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In this document, we provide the network details of
HandVoxNet (Sec. 1 and 2). Also, we show qualitative re-
sults of the synthesizers, which reconstruct voxelized depth
maps from the shape representations (Sec. 1.3).

1. Network Design
In this section, we describe in detail the architectures of

the V2V-ShapeNet, V2S-Net, V2V-SynNet, S2V-SynNet,
and DispVoxNet.

1.1. V2V-ShapeNet Architecture

V2V-ShapeNet regresses V̂S which is 64× 64× 64 vox-
elized representation of hand shape, from input IS (i.e.,
(N+1) 44×44×44 voxelized grids). Since V2V-ShapeNet
learns to estimate a dense 3D hand shape representation
from sparse 3D hand joints and depth map, it can be there-
fore considered as a decoder which tries to reconstruct vox-
elized hand shape as close as possible to ground truth VS .
V2V-ShapeNet establishes a one-to-one mapping between
the voxelized hand shape, voxelized depth map, and 3D
joints heatmaps. Table 1 shows the architectural details of
the 3D convolutions based V2V-ShapeNet. For weak super-
vision, V2V-SynNet reconstructs the voxelized depth map
from the estimated voxelized hand shape representation (see
Fig. 2 in the main paper). The samples of the reconstructed
voxelized depth maps of NYU [4] and BigHand2.2M [6]
real benchmarks are shown in Fig. 1(a).

1.2. V2S-Net Architecture

V2S-Net regresses K 3D hand mesh vertices V̂T from
the input IS . The architecture of V2S-Net also consists
of 3D convolutions, except for the last two layers that are
fully connected (FC). Table 2 shows the architectural de-
tails of V2S-Net. Since V2S-Net regresses 3D coordinates
of the shape, it does not establish a one-to-one mapping
between the voxelized depth map and 3D joint heatmaps.
For weak supervision, S2V-SynNet reconstructs voxelized

ID Layer Output Sz Kernel Sz Stride/Padding +
1 Input (N+1) 44x44x44 - -/- -
2 3D Conv, BN, ReLU (22) 44x44x44 7x7x7 1/3 -
3 3D Conv, BN, ReLU (24) 38x38x38 7x7x7 1/0 -
4 3D Conv, BN, ReLU (26) 32x32x32 7x7x7 1/0 -
5 3D Conv, BN, ReLU (26) 32x32x32 3x3x3 1/1 -
6 3D Conv, BN (26) 32x32x32 3x3x3 1/1 4
7 ReLU (26) 32x32x32 - -/- -
8 3D DeConv, BN, ReLU (8) 64x64x64 2x2x2 2/0 -
9 3D Conv, BN, ReLU (8) 64x64x64 3x3x3 1/1 -

10 3D Conv, BN (8) 64x64x64 3x3x3 1/1 8
11 ReLU (8) 64x64x64 - -/- -
12 3D Conv, Sigmoid (1) 64x64x64 1x1x1 1/0 -

Table 1: V2V-ShapeNet architecture details. Output Sz consists
of the number of channels and their spatial size. In the “+” col-
umn, the output of layer ID is added to the current layer’s output
in a voxel-wise manner.

depth maps from the estimated hand meshes. The sam-
ples of reconstructed voxelized depth maps are shown in
Fig. 1(b).

ID Layer Output Sz Kernel Sz Stride/Padding +
1 Input (N+1) 44x44x44 - -/- -
2 3D Conv, BN, ReLU (22) 44x44x44 7x7x7 1/3 -
3 3D MaxPooling (22) 22x22x22 2x2x2 2/0 -
4 3D Conv, BN, ReLU (22) 22x22x22 3x3x3 1/1 -
5 3D Conv, BN (22) 22x22x22 3x3x3 1/1 3
6 ReLU (22) 22x22x22 - -/- -
7 3D Conv, BN (16) 22x22x22 1x1x1 1/0 -
8 3D Conv, BN, ReLU (16) 22x22x22 3x3x3 1/1 -
9 3D Conv, BN (16) 22x22x22 3x3x3 1/1 7

10 ReLU (16) 22x22x22 - -/- -
11 3D Conv, BN, ReLU (8) 22x22x22 1x1x1 1/0 -
12 3D MaxPooling (8) 11x11x11 2x2x2 2/0 -
13 3D Conv, BN, ReLU (1) 11x11x11 1x1x1 1/0 -
14 Flatten 11*11*11 - -/- -
15 FC, ReLU 400 - -/- -
16 FC K*3 - -/- -

Table 2: V2S-Net architecture details.

1.3. V2V-SynNet and S2V-SynNet Architectures

V2V-SynNet and S2V-SynNet act as sources of weak su-
pervision during the training phase and are not included in
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Figure 1: Samples of synthesized voxelized depth maps of NYU
[4] and BigHand2.2M [6] datasets from V2V-SynNet (a) and S2V-
SynNet (b). The first and second rows show the ground truth and
the reconstructions, respectively.

the testing phase. These synthesizers reconstruct voxelized
depth maps V̂D from the hand shape representations. The
details of the architectures of V2V-SynNet and S2V-SynNet
are provided in Tables 3 and 4, respectively.

ID Layer Output Sz Kernel Sz Stride/Padding +
1 Input (1) 64x64x64 - -/- -
2 3D Conv, BN, ReLU (8) 64x64x64 7x7x7 1/3 -
3 3D MaxPooling (8) 32x32x32 2x2x2 2/0 -
4 3D Conv, BN (16) 32x32x32 1x1x1 1/0 -
5 3D Conv, BN, ReLU (16) 32x32x32 3x3x3 1/1 -
6 3D Conv, BN (16) 32x32x32 3x3x3 1/1 4
7 ReLU (16) 32x32x32 - -/- -
8 3D DeConv, BN, ReLU (12) 38x38x38 7x7x7 1/0 -
9 3D Conv, BN, ReLU (12) 38x38x38 3x3x3 1/1 -

10 3D Conv, BN (12) 38x38x38 3x3x3 1/1 8
11 ReLU (12) 38x38x38 - -/- -
12 3D DeConv, BN, ReLU (8) 44x44x44 7x7x7 1/0 -
13 3D Conv, BN, ReLU (8) 44x44x44 3x3x3 1/1 -
14 3D Conv, BN (8) 44x44x44 3x3x3 1/1 12
15 ReLU (8) 44x44x44 - -/- -
16 3D Conv, BN, ReLU (8) 44x44x44 1x1x1 1/0 -
17 3D Conv, BN, ReLU (8) 44x44x44 1x1x1 1/0 -
18 3D Conv, Sigmoid (1) 44x44x44 1x1x1 1/0 -

Table 3: V2V-SynNet architecture details.

ID Layer Output Sz Kernel Sz Stride/Padding +
1 Input K*3 - -/- -
2 FC, ReLU 400 - -/- -
3 Reshape (400) 1x1x1 - -/- -
4 3D DeConv, BN, ReLU (128) 3x3x3 3x3x3 1/0 -
5 3D DeConv, BN, ReLU (64) 6x6x6 3x3x3 2/1 -
6 3D DeConv, BN, ReLU (32) 11x11x11 6x6x6 1/0 -
7 3D DeConv, BN, ReLU (16) 22x22x22 3x3x3 2/1 -
8 3D Conv, BN, ReLU (8) 44x44x44 1x1x1 1/0 -
9 3D Conv, BN, ReLU (8) 44x44x44 1x1x1 1/0 -

10 3D Conv, Sigmoid (1) 44x44x44 1x1x1 1/0 -

Table 4: S2V-SynNet architecture details.

1.4. DispVoxNet Architecture

In contrast to the original DispVoxNets [3] composed of
the displacement estimation and refinement stages, we re-
place the refinement stage with Laplacian smoothing [5].

ID Layer Output Sz Kernel Sz Stride/Padding ⊕
1 Input (2) 64x64x64 - -/- -
2 3D Conv (8) 64x64x64 7x7x7 1/3 -
3 LeakyReLU (8) 64x64x64 - -/- -
4 3D MaxPooling (8) 32x32x32 2x2x2 2/0 -
5 3D Conv (16) 32x32x32 5x5x5 1/2 -
6 LeakyReLU (16) 32x32x32 - - -
7 3D MaxPooling (16) 16x16x16 2x2x2 2/0 -
8 3D Conv (32) 16x16x16 3x3x3 1/1 -
9 LeakyReLU (32) 16x16x16 - -/- -
10 3D MaxPooling (32) 8x8x8 2x2x2 2/0 -
11 3D Conv (64) 8x8x8 3x3x3 1/1 -
12 LeakyReLU (64) 8x8x8 - -/- -
13 3D Deconv (64) 16x16x16 2x2x2 2/0 10
14 3D Deconv (64) 16x16x16 3x3x3 1/1 -
15 LeakyReLU (64) 16x16x16 - -/- -
16 3D Deconv (32) 32x32x32 2x2x2 2/0 7
17 3D Deconv (32 )32x32x32 5x5x5 1/2 -
18 LeakyReLU (32) 32x32x32 - -/- -
19 3D Deconv (16) 64x64x64 2x2x2 2/0 4
20 3D Deconv (16) 64x64x64 7x7x7 1/3 -
21 LeakyReLU (16) 64x64x64 - -/- -
22 3D Deconv (3) 64x64x64 3x3x3 1/1 -

Table 5: DispVoxNet architecture details. The “⊕” column
marks layer ID whose outputs are concatenated and passed as input
to the current layer. The negative slope for LeakyReLU is 0.01.

By doing so, we simplify the pipeline and avoid the train-
ing of another instance of DispVoxNet in the refinement
stage. We follow the original network architecture of [3],
see Table 5. DispVoxNet accepts two voxel grids (V̂S and
V̂ ′

T )) and returns voxel displacements to register voxelized
shapes. After applying the estimated displacements on the
template, we apply Laplacian smoothing on it to reduce the
shape roughness, and obtain the final hand shape. We train
DispVoxNet in a supervised manner. However, the ground
truth displacements are not available and obtaining them be-
tween the voxel and surface shapes is not straightforward.
To circumvent this problem, we use the displacements be-
tween the shape surface and the corresponding ground truth
shape in SynHand5M dataset. This is possible because the
shape surface generated by V2S-Net preserves the topology
and the number of mesh vertices during the training.

2. NRGA-Based Registration
We provide more details on the modification of the near-

est neighbors rule mentioned in Sec. 4.1 (main matter). To
highlight the role of this modification, we summarize the
shape deformation and the optimization scheme of NRGA.
Optimization Method. Given the estimated hand shape
surface V̂T and the voxelized shape V̂S , NRGA defines the
total gravitational potential energy (GPE) of the system as

E(R, t) = −
K∑

k=1

∑
j∈Γ

V̂S
k

ωk(
‖RkV̂k

T + tk − V̂j
S‖+ ε

) , (1)

which is the weighted sum of the inverse of the Eu-
clidean distances between the mesh vertices V̂T =



Figure 2: Selection of interacting vertices in NRGA. A vertex V̂k
T in red selects either 4-ring, 3-ring or 2-ring neighbourhood vertices to

define a local subspace of our deformable template V̂T . The vertices in black are enclosed inside the region ΓV̂T
k and reachable from V̂k

T

with the shortest path-length ≤ n for n-ring neighbours.

[V̂1
T , V̂2

T , . . . , V̂K
T ] and their neighbouring lattice vertices

from the voxelized hand V̂S = [V̂1
S , V̂2

S , . . . , V̂M
S ], with ‖.‖

denoting `2-norm and force softening length ε. In the def-
inition of GPE (1), ωk is a product of the gravitational
constant G and the masses of the interacting vertex pair
(V̂k

T , V̂
j
S). The number of vertices in the template hand

shape is fixed to K = 1193. On the other hand, only the
lattice points with output probabilities ≥ 0.8 are selected to
represent V̂S . This results in a varying number of total ver-
tices M in V̂S for different input samples. The GPE (1) is
minimized to estimate the optimum transformation param-
eters, i.e. K rotations R = [R1, . . . ,RK ] and translations
t = [t1, . . . , tK ] for each hand shape vertex. By apply-
ing the estimated rigid transformations, V̂T is deformed to
match with the underlying shape of V̂S . NRGA requires k-d
trees to be built independently on source V̂T and target V̂S
which help to obtain the nearest neighbours of every source
vertex V̂K

T . The number of nearest neighbours are fetched
from V̂k

T and V̂S as a proportion ρ ∈ [0.02 − 0.1]% of the
total number of points. These neighbours form sets of local
regions {ΓV̂T

k } and {ΓV̂S

k } for the template and reference

point clouds, respectively. The vertices in ΓV̂S

k appear as

lattice corners, whereas vertices in ΓV̂T

k are not selected as
a portion of nearest neighbours, and instead as a set of ver-
tices inside the 4-path distance from V̂k

T as shown in Fig. 2.

Optimization Parameters. We set the parameters of
NRGA used in our HandVoxNet as follows: G = 0.667,
masses m(V̂T ) = m(V̂S) = 1.0 of all point vertices in V̂T
and V̂S , ε = 0.2, ρ = 0.02, energy dissipation rate η = 0.2
and time integration step ∆t = 0.006.

3. More Qualitative Results

We present more qualitative results of 3D hand mesh
reconstruction for NYU [4] and BigHand2.2M [6] test
datasets (as shown in Fig. 3 and 4, respectively). We
demonstrate that our method estimates visually more accu-
rate hand shapes for NYU dataset compared to the previous
works [1, 2]. Our results on selected test samples of the
NYU dataset have been made publicly available for com-
parisons1.
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Figure 3: Shape reconstruction of NYU [4] dataset: (a), (b) and (c) show the 2D overlays and 3D visualizations of estimated voxelized
hand shape, shape surface, and the final shape after registration, respectively. (d) and (e) show the corresponding results of hand shapes
from DeepHPS [1] and WHSP-Net [2] methods. Our approach produces visually more accurate hand shapes than the existing approaches.
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Figure 4: Shape reconstruction of BigHand2.2M [6] dataset: (a) the 2D pose overlay; (b), (c) recovered voxelized shape and shape
surface, respectively; (d) the overlays of shape surface and registered shape; (e) the final hand shape.
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