
DEMEA: Deep Mesh Autoencoders for
Non-Rigidly Deforming Objects

— Supplementary Material —

Edgar Tretschk1 Ayush Tewari1

Michael Zollhöfer2 Vladislav Golyanik1 Christian Theobalt1

1 Max Planck Institute for Informatics, Saarland Informatics Campus
2 Stanford University

In this supplementary material, we expand on several points from the main
paper. In Sec. 1, we describe how we apply temporal smoothing in latent space.
Sec. 2 contains details about skinning template meshes to embedded graphs.
Sec. 3 shows more examples of the artifacts seen in purely convolutional archi-
tectures. Sec. 4 provides low-level details of our architecture. Sec. 5 gives the
mathematical description of the losses we train with. In Sec. 6, we describe how
we normalize depth maps and meshes (for reconstruction from real depth data).
An expanded version of Table 2 from the main manuscript is in Sec. 7. In Sec. 8,
we describe how to generate embedded graphs. In Sec. 9, we give further details
and experiments on the graph convolutions. Sec. 10 contains more results of
FCA and CA. We show artifacts due to coarse embedded graphs in Sec. 11.

1 Depth-to-Mesh Tracking

We can apply temporal smoothing to the reconstruction of a sequence of real
depth images {Di}i, by decoding a running (causal) exponential average of the
latent vectors of this sequence. First, we encode the sequence into latent vectors
{Di}i. We then define a smoothed sequence of latent vectors {D′i}i as follows:
let D′0 = D0 and set D′i = α · Di + (1 − α) · D′i−1 for i > 0 for some α ∈ [0, 1].
The smoothed sequence of meshes {Mi}i is obtained by decoding {D′i}i. See the
supplemental video for examples.

2 Skinning

We compute the linear blending weight wl(p) as [5]:

wl(p) = exp

(
−‖gl − p‖2

2 · σ2

)
, (1)

where we determine σ ∈ R heuristically as follows:

σ = σ0 · dmax ·
1√
L
, (2)

2 E. Tretschk et al.

where σ0 = 2
3 and dmax is the maximum Euclidean distance between any two

mesh vertices, a proxy for the absolute scale of the mesh.
Note that Np, wl and σ are pre-computed on the template mesh and graph

and are kept fixed within each dataset. We use |Np| = 6 for embedded graphs
on the first level and |Np| = 12 for embedded graphs on the second level.

3 Artifacts

Tables 1 and 2 show additional examples of artifacts that occur when not in-
tegrating the embedded graph into the network. Even the most competitive
network against which we compare (i.e. our ablation) suffers from visually un-
pleasing artifacts due to large non-rigid deformations, which most visibly occur
on the hands and feet of DFaust. However, due to the localized nature of the
artifacts, they do not have a large impact on the quantitative errors.

4 Architecture

Fig. 1 contains our low-level architecture. GC(f) is a graph-convolutional layer

Fig. 1. The low-level architecture of DEMEA (orange path) and the depth-to-mesh
network (blue path). Note that the two paths are not trained simultaneously.

with f output features. DS is a downsampling layer and US is an upsampling
layer. Conv2D(f,k,s) is a 2D convolution with f output features, kernel size
k×k and stride s. We modified ResNetV2 50 by removing its first convolutional
layer and its final non-convolutional layers, and keep its architecture unmodified
otherwise. We use ELU non-linearities after every graph-convolutional, 2D con-
volutional and fully-connected layer except for the first 2D convolutional layer in

DEMEA: Deep Mesh Autoencoders – Supplemental 3

Convolutional Ablation DEMEA

Table 1. Artifacts. The top rows use 32 latent dimensions, the last two rows are for 8.

4 E. Tretschk et al.

Convolutional Ablation 8 DEMEA 8 Convolutional Ablation 32 DEMEA 32

Table 2. Artifacts on SynHand5M. In contrast to CA, DEMEA yields a smooth index
finger in the examples shown above.

the depth encoder and the last graph-convolutional layer. The third upsampling
module (i.e. upsampling layer followed by a graph convolution) is only used for
higher-resolution embedded graphs. In the case of spiral graph convolutions, we
use the default settings of [1] to determine the length of the spirals. In the case
of spectral graph convolutions, we always use K = 6, except for the last two
layers, which use K = 2 for local refinement.

5 Losses

The vertex loss mentioned in Sec. 3.4 is:

Lvertex =
1

Nv

Nv∑
i=1

‖v̂i − v∗i ‖1, (3)

where v̂i is the i-th deformed vertex and v∗i is the i-th ground-truth vertex. The
loss is averaged across the batch.

The deformed vertex can be either directly regressed (CA, MCA, FCA) or it
can be computed via EDL (DEMEA, FCED). In the latter case, we follow Eq. 2
from the main manuscript. While DEMEA regresses all EDL parameters, we
also try out a modification that instead uses local Procrustes inside the network,
called LP, see Sec. 3.4. In that case, we use the same loss (Eq. 3) as for DEMEA
but only regress the translation parameters, tl, while computing the rotation
parameters of EDL, Rl, using local Procrustes as described in Sec. 3.4. Note
that we do not backpropagate through the rotation computation in this case.

The graph loss described in Sec. 3.4 of the main manuscript operates on the
graph nodes. It encourages the regressed graph nodes positions to be close to

DEMEA: Deep Mesh Autoencoders – Supplemental 5

the ground-truth vertex positions. The graph nodes N are a subset of the mesh
vertices V and we denote the vertex index corresponding to a graph node l as
il. Then, the graph loss is:

Lgraph =
1

L

L∑
l=1

‖tl − v∗il‖1, (4)

6 Normalization

Depth All depth-to-mesh networks rescale the depth values of the input depth
map from between 0.3m and 7m to [−1, 1].

Bodies: Depth For our depth-to-mesh network on bodies, we employ a number
of additional normalization steps to focus on non-rigid reconstruction. First, we
assume to be given a segmentation mask that filters out the background. The
depth value of background pixels is set to 2. We crop the foreground tightly and
use bilinear sampling to isotropically rescale the crop to 256 × 256. Given such
a depth crop, we compute the average (foreground) depth value and subtract it
from the input. Such normalization necessitates normalizing the network output,
as we will describe next.

Bodies: Meshes We first normalize out the global translation from the meshes
by subtracting from each mesh vertex the average vertex position. Since scale
information is also lost, we fix the scale of the meshes by normalizing their
approximate spine length. To that end, we compute the approximate spine length
of the template mesh and of each mesh in the dataset. We then isotropically
rescale all the meshes to the same spine length as the template mesh. The depth-
to-mesh body reconstruction errors in the main paper are reported for these
normalized meshes.

7 Standard Deviations in Table 2

Due to space reasons, we could not fit standard deviations across the test set in
Table 2 of the main manuscript. Table 3 contains the expanded version.

DFaust SynHand5M Cloth CoMA
8 32 8 32 8 32 8 32

CA 6.35 ± 2.40 2.07 ± 0.73 8.12 ± 1.77 2.60 ± 0.60 11.21 ± 4.58 6.50 ± 1.85 1.17 ± 0.47 0.72 ± 0.22
MCA 6.21 ± 2.48 2.13 ± 0.79 8.11 ± 1.77 2.67 ± 0.60 11.64 ± 4.58 6.59 ± 1.96 1.20 ± 0.46 0.71 ± 0.21
Ours 6.69 ± 2.76 2.23 ± 0.99 8.12 ± 1.73 2.51 ± 0.59 11.28 ± 4.65 6.40 ± 1.96 1.23 ± 0.41 0.81 ± 0.22
FCA 6.51 ± 2.45 2.17 ± 0.82 15.10 ± 4.06 2.95 ± 0.69 15.63 ± 7.18 5.99 ± 1.86 1.77 ± 0.57 0.67 ± 0.22
FCED 6.26 ± 2.35 2.14 ± 0.86 14.61 ± 3.95 2.75 ± 0.63 15.87 ± 7.73 5.94 ± 1.81 1.81 ± 0.71 0.73 ± 0.20

Table 3. Average per-vertex errors on the test sets of DFaust (in cm), SynHand5M (in
mm), textureless cloth (in mm) and CoMA (in mm) for 8 and 32 latent dimensions,
including standard deviations across the test sets.

6 E. Tretschk et al.

8 Mesh Hierarchy

We use the code of [4] to generate the mesh hierarchy. Then, in practice, the
first or the second level of this automatically generated mesh hierarchy can be
used as the embedded graph.

However, we propose to use more uniform embedded graphs. Using Mesh-
Lab’s [2] implementation of quadric edge collapse decimation with default set-
tings works well. (Note that we decimate the mesh until we reach the same
number of graph nodes as used by [4].) We experimented with different ways
of obtaining better embedded graphs, including hand-crafting them, but found
no major differences, except that graphs generated by [4] were too non-uniform.
Among the tested methods, MeshLab constitutes the least involved method of
obtaining a uniform graph.

Since the embedded graph needs to be a subset of the mesh, graph nodes
obtained this way need to be projected to their closest vertices. This may lead
to multiple nodes projecting to the same vertex. We resolve this with a greedy
assignment from nodes to vertices: looping over all nodes, the current node is
assigned to its closest vertex that is not yet taken by another node. With the
modification of the code of [4] described in the main paper, we can then generate
the mesh hierarchy for this embedded graph.

Figure 2 shows the hierarchy we use for Cloth.

Fig. 2. The Cloth hierarchy.

9 Graph Convolutions

Our graph encoder-decoder architecture can work with multiple types of graph
convolutions, which we show in this section. The results of the main paper use
spiral graph convolutions, as we found these to give slightly better results than
spectral graph convolutions. After defining the two types of graph convolutions,
we report quantitative results.

Given an Fin-channel feature tensor x ∈ RN×Fin , where the features are
defined at the N graph nodes, let x∗,i ∈ RN denote the i-th input graph feature
map. The complete output feature tensor, that stacks all Fout feature maps, is
denoted as y ∈ RN×Fout . We apply the graph convolutions without stride, i.e.,
the input graph resolution equals the output resolution.

DEMEA: Deep Mesh Autoencoders – Supplemental 7

9.1 Spiral Graph Convolutions

We mainly work with spiral graph convolutions [1]. Let xTn,∗ ∈ RFin denote the
feature vector of graph node n. Assuming a fixed topology of the graph, we may
choose an ordering of the neighboring nodes of graph node n: n0, . . . , ns, . . . , nS−1.
Bouritsas et al. pick a spiral ordering that starts with n0 = n and proceeds along
the 1-ring (n10, n

1
1, . . .), then the 2-ring (n20, n

2
1, . . .), and so on. The spiral order-

ing is thus given by: n, n10, n
1
1, . . . , n

2
0, n

2
1, . . . All the spirals of the graph are

ultimately cut to a fixed length S and zero-padded if necessary. The output of
the spiral convolution is then defined as:

yTj,∗ =

S−1∑
s=0

Gs · xTns,∗ , (5)

where Gs ∈ Fout × Fin is a trainable matrix.

9.2 Spectral Graph Convolutions

The second type of graph convolutions is based on fast localized spectral filtering
[3], which Ranjan et al. use in CoMA [4]. We compute the j-th output graph
feature map y∗,j ∈ RN as follows:

y∗,j =

Fin∑
i=1

gθi,j (L) · x∗,i . (6)

Here, L is the normalized Laplacian matrix of the graph and the filters gθi,j (L)
are parameterized using Chebyshev polynomials of order K. More specifically,

gθi,j (L) =

K−1∑
k=0

θi,j,k · Tk(L̃), (7)

where θi,j,k ∈ R and L̃ = 2L/λmax − I, with λmax = 2 being an upper bound
on the spectrum of L. The Chebychev polynomial Tk is defined as Tk(x) =
2x · Tk−1(x)− Tk−2(x), T1(x) = x, and T0(x) = 1.

This leads to K-localized filters that operate on the K-neighbourhoods of
the nodes. Each filter gθi,j (L) is parameterized by K coefficients, which in total
leads to Fin × Fout ×K trainable parameters for each graph convolution layer.

9.3 Results

We compare our proposed DEMEA with spiral convolutions against a version of
DEMEA that uses spectral convolutions. Table 4 contains the results. Except for
DFaust on latent dimension 8, spiral graph convolutions always perform at least
slightly better than spectral graph convolutions. These results show that EDL
obtains similar accuracy with both graph convolutions, which further validates
its robustness.

8 E. Tretschk et al.

DFaust SynHand5M Cloth CoMA
8 32 8 32 8 32 8 32

Spiral 6.69 2.23 8.12 2.51 11.28 6.40 1.23 0.81

Spectral 6.56 2.40 8.74 3.83 11.76 6.52 1.40 0.98

Table 4. Average per-vertex errors on the test sets of DFaust (in cm), SynHand5M
(in mm), textureless cloth (in cm) and CoMA (in mm). We compare two versions of
DEMEA: one with spiral convolutions and one with spectral convolutions.

10 FCA and CA Results

Fig. 5 contains qualitative results for FCA and Fig. 6 shows artifacts when using
FCA. Fig. 7 contains qualitative results for CA. We show depth-to-mesh results
in Fig. 8.

Ground-truth FCA 32 DEMEA 32 FCA 8 DEMEA 8

Table 5. Qualitative Results on FCA.

Ground-truth FCA 32 DEMEA 32

Table 6. Artifacts on FCA. While the reconstruction by DEMEA only matches the
ground-truth as well as FCA, it is a significantly more plausible shape.

11 Coarse Embedded Graphs

In Fig. 9, we show how an embedded graph can lead to over-smoothing and a
loss of detail.

DEMEA: Deep Mesh Autoencoders – Supplemental 9

Ground-truth CA 32 DEMEA 32 CA 8 DEMEA 8

Table 7. Qualitative Results on CA.

Depth DEMEA CA FCA

Table 8. Depth-to-Mesh Results for CA and FCA. The bottom row shows artifacts
that DEMEA avoids.

10 E. Tretschk et al.

Second Level Ground-truth First Level

Table 9. Coarse Embedded Graphs. Note the lips. An embedded graph on the second
level of the mesh hierarchy instead of the first level can lead to over-smoothing.

References

1. Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., Zafeiriou, S.: Neural 3d
morphable models: Spiral convolutional networks for 3d shape representation learn-
ing and generation. In: The IEEE International Conference on Computer Vision
(ICCV) (2019)

2. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganov-
elli, F., Ranzuglia, G.: MeshLab: an Open-Source Mesh Process-
ing Tool. In: Scarano, V., Chiara, R.D., Erra, U. (eds.) Eurograph-
ics Italian Chapter Conference. The Eurographics Association (2008).
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-
136

3. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: International Conference on Neural
Information Processing Systems (NIPS). pp. 3844–3852. NIPS’16 (2016)

4. Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3D faces using convolu-
tional mesh autoencoders. In: European Conference on Computer Vision (ECCV).
pp. 725–741 (2018)

5. Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipula-
tion. In: ACM SIGGRAPH (2007)

