizing the
following three-dimensional Euclidean distance error, with respect
to the unknown rotation R and translation t:

minimize
R,t

n

∑
i=1

wi
(
(Rpi + t)− p′i

)
(11)

where wi are blending weights that associate vertex index i to the
considered body part. We refine the obtained transformation (ro-
tation + translation) iteratively by using the theory of rigid-body
motion and the twist representation [3]. This approach is more
flexible than skeleton based inverse kinematics (IK). In fact, ARAP
regularization adapts better to fine-scale registrations, as compared
against pure mechanical skeleton rotations. Additionally, the re-
sulting mesh in the found pose is closer to the original measure-
ments. This is very important for our pipeline.

Having shape and pose parameters, all we need to do is to input
their values to our linear regression model, which gives as output
vertex displacements that we add to Hasler’s base mesh. Finally,
we perform linear blend skinning in order to bring the resulting
displaced mesh in the wanted pose. In summary, the final vertex
coordinates v are given by:

v = skinning
(
vbase +dl +dθ +dρ

)
(12)

where vbase are the vertex coordinates of the base mesh, dl , dθ and
dρ represent respectively length, shape and pose displacements.
See a projection result in Figure 6

7. SURFACE REFINEMENT
This final step of our pipeline finalize the entire tracking process,
by introducing new surface details that go slightly beyond the de-
formation space described by the previous dataset. To this end, we
perform a last ARAP deformation driven by dense point correspon-
dences that are temporally consistent across frames. See a refined
surface result in Figure 7.



(a) (b)

Figure 7: (a) Mesh obtained after projecting the initial surface using the
statistical deformation model, (b) this mesh is further refined using the
depth map to obtain fine-scale folds outside the space of admissible body
shapes and muscle bulges.

7.1 Time Consistent Correspondences
Because of imperfect alignment between the template mesh and the
measurements, and and noise in the captured depth data, the direc-
tion and length of the found correspondences may vary strongly
over time, producing visually unpleasant flickering skin deforma-
tions. A way to reduce this effect in a physically correct manner,
is averaging the correspondences through time. In fact, at each
frame, skin deformations happen smoothly with respect to previous
and following frames. Therefore, a weighted average over frames
in temporal vicinity helps fix visual flickering and better simulate
consistent muscle bulging. Specifically, we compute a weighted
average between all n correspondences in the current frame Ci =
{c1,c2, ...,cn} and the relative ones (based on the same vertex) in
the previous Ci−1 and following frames Ci+1:

Ci =
wi−1 ·Ci−1 +wi ·Ci +wi+1 ·Ci+1

wi−1 +wi +wi+1
(13)

where the weights wi, wi−1 and wi+1 are computed using a Gaus-
sian based on the temporal inter-frame distance δ from the current
frame i:

wi+δ = e
−(δ )2

2·σ2 (14)

7.2 Weighting Correspondences
Once all the correspondences are computed by averaging them with
respect to the neighbor frames, we proceed by assigning weights to
the pairs. The weight specifies the reliability of the connection and
is extremely important for the next deformation step. We have ob-
served that the reliability of correspondences cannot depend solely
on the accuracy of the normals at both ends, since this value is often
unreliable. Further, considering the consistency in a limited neigh-
borhood alone does not give an accurate measure of reliability. In-
stead, we impose a regularity in the vertex normal orientations i.e,
we favor those correspondences that are oriented similarly to the
relative vertex normals. This is a valid assumption in our case,
where the template and sample points are approximately aligned
and the relative displacements are small. Visually, such point cor-
respondences prefer bulges or dimples along the normal direction
to uncontrolled shifting and shearing, that are favored less. Apply-

ing this expedient, we set the weights according to how the cor-
respondence vector of a vertex aligns with the respective normal
direction. Considering that surface regions around the bone joints
deform more dramatically, we also scale the weights by a linear
factor, which specifies the closeness of a vertex to a joint position.
This lets vertices around the joint to deform more freely.

8. RESULTS
8.1 Experimental Setup

Subject BMI Muscularity Height Weight
(Kg/m2) (%) (m) (Kg)

P f
1 18.1 35.0 1.65 49

P f
2 20.3 37.0 1.72 60

P f
3 21.1 35.0 1.60 54

Pm
4 21.1 50.0 1.78 67

Pm
5 21.2 50.0 1.92 78

P f
6 30.8 38.0 1.58 77

Pm
7 34.2 40.0 1.76 106

Table 1: Physiological parameters for each recorded subject (ordered by
BMI parameter). The superscript f or m in the person ID indicates female
and male gender.

Figure 8: BMI and Height (in cm) of the subjects from the dataset by [9]
used to build the statistical body shape model (blue) together with the new
captured subjects (red).

Our acquisition setup requires a single depth sensor, in our case
we use the Kinect. During data capture, test subjects were sitting
on a chair while performing various arm motions. The sensor was
placed at 1 meter distance at the same height as the subject’s chest,
giving a full frontal view of the shoulder and arm section. Prior to
the acquisition, we asked the actors to undress the arm up to the
shoulder and adopt an initial arm position resembling the pose of
the template mesh (base pose). This way, we simplify the initial
alignment step and ensure accurate tracking. To avoid self occlu-
sions and facilitate tracking, we asked the people to keep the arm
parallel to the sensor and perform slow movements. To concentrate
on muscle bulges in the elbow and shoulder area, subjects were
asked to make a fist and avoid wrist movement during the course of
the acquisition.

We captured arm movements from 7 people of different physical
conditions (Table 1). On purpose, we chose some subjects outside
the range of body shapes represented in the mathematical model,



Figure 9: Resulting captured arm-muscle for person Pm
4 . Thanks to the

statistical deformation model, we can reconstruct the invisible back side of
the arm. On the front side, minute muscle bulges can be captured from the
low-resolution and noisy input depth-map.

Figure 8. This allowed evaluating wether our method is able ex-
tend the space of body shapes. On top of that, the previous dataset
of Neumann [9] comprised only male subjects, while we included
female subjects as well (with f attribute in table 1). We captured
two overweight (P f

6 and Pm
7 ), one underweight (P f

1 ), two normal
weight (P f

2 and P f
3 ) and two athletic subjects who reported to exer-

cise regularly (Pm
4 and Pm

5 ). For each subject we recorded around
200 frames where they perform elbow flexion and extension move-
ments, accompanied with shoulder abduction and adduction, with-
out external weight.

8.2 Evaluation of Captured Sequences
We show results from three physiologically different subjects in
detail and evaluate the muscle bulges that our method is able to
reconstruct in those sequences as well as the algorithm parame-
ters used for those sequences. We also discuss the generalization
capability of our method to capture previously unseen body shapes.

Muscular Arm We show some selected frames of a 220 frame
sequence of person Pm

4 performing arm abduction and adduction
as well as elbow flexion and extension. Together with Pm

5 this is
the most muscular arm we captured. His physical characteristics
(i.e. BMI, height and muscularity) are within the boundaries of

Figure 10: Captured arm-muscle deformation for person P f
1 .

the previous dataset we used for learning our mathematical model.
Figure 9 shows that our method faithfully captures bulges of the
biggest muscles of the arm, triceps and biceps, as well as the most
important shoulder muscle, the deltoid.

Skinny Arm We show the most salient frames from the sequence
resulting from a skinny underweight person, P f

1 . This data is com-
pletely outside the boundaries of the original statistical arm model
(see Figure 8). It is therefore challenging to reconstruct, because
the mathematical model may not be able to correctly predict the
body shape and bulges. The acquired sequence consists of about
150 frames, where the actor performed simple elbow flexion and
extension movements only. The captured meshes of one frame are
shown in Figure 10.

Flabby Arm This data shows arm motion of a flabby subject, P f
6 . It

also falls completely outside of the initial dataset as well, because
of the subject’s height (particularly small) and BMI (particularly
high). The sequence includes around 180 frames of slow elbow
movements. Some representative frames are shown in Figure 11.

Muscle Bulges During arm abduction and adduction movements,
the main force is sustained by muscles originating from the shoul-
der, like the pectoralis and trapezius muscles [8]. The mathemati-
cal model convincingly reconstructs and interpolates those areas as
well as those which are invisible from the sensor’s point view (pos-
terior side of the arm), and for which we do not collect any data
(the chest). During elbow flexion, the biceps and barchioradialis
muscles are activated, while elbow extension is mostly exerted by
the triceps muscle. Both kind of muscle contractions are well vis-
ible in the muscular arm sequence. In the skinny and flabby arm
sequence, almost no muscle contractions are reconstructed, mainly
because they are simply not visible in the recorded setting due to



Figure 11: Captured arm-muscle deformation for person P f
6 .

the particular physiological characteristic of the subject.

Algorithm Parameters Our pipeline requires the selection of a
number of parameters, which determine the accuracy and stability
of the arm reconstruction. The parameters that are most dependent
on the specific arm motion sequence are the normal threshold (TN )
and the neighbor threshold (TNg). The chosen parameter values for
the muscular, skinny, and flabby arm sequence are collected in Ta-
ble 2.

Arm TN TNg
Muscular 30 60
Skinny 10 40
Flabby 12 60

Table 2: Chosen parameters for the skinny, muscular and flabby arms. The
values for TN and TNg, respectively the normals’ and neighbors thresholds,
are expressed in degrees.

Generalization to new Body Shapes Our method works well for
arms with physiological characteristics within the boundaries of the
initial dataset we use for learning the deformation model. Fig. 12
shows the 3D meshes generated by our deformation model, and
also indicates the limits where our model starts to fail. BMI values
smaller than 15 or greater than 45 are very rare and usually symp-
toms of poor health conditions. Our deformation model can benefit
by enlarging the dataset to include small healthy people (e.g, chil-
dren), which we leave to future work.

In order to reduce surface distortion due to a body shape or un-
usual body pose not within the range of the mathematical model,
we constrain the displacement norms of vertices. In particular, we

Figure 12: Plot showing different body shapes generated by the statistical
deformation model for different BMI and height (cm) parameters. Mus-
cularity is fixed to 50%. The limited training data permits generation of
artifact-free meshes outside the capture range, our method can be used to
extend the space of body shapes using a simple capture setup to improve
results in those cases.

allow shape displacements smaller than a given value, and cut-off
the rest. The sequence of meshes in Figure 13 shows model gen-
erated arms for a previously unseen pose, i.e. a pose which is not
included in the learning dataset. We found a displacements norm

(a) (b) (c) (d)

Figure 13: Meshes generated from the statistical deformation model for
an unseen pose far off the captured pose range. Each mesh shows different
displacement norm limitation used. The percentage are computed out of
the maximum displacement norm for the particular pose. (a) 0% norm lim-
itation = unlimited, (b) 50% norm limitation, (c) 90% norm limitation, (d)
100% norm limitation = simple skinning. Notice how this limiting process
effectively restricts artifacts. We use the choice (c) in our method.

limit of 90% (of the maximum displacement norm for the particular
pose) to alleviate typical skinning artifacts (see the underarm and
elbow area), without introducing large surface distortions produced
by the model.

8.3 Discussion and Limitations
Highly detailed reconstruction of time-varying skin surface just
from a noisy and low-resolution depth sensor is an extremely chal-
lenging problem. The use of a mathematical model as a prior in
surface reconstruction, as done by our method, helps in such a set-
ting to significantly constrain distortions caused by possibly very
noisy input data. Using this idea, we can handle fast movements
and still capture shape and volume preserving meshes. However,
the underlying model may fail to generate accurate surfaces free of



artifacts for body shapes or poses that are outside the boundaries
of the original dataset. In case of strong flexion, some areas are
not satisfactorily modeled (for example, the back-side of the arm,
elbow and shoulder areas), with important fine-scale details miss-
ing and skinning artefacts not completely removed. These limita-
tions are possibly due to the inability of our simple linear regression
model to handle areas under occlusions.

Our pipeline handles a wide range of arm movements, however it
fails to reconstruct forearm pronation or supination. Such rotations
are not possible to capture only from a depth map, since such mo-
tions are only visible when tracking the skin and do not result in
any changes of the depth map. A way to overcome this limitation
is to simultaneously include knowledge from an RGB camera, and
use tracking algorithms or optical flow to estimate the arm rotation.
However, skin usually presents a homogeneous pattern that is not
suitable for feature tracking. Application of colored markers is a
typical solution for this problem, though this further increases ac-
quisition setup time and may require calibration. Alternatively, a
motion prior or hand tracking can be used in the future to resolve
this ambiguity.

Another limitation of our pipeline is the handling of arm occlusion
and self-occlusion. Occlusions cause a permanent or (in the best
case) a temporary loss of measurements on a big arm area (more
than 50% occluded, e.g. forearm and hand occluded). To improve
reconstruction quality for such cases in the future, we would like to
use spatio-temporal priors in our tracking framework.

9. CONCLUSIONS
In this paper we have shown that using a statistical deformation
model as prior for tracking improves classical surface fitting meth-
ods based on Non-Rigid Iterative Closest Point (ICP) algorithms.
Typical non-rigid ICP algorithms require very accurate correspon-
dence pairs in order to correctly deform the original surface, and
focus on minimizing local deformations rather than preserving the
overall shape and volume. Such approaches are clearly too gen-
eralized to allow for distortion-free deformations. We proposed
a reinforcement of such methods by constraining the allowed de-
formations to a subset allowed by the model. This reinforcement
nearly nullifies distortions and provides a good initialization from
which we can reconstruct coherent and visually appealing skin de-
formations at a fine scale. We have evaluated each step of the
pipeline. Modeling the human arm is useful for many applications
such as the developing virtual 3D characters, pointing interfaces
in HCI, or detecting muscle fatigue in sports. But the contribu-
tions of this paper are also useful for modeling other body parts.
Anatomically based deformation models that can be acquired eas-
ily from real people will have many applications in entertainment
and medicine. Among the main contributions of this paper, we
introduced the possibility of using a simple and cheap acquisition
system for fine-scale reconstructions (the Kinect sensor). Such sys-
tems have the advantage to greatly accelerate the data acquisition
process, compared to large and complex systems commonly used
for this purpose. In the future, we would like to explore the possi-
bility of coupling information from different sensors, such as force
or motion sensors, together with RGB images and 3D point cloud
data, in order to improve the overall surface registration.
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