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Figure 1: Sparsity of our proposed deformation components. Each
vertex is colored according to the number of components where it’s
displacement is non-zero. Compared to the fixed sparsity of previ-
ous decomposition methods such as [Kavan et al. 2010], our ap-
proach automatically finds a suitable sparsity level. Regions show-
ing complex deformations, like the mouth, require more deforma-
tion components.

Abstract

This supplementary document provides further visualizations, im-
plementation details and analysis of convergence of our method.

1 Method - Implementation Details

Visualizing spatially varying sparsity Our method produces a
set of sparse deformation components by analyzing an input mesh
animation. Compared to methods like [Tena et al. 2011] and [Kavan
et al. 2010], which in principle can also be viewed as sparse decom-
positions, our method finds the required sparsity and region seg-
mentation automatically using a sparsity imposing regularization
term. The other methods have a fixed sparsity per vertex. Fig. 1 vi-
sualizes the number of components that affect each vertex and thus
gives a measure of sparsity, that is spatially varying on the mesh
surface and indicates how complex the motions of different ver-
tices are. The sparsity is low in highly deformable regions around
the mouth (the subject is mostly speaking in the input animation)
where many components are required to reconstruct the input.

Choice of `1/`2 minimization algorithm Updating the sparse
components C involves optimizing a sum of a smooth continuously
differentiable data term plus the non-smooth convex regularizer Ω
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Figure 2: Convergence: value of Objective function, Eq. (2), vs.
Iteration (Dataset: [Zhang et al. 2004]). Different `1 minimizers
(ADMM - blue, FISTA - green) for optimizing the components are
compared. The minimization of the components is interweaved with
the optimization of the weights using block-coordinate-descent ev-
ery 10 iterations, which results in the step-like convergence curve.
Notice that normally, the objective function is not computed dur-
ing ADMM/FISTA iterations. When using only a random selection
of 1% of the vertices for block-coordinate descent for fast weight
update (red), the convergence is almost as good but significantly
reduces computation time.

based on the `1/`2 norm. We compare the convergence behav-
ior of FISTA [Beck and Teboulle 2009] and ADMM [Boyd et al.
2011] in Fig. 2 which shows the same number of 10 interleaved
component optimization steps between updating support maps and
weights. Per iteration, both methods solve the proximal mapping
of the `1/`2 norm; FISTA requires computing the gradient at each
iteration (a simple matrix multiplication in our case) while ADMM
requires inverting a linear system which can be pre-factorized us-
ing Cholesky decomposition. As preprocessing, FISTA requires
estimation of the Lipschitz constant of the gradient of the data term
(usually, few iterations of power iteration suffice to obtain it), and
ADMM requires pre-factorizing the system to be solved at each
iteration using Cholesky decomposition. In practice, we observed
that the running time of ADMM iterations and preprocessing is a bit
slower but the convergence is much better, so we choose ADMM
for this implementation. FISTA requires computing the gradient
of the data term while ADMM requires solving the proximal map-
ping for the data term. This is easy in our case but in the future,
for more advanced dataterms, we suggest researchers to switch to
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Figure 3: Due to the non-convexity and the added objective of
spatially varying regularization, the objective function does not de-
crease all the time, because the support maps are changing. This
makes monitoring convergence tricky. Here we plot the change in
objective function over iterations. The blue line is the change after
each iteration, while the red line averages the changes over the last
5 iterations. We use this value (red line) to compare to a threshold
(eps, black line) to check for convergence.

FISTA should their data term become more complicated. Both al-
gorithms require only a few lines of Python or Matlab code.

Accelerating weight optimization For datasets containing very
densely sampled meshes featuring tens of thousands of vertices or
more, the block coordinate descent step to update the weights W
takes considerable amount of computation time, because the up-
date of the residual is an notably big matrix multiplication. This
can be acellerated by only selecting a subset of vertices for weight
update. Since the components likely involve many vertices for such
big meshes, the weights are over-determined even by a subset of the
vertices. As can be seen in Fig. 2, even using only 1% of vertices
for the weight update (blue line) achieves almost the same conver-
gence as the full update (red line).

2 Deformation Representation for Rotations

As mentioned in the paper (Discussion) our algorithm cannot model
articulated rotations perfectly, since the sparse components model
vertex displacements. In this supplementary document, we want to
give an illustrating example for this limitation. In Fig. 4, we show
the sparse deformation components extracted automatically by our
method from a galopping horse sequence [Sumner et al. 2007]. It
can be seen that even with simple vertex displacement encoding,
our method can extract and segment meaningful parts from this an-
imation that correspond to the limbs of the horse. However, lin-
ear combination of these components is not suited for for modeling
curvilinear paths of the limbs due to articulated rotation of joints.
Since the path of the leg cannot be described by a linear path, mul-
tiple components are required to fit it, and some components show
a shrinking of the leg on its path. This limitation can be adressed in
future work by evaluating sparse localized deformation components
on different rotation-invariant deformation encodings such as de-
formation gradients or intrinsic shape parametrizations. At present,
our method requires a prefactoring step where such pose related de-
formations are separated out, and the residual deformations can be
nicely parameterized by our method. We acknowledged this limita-
tion in the paper.
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