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Fig. 1. Deep Relightable Textures – Our method is able to photo-realistically synthesize and composite dynamic performers under any lighting condition from
a desired camera viewpoint.

The increasing demand for 3D content in augmented and virtual reality
has motivated the development of volumetric performance capture sys-
temsnsuch as the Light Stage. Recent advances are pushing free viewpoint
relightable videos of dynamic human performances closer to photorealistic
quality. However, despite significant efforts, these sophisticated systems
are limited by reconstruction and rendering algorithms which do not fully
model complex 3D structures and higher order light transport effects such
as global illumination and sub-surface scattering. In this paper, we propose
a system that combines traditional geometric pipelines with a neural render-
ing scheme to generate photorealistic renderings of dynamic performances
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under desired viewpoint and lighting. Our system leverages deep neural
networks that model the classical rendering process to learn implicit features
that represent the view-dependent appearance of the subject independent of
the geometry layout, allowing for generalization to unseen subject poses and
even novel subject identity. Detailed experiments and comparisons demon-
strate the efficacy and versatility of our method to generate high-quality
results, significantly outperforming the existing state-of-the-art solutions.

CCS Concepts: • Computing methodologies→ Computer vision;Ma-
chine learning; Rendering.
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1 INTRODUCTION
Capturing and rendering photorealistic human performances with
controllable viewpoint and lighting is one of the most active re-
search areas in the fields of computer graphics and vision. Such a
technology has applications in augmented and virtual reality [Kelly
et al. 2019; Lombardi et al. 2018; Orts-Escolano et al. 2016], movie
production [Seymour 2020], and game development.
The problem can be split into two parts: 3D acquisition and ren-

dering. Acquisition systems often focus on generating an accurate
3D volumetric model of a dynamic performer which can be rendered
from any arbitrary viewpoint [Collet et al. 2015; Tanco and Hilton
2000]. In order to composite the model into novel environments
with believable appearance, the model must be relit by the local
lighting of the environment. Most previous systems build a parame-
terized mesh of restricted resolution and detail with a fixed lighting
condition, and as a result, it can be difficult to change the lighting on
the model realistically. Some other earlier works showed plausible
template-based reconstruction of relightable 3D video [Li et al. 2013;
Wu et al. 2013], but parametric reflectance models and the use of
mesh templates still limited the re-rendering fidelity.

On the other hand, image-based relighting systems use additional
data capture to solve the rendering problem. Rather than acquiring
the full 3D shape of the subject, these methods capture 2D images
under different illumination conditions to record a complete re-
flectance field of the performer [Debevec et al. 2000; Meka et al.
2019; Peers et al. 2006]. While this technology enables photorealistic
renderings of humans, the lack of full body 3D geometry and the
complexity of physically based rendering makes these approaches
suitable only for very specialized applications, or requiring consid-
erable post-processing and manual touch ups.

Capturing and rendering a large number of performers in a pho-
torealistic manner with no manual intervention is still a very active
research area. Recently, [Guo et al. 2019] built a fully distributed
pipeline for volumetric performance capture that combines vol-
umetric capture with relighting based on time-multiplexed color
gradient illuminations. These alternating lighting conditions have
been shown to enable the estimation of the material properties such
as albedo, roughness, and surface normals [Fyffe et al. 2009].

Despite impressive results and the evident quality improvement
over previous capture solutions, such a system still lacks photore-
alism. Although the 3D capture pipeline uses custom high quality
depth sensors [Guo et al. 2019; Kowdle et al. 2018], it cannot pre-
cisely reconstruct thin complex structures such as hair and clothing.
The reflectance estimation proposed in [Guo et al. 2019] relies on a
simplistic cosine lobe reflectance model [Fyffe et al. 2009] and there-
fore cannot accurately model higher-frequency view-dependent
specular effects or the complex luster of cloth and skin.

While classical graphics pipelines have come a long way in model-
ing light-surface interactions for complex materials such as human
skin and hair to render high-quality human images [Seymour 2020],
they still lack the capacity to cross over the ‘uncanny valley’ and ap-
proach photorealism that is indistinguishable from the groundtruth.
We refer the reader to [Pharr et al. 2016] for a comprehensive review
on the open research topic.

Neural rendering [Eslami et al. 2018; Kim et al. 2018; Liu et al.
2019; Lombardi et al. 2019; Martin-Brualla et al. 2018; Sitzmann et al.
2018, 2019; Thies et al. 2019], has shown very promising results
that overcome the shortcomings of traditional computer graphics
by applying deep learning to learn disentangled representations of
appearance and viewpoint. However, these systems usually assume
a fixed lighting condition [Lombardi et al. 2019; Martin-Brualla
et al. 2018; Thies et al. 2019], or they cannot generalize to unseen
objects and subjects [Lombardi et al. 2019; Thies et al. 2019]. These
issues limit their applicability in volumetric performance capture
scenarios.
In this work, we present the first capture and rendering frame-

work that learns representations of appearance, viewpoint and light-
ing of moving humans in arbitrary clothing (see Table 1). The pro-
posed method relies on a high end Light Stage setup, (for detailed
description of the hardware setup, please see the appendix), and
combines traditional reflectance and geometry capture pipelines
with a neural rendering approach to produce nearly photorealistic
renderings of performers from any viewpoint and under any desired
illumination condition.
Our method builds neural textures on the fly by extracting fea-

tures from multi-view imagery. These features are pooled into a
common texture-space parameterization (UV parameterization) ob-
tained from a coarse geometry estimate. The pooled features encode
both local and global geometric properties and 4D reflectance. The
features are then reprojected to image space based on the desired
viewpoint, and finally evaluated by a neural renderer along a desired
lighting direction to correct the imperfections due to the coarse ge-
ometry and synthesize the final relit image, without any manual
intervention.

In summary, our main contributions are:

• A volumetric capture framework that leverages neural ren-
dering to synthesize photorealistic humans from arbitrary
viewpoints under desired illumination conditions.

• An approach to build neural textures from multi-view im-
ages to render the full reflectance field for unseen dynamic
performances of humans, including occlusion shadows and
an alpha compositing mask. This overcomes the issues of
previous works using neural textures [Thies et al. 2019] that
need to be re-trained for every new UV parameterization.

• High quality results on free-viewpoint videos with dynamic
performers, extensive evaluations and comparisons to show
the efficacy of the method and substantial improvements over
existing state-of-the-art systems.

Our framework presents a significant step towards bridging the
gap between image-based rendering methods and volumetric videos,
enabling exciting possibilities in mixed reality productions.

2 RELATED WORK
Synthesizing realistic relightable humans it is often tackled using
image-based relighting techniques [Debevec et al. 2000; Einarsson
et al. 2006; Wenger et al. 2005b], or Parametric models with priors
[Barron and Malik 2015; Blanz and Vetter 1999; Garrido et al. 2013,
2016; Gotardo et al. 2018; Ichim et al. 2015; Meka et al. 2017; Pons-
Moll et al. 2015; Theobalt et al. 2007; Thies et al. 2016; Wen et al.
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Table 1. Machine learning methods achieve a high degree of photorealism, whereas traditional capture pipelines [Guo et al. 2019] are better at generalization,
rendering capabilities, and they can capture moving performers. Our algorithm brings together the capabilities of both state-of-the-art approaches.

Free Viewpoint Relightable Moving Performers Higher-order Appearance Model Generalization

Guo et al. [2019] Yes Yes Yes No Yes
Thies et al. [2019] Yes No No Yes No

Martin-Brualla et al. [2018] Yes No Yes Yes Yes
Wenger et al. [2005a] No Yes Yes (with high FPS) Yes Yes
Meka et al. [2019] No Yes Yes Yes Yes
Xu et al. [2019] Yes (half hemisphere) No Not Demonstrated Yes Yes

Hedman et al. [2018] Yes No Not Demonstrated Yes Yes
Proposed Yes Yes Yes Yes Yes

2003]. More recently, related work relies on sophisticated multi-view
3D performance capture systems [Beeler et al. 2011; Cagniart et al.
2010; Collet et al. 2015; de Aguiar et al. 2008; Dou et al. 2017; Guo
et al. 2019; Tanco and Hilton 2000; Vlasic et al. 2008], and neural
rendering techniques [Dosovitskiy et al. 2015; Eslami et al. 2018;
Kulkarni et al. 2015; Zhu et al. 2014] to increase photorealism of the
final renderings.

Multi-view 3D Performance Capture. These systems explicitly es-
timate the deforming geometry of the performer using multi-view
setups [Beeler et al. 2011; Cagniart et al. 2010; Collet et al. 2015;
de Aguiar et al. 2008; Dou et al. 2017; Guo et al. 2019; Tanco and
Hilton 2000; Vlasic et al. 2008]. These sophisticated pipelines may
focus on face performance capture [Beeler et al. 2010, 2011; Ma et al.
2007] or full body reconstructions [Cagniart et al. 2010; Collet et al.
2015; de Aguiar et al. 2008; Guo et al. 2019; Tanco and Hilton 2000;
Vlasic et al. 2008].

For instance the works of Beeler et al. [2010, 2011] have shown
impressive facial performance results, but they do not explicitly esti-
mate reflectance information required for photorealistic rendering.
Full body performance capture, also known as free viewpoint

videos or volumetric videos, are very popular since the works of
Carranza et al. [2003]; Tanco and Hilton [2000]. More recently, the
Microsoft volumetric capture system [Collet et al. 2015] has been
used in many commercial productions for mixed reality including
through licensees such as Metastage.

Recent advances in high speed depth sensing [Fanello et al. 2016,
2017; Tankovich et al. 2018] have enabled real-time performance cap-
ture [Dou et al. 2017, 2016], showing compelling applications such
as virtual telepresence [Orts-Escolano et al. 2016]. These methods
[Collet et al. 2015; Dou et al. 2017] usually rely on sparse correspon-
dences [Innmann et al. 2016; Wang et al. 2016; Zaharescu et al. 2009]
to guide a non-rigid alignment method between the reconstructed
meshes, providing a temporally consistent reconstruction over time.
Despite all these efforts, these systems lack photorealism due

to missing high frequency details [Orts-Escolano et al. 2016] and
baked-in diffuse texture [Collet et al. 2015], which does not allow
for accurate and convincing re-lighting of these models in arbitrary
scenes.
Guo et al. [2019] have made an attempt to overcome most of

these issues. Their sophisticated pipeline combines the image based
rendering technique proposed in [Fyffe et al. 2009], with custom

high resolution depth sensors to estimate geometry and material
properties such as albedo, roughness and normals. This achieves
unprecedented quality and photorealism for free viewpoint videos.

Although this recent work is a substantial improvement over pre-
vious approaches, the method of Guo et al. [2019] does not achieve
true photorealism due to the assumptions made in their reflectance
maps which rely on a simple cosine lobe model.

Nevertheless, these multi-view capture systems offer a foundation
for machine learning approaches and in this paper we show how to
leverage them to acquire ground truth data and train a deep learning
based solution for volumetric performance capture.

Neural Rendering. An orthogonal perspective is given by the re-
cent advances in the machine learning community in the area of
neural rendering [Dosovitskiy et al. 2015; Eslami et al. 2018; Kulkarni
et al. 2015; Zhu et al. 2014], see Tewari et al. [2020] for a compre-
hensive review.
These approaches aim at using deep learning to control specific

parameters of a scene such as: lighting, geometry, camera view,
pose/layout, etc.
For instance, in the context of view synthesis, the work of Hed-

man et al. [2018] learns to blend multiple RGB images to capture
view-dependent effects on static scenes. Similarly, Xu et al. [2019]
proposes an architecture to perform view synthesis of an object
using photometric images. When combined with Xu et al. [2018],
the method can also enable relighting capabilities, however its ap-
plicability is limited to a half hemisphere around the captured object
with a fixed distance from the camera.

In a similar direction, the work of Philip et al. [2019] shows
compelling relighting results on static scenes, correctly synthesizing
shadowing effects. The very recent work of Mildenhall et al. [2020]
achieves highly realistic view synthesis, however, similar to Xu et al.
[2019], the model does not enable relightability.
Other related works are focusing on synthesis of humans [Bal-

akrishnan et al. 2018; Chan et al. 2019; Kim et al. 2019, 2018; Liu
et al. 2019; Ma et al. 2017, 2018; Neverova et al. 2018; Si et al. 2018;
Thies et al. 2019; Zhao et al. 2017], with particular emphasis on
performance capture [Lombardi et al. 2019; Martin-Brualla et al.
2018; Pandey et al. 2019; Shysheya et al. 2019] and relighting [Meka
et al. 2019; Sun et al. 2019; Zhou et al. 2019].

The LookinGood system byMartin-Brualla et al. [2018] introduces
the concept of neural rerendering for performance capture of human
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Fig. 2. Proposed Pipeline.We propose a Neural Rendering pipeline for rendering of moving humans in any desired viewpoint and lighting. Features are
extracted from the raw images and then pooled in UV space with a learned blending function. 1 × 1 convolutions in texture space allow for generalization to
different parameterizations. A final Neural Rendering synthesizes the image in camera space. See text for details.

actors. The authors leverage a real-time volumetric capture system
[Dou et al. 2017] augmented with “witness cameras” that provide
groundtruth unseen views that are used by a deep convolutional
neural network to re-render the final image. The method, however
does not control the lighting condition, therefore does not allow
relighting the subject.

Follow up work by Lombardi et al. [2019], proposes to use Neural
Volumes, which are able to render a performer from any arbitrary
view without relying on a pre-captured 3D mesh such as in Martin-
Brualla et al. [2018]. The main drawback is the lack of a disentangled
appearance representation: indeed the volume is trained per-subject
with fixed illumination and it does not generalize to different per-
formers or arbitrary lighting conditions.
Orthogonal trends such as the work of Pandey et al. [2019], try

to reduce the infrastructure requirements (e.g. multiple cameras at
test time) and they leverage a semi-parametric model to synthesize
humans in arbitrary poses and viewpoints from a single RGBD
image. Similarly to Martin-Brualla et al. [2018] and Lombardi et al.
[2018], the method has a fixed lighting condition.

The work of Meka et al. [2019] uses two spherical gradient illumi-
nation images similar to [Guo et al. 2019] and generates compelling
renderings under any desired illumination. However the approach
does not allow for free viewpoint rendering and cannot model self
occlusions due to the lack of geometry. Similar to Meka et al. [2019],
the methods proposed by Sun et al. [2019] and Zhou et al. [2019]
aim at controlling the lighting condition of portrait images, without
changing the viewpoint.

Proposed Approach. Our method achieves nearly photorealistic
renderings of dynamic performers from arbitrary viewpoints, with
any desired illumination condition. Moreover, our approach is scal-
able and does not require manual intervention.
In contrast to related works [Chen et al. 2019; Thies et al. 2019;

Zhang et al. 2020], we propose a framework that combines geo-
metric pipelines and neural rendering that enables simultaneous
disentanglement of appearance, viewpoint and lighting. In Table 1
we summarize the main capabilities of state-of-the-art methods.

3 NEURAL RENDERING FOR PERFORMANCE CAPTURE
Our goal is to generate photorealistic renderings of humans in
motion under arbitrary viewpoint and lighting conditions. Moreover
we wish to generalize to dynamic performers, enabling renderings
at scale with no manual post-processing used in movie products.
Based on these goals, our method leverages deep learning to

address the following substantial drawbacks of the traditional geo-
metric pipelines (see appendix for a more detailed discussion on the
drawbacks.):

(1) Inadequate Geometric Model.Meshes or 3D voxels of any
reasonable density are not expressive enough to capture fine
grained details such as hair.

(2) 3D Acquisition Errors. Even if a mesh could accurately
model the geometry, the reconstruction can be inaccurate
due to erroneous calibration or approximations in the many
stages of a reconstruction pipeline.

(3) Approximate Reflectance Model. Typical BRDFs (e.g. the
Phong [Li et al. 2013] or cosine lobe models used in previous
work [Guo et al. 2019]) are not expressive enough to take into
account the complex image formation process that would
lead to a photo-realistic rendering of a human.

(4) Approximate Rendering. Even when the BRDF model suf-
fices, many assumptions/approximations ignore high order
light transport effects such as sub-surface scattering and
global illumination, leading to unrealistic renderings.

In order to overcome these difficulties, we employ a neural archi-
tecture (Fig. 2) that extracts features from each of the multi-view
images and pools them into texture space (UV space) based on a pre-
acquired coarse geometry estimate. The pooled features are further
transformed using 1x1 convolutions to extract implicit reflectance
and local geometry information, which are then reprojected into
the image space of a novel desired viewpoint. The reprojected fea-
tures, in combination with classical graphics buffers such as light
visiblity maps and reflection maps, are provided as input to a neural
renderer (Fig. 3) to generate the final output image of the subject lit
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under a desired lighting direction. By sampling the lighting direc-
tion over the unit sphere, the neural renderer can generate a set of
images that form the full reflectance basis for the frame. This basis
can be used to relight the image under arbitrary lighting environ-
ments. The neural rendering replaces the use of an explicit BRDF
and allows for modeling higher-order light transport effects directly
from the training data. Further, it removes the strict dependency on
accurate geometry as the rendering network can compensate for
inaccuracies (e.g. filling in missing hair cf. Fig. 12) as also shown by
Martin-Brualla et al. [2018].
In contrast to previous work such as Thies et al. [2019], which

learns a fixed neural texture, we first extract features from images
and then pool them in texture space using the pre-computed warp
fields that remap the images to UV space. As a consequence, the
neural textures can be regressed from input images, rather than
optimizing them through back-propagation such as [Chen et al. 2019;
Shysheya et al. 2019; Thies et al. 2019], which limits generalization.
Crucially, the extracted features have a certain spatial extent

thanks to the receptive fields of the feature extraction network. This
implies that in texture space we can resort to simple 1 × 1 convolu-
tions which do not depend on the UV arrangement. The use of 1× 1
convolutions is also justified by geometric capture systems (e.g. Guo
et al. [2019]), which obtain reflectance maps with simple per-pixel
operations in RGB space. We argue that learned 1 × 1 operators on
feature vectors are superior to hand-crafted per-pixel operations in
RGB space. These observations are essential to disentangling appear-
ance: indeed at test-time a new neural texture can be built from a set
of multi-view images and an approximate parameterized geometry
(i.e. pre-computed warps from image space to UV parameterization).
As a byproduct, we can generalize to unseen performances and we
do not need to re-train the network even if the UV parameterization
changes. On the contrary, related works relying on neural textures
[Chen et al. 2019; Shysheya et al. 2019; Thies et al. 2019] need to
re-train every time the UV parameterization changes (e.g. dynamic
sequences), even for a fixed subject.
The proposed pipeline allows for simultaneous synthesis of ap-

pearance, viewpoint and lighting of dynamic performances: to the
best of our knowledge this is the first neural rendering system with
this capability. In the following we detail each of these steps.

3.1 Inputs and Feature Extraction
Our neural rendering pipeline assumes the availability of an approx-
imate geometry of the subject for every frame of the performance.
We use a hardware setup similar to that of Guo et al. [2019] to obtain
such geometry, as explained in Section 4.1. This geometry estimate
is used to generate a UV map of the surface along with warp fields
that map multi-view images into the texture space and vice verse.
Note that it is generally very challenging to achieve a temporally
coherent UV parameterization for a non-rigidly deforming geome-
try as is the case in dynamic performances. Our method assumes no
such temporal correspondences for even consecutive frames and is
in fact designed to be completely robust to arbitrary texture space
changes and hence provides generalization of appearance synthesis
across subject pose and identity.

To capture the input 2D images, our method leverages a Light
Stage, a studio device containing a capture volume inside a spherical
dome fitted with calibrated RGB lights and multi-view cameras.
Previous works that employ the Light Stage [Fyffe et al. 2009; Guo
et al. 2019; Meka et al. 2019] have shown that spherical gradient
illumination conditions can be used to extract information regarding
surface normals, albedo and roughness. Deep learning methods
have been successfully applied to these inputs to obtain convincing
relighting results in image space [Meka et al. 2019].
Following this trend, our system takes as input two images cap-

tured under spherical gradient illumination conditions from 𝑁 cam-
era viewpoints, where each image has 2000 × 1500 pixels. These
complementary lighting conditions are aligned using 2D optical
flow such as in Meka et al. [2019]. Additionally, we concatenate
to each pixel a view direction vector, i.e. the ray going from the
optical center to the center of the pixel in world space, resulting
in a 3D unit vector that can be encoded in 2 channels. The view
direction provides the network with some guidance regarding the
view-dependent effects on a given image.

A U-Net architecture [Ronneberger et al. 2015] is used to extract
features from each viewpoint. The architecture takes as input 8 chan-
nels: 6 for the two gradient images, 2 for the view direction. The spe-
cific network has 5 encoder/decoder layers with 16, 32, 64, 128, 256
filters, extracted with 3 × 3 convolutions followed by blur pool
[Zhang 2019] in the encoder and blur unpool in the decoder. A
final output layer infers a tensor of 16 channels with 2000 × 1500
resolution.

Crucially, this U-Net extracts features with receptive fields with a
reasonable spatial extent (478 × 478). Additionally, the final output
has the same resolution of the input images (2000×1500 ), to preserve
all the high frequency details. The feature extraction is carried out
for each view and a total of 𝑁 feature tensors with 16 channels are
generated. See Fig. 2 (left) for an overview of the feature extractor.

3.2 Learn to Regress the Texture Space
At this stage we have one tensor F with 16 channels and 2000 ×
1500 for each camera view. Assuming that a 3D geometry with
parameterization is available, we can compute warp fields that map
each pixel from image space to the UV texture space.

The warp fields are pre-computed using the 3D geometry to map
between texture UV coordinates and camera image coordinates with
explicit occlusion handling via ray casting.We generate a 2000×1500
warp field W𝑘 (𝑥,𝑦) = (𝑢, 𝑣) as a 2-channel map from each pixel of
camera 𝑘 to UV coordinates of parameterization – in essence, the
rasterization of raw UV coordinates on our geometry for camera 𝑘 .
For the inverse mapping W𝑘

𝑖𝑛𝑣
(𝑢, 𝑣) = (𝑥,𝑦) we construct a 1000 ×

1000 warp field matching our UV texture dimension, where the 2-
channel value at each UV texel is the visibility-tested projection from
the parameterized geometry into the image coordinates of camera
𝑘 . These warp fields can be used in an end-to-end framework in a
fully differentiable manner as shown in Jaderberg et al. [2015].

The warped feature tensors F1𝑤 , . . . , F𝑁𝑤 are pooled together into
a single tensor which removes the dependency on the order of the
input images. To do so we perform a weighted sum of the features,
where the weights are computed using the dot product between the
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Fig. 3. Neural Rendering – The learned texture space is resampled given the desired rendering camera. A Neural Shading module adds lighting information
to the resampled features; an alpha matting prediction module predicts an alpha mask. Finally, a U-Net performs the actual rendering.

camera viewing direction and the surface normals. This is inspired
by traditional volumetric capture pipelines [Collet et al. 2015; Guo
et al. 2019] that utilize a similar weighted scheme to stitch together
multiple views in the UV space. This generates a texture space tensor
of 1000 × 1000 × 16.

Thanks to this high dimensional feature vector we can rely on a
few 1 × 1 convolutions followed by non-linearities in texture space,
which allows for generalization for different parameterizations. In
particular we perform three 1 × 1 convolutions followed by ReLU
activations to obtain a final texture space tensor with 16 channels.

3.3 Neural Rendering
The final part of the pipeline is a Neural Renderer module and it is
depicted in Fig. 3. This component takes as input a target camera
view, which is used to generate the warpW𝑘 . This warp is employed
to resample features from the texture space to the image space. The
Neural Renderer module consists of two branches: a Neural Shading
and an Alpha Matting network. The output of these two modules are
then passed through a final U-Net that generates the actual rendered
images.

Neural Shading. The resampled features do not contain informa-
tion regarding the desired viewpoint or light condition, but mostly
encode surface and material properties. To explicitly encourage the
network to learn the shading function, we borrow components from
computer graphics rendering such as the light visibility map and
reflection map, and cast them in a neural network framework.

The light visibility map is computed per-pixel via the dot product
between the surface normal n and the target lighting direction l.
We also handle occlusions explicitly via ray casting, which result in
black pixels in the map (see Fig. 3, Neural Shading module).

The reflection map is inspired by traditional Phong shading, and
defined as (r ·v)𝛼 , where v is the view direction of the target camera

and r = 2(l ·n)n− l. Such a reflection map has been shown by Meka
et al. [2018] to guide the network towards specularities and view
dependent effects.WhileMeka et al. [2018] attempts to estimate such
a ‘mirror-like’ reflection map using a neural network to augment
the reflectance estimation pipeline, we feed this map as an input to
the neural renderer to aid the specularity synthesis.
The resampled neural features, the reflection map and the view

direction, encoded per-pixel in 2 channels, are concatenated into
a single tensor S of dimensions 2000 × 1500 with 19 channels (16
for the features, 1 for reflection map, 2 for view direction) and
multiplied element-wise with the light visibility map, simulating a
neural diffuse rendering.

Alpha Matting. The second branch of the neural renderer consists
of a small U-Net with skip connections that takes as input the
resampled features of size 2000 × 1500 and comprehends 6 fully
convolutional layers for encoder and decoder with 3 × 3 filters,
with outputs 8, 16, 32, 64, 128, 256. The output of this network is an
alpha mask: we will show the importance of the alpha mask for the
application of compositing in virtual environments.
Finally, the output of the Neural Shading and Alpha Matting

network are concatenated and passed to the final U-Net to perform
the final rendering. This rendering architecture takes as input a
tensor of 20 channels (19 for the neural shader, 1 for the alpha mask)
of size 2000 × 1500 and it passes it through 5 levels for the encoder
and 5 for the decoder. We use 3 × 3 convolutions with outputs
64, 128, 256, 512, 1024. Additionally, we employ skip connections
between the encoder and decoder, except for the last layer, which
generates the final RGB image.
At test time, given multi-view images of a performer, we need

to build the neural texture only once and use the neural renderer
module to synthesize any novel illumination condition from any
desired viewpoint.
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Fig. 4. A subject illuminated under both color gradient and inverse color
gradient illumination. Intuitively, a red observation corresponds to either red
albedo or a surface normal pointing towards the red lights. As the sweater
is largely red under both illumination conditions, the network receives a
strong cue that the albedo of the sweater is red. In contrast, the subject’s
right forehead appears red under only one illumination condition, providing
a strong constraint on surface orientation.

4 TRAINING DETAILS
In this section we describe the acquisition process and how to train
the proposed framework in an end-to-end fashion.

4.1 Groundtruth Acquisition
The described pipeline relies on: multiview imagery of performers
acquired with two spherical gradient illumination conditions, the
knowledge of a 3D parameterized geometry, and groundtruth images
under a specific illumination condition and alpha masks. In order to
acquire this data, we rely on a Light Stage [Debevec 2012], a custom
spherical dome with 331 fully programmable LEDs.

Multi-view Imagery. Similarly to Guo et al. [2019], we use 58
high resolution RGB cameras to record video at 60 hertz with 12.4
megapixel resolution. As previously described, we interleave two
different visible lighting conditions based on spherical gradient
illumination [Fyffe et al. 2009]. A spherical gradient image is ob-
tained by programming the LEDs to emit a color that changes with
respect to its position in the Light Stage. In particular, given the
lighting direction vector 𝜃 of a LED relative to the center of the stage,
the light emitted by that LED for the first gradient image is pro-
grammed to have the RGB color ((1 + 𝜃𝑥 )/2, (1 + 𝜃𝑦)/2, (1 + 𝜃𝑧)/2),
and the second gradient image is programmed to have the RGB
color ((1 − 𝜃𝑥 )/2, (1 − 𝜃𝑦)/2, (1 − 𝜃𝑧)/2). An example of spherical
gradient images can be seen in Fig. 4.

Geometry Acquisition. To acquire the base geometry needed to
pre-compute the warp fields, we additionally use 32 high resolution
infrared (IR) cameras. These are coupled with 16 custom structured
light projectors such that they can be used for active stereo depth
estimation. A multi-view stereo algorithm followed by a Poisson
reconstruction step and a parameterization phase are used to retrieve

Fig. 5. Pseudo-groundtruth alpha masks obtained with a variant of Sen-
gupta et al. [2020]. These masks are employed at training time to predict
an alpha mask that is then used for compositing. Despite the small imper-
fections, we found them very effective for this task.

the final geometry. For details see Guo et al. [2019] and Collet et al.
[2015].

Given the base geometry, we can also compute the light visibility
maps and the reflection maps described above, that are passed to our
neural renderer.

Groundtruth Images. Target images are acquired by collecting full
reflectance fields. In particular, we capture a sequence of so called
One-Light-At-a-Time (OLAT) images. In each OLAT image, only one
of the 331 LEDs is turned on and this has a known light direction
pointing from the center of the LightStage to the LED position. A
single sequence consists of 331 OLATs for 58 high resolution RGB
cameras and 32 active IR sensors. Due to the large amount of data,
we are limited to a framerate of 60 hz. In other words we need ∼ 6
seconds per sequence acquisition, during which time the subject
may move a little, causing misalignments in the training data. To
overcome these issues, we follow [Meka et al. 2019] and introduce
additional “tracking frames” with all the LEDs turned on. These
fully lit images are acquired after every 10th OLAT and they are
used to perform an optical flow alignment in image space for each
view with respect to a selected keyframe [Anderson et al. 2016].
The optical flow is then interpolated to align OLAT images between
two tracking frames. Finally, we capture the spherical gradient
illumination conditions that are used as input to the system.

Note that since all the 2D imagery is aligned to a given reference
frame, we do not need to compute the geometry for all the OLATs
but we simply rely on the parameterized mesh computed for a
selected keyframe.

The alpha masks used during training are obtained with a variant
of Sengupta et al. [2020] trained on Light Stage data [Debevec et al.
2002], see Figure 5. Despite not being perfect, we found these masks
very effective for this task.
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4.2 Loss Functions
We train the feature extractor (Section 3.1), neural texture (Section
3.2), and neural rendering (Section 3.3) components of our pipeline
end-to-end, using a combination of multiple losses. In particular,
our loss function is defined by four components.

Photometric Loss in Feature Space: 𝐿VGG (𝐼 , 𝐼 ). Similarly to Martin-
Brualla et al. [2018], we use the squared ℓ2 distance between features
extracted from the target image 𝐼 and the predicted image 𝐼 using
a VGG network pre-trained on the ImageNet classification task
[Zhang et al. 2018]. As demonstrated by multiple previous works
[Martin-Brualla et al. 2018; Meka et al. 2019; Pandey et al. 2019] this
loss leads to sharper results compared to a traditional ℓ1 distance in
image space.

Alpha Loss: ℓ1 (𝑀, �̂�). In order to infer the alpha mask, we simply
compute an ℓ1 norm between the groundtruth mask 𝑀 and the
inferred mask �̂� .

Reflection Saliency Loss: 𝐿VGG (𝑆, 𝑆). To encourage the network
to learn specular highlights and view dependent effects, we also
propose an additional reflection loss. We define 𝑆 = 𝑅 ⊙ 𝐼 , where 𝑅
is the reflection map defined in Section 3.3 and ⊙ indicates element-
wise multiplication. Similarly we define 𝑆 = 𝑅 ⊙ 𝐼 for the predicted
image 𝐼 . The reflection loss is then computed as ℓ2 distance of 𝑆 and
𝑆 in feature space using the VGG network. In the ablation study
we demonstrate how this loss is vital to recovering view dependent
effects. In Figure 6 we show visual examples of these terms.

Texture Loss: 𝐿VGG (𝐼 , 𝑁 ). Similarly to Thies et al. [2019], we add
a loss between the target image 𝐼 and the first 3 channels of the
resampled neural texture 𝑁 . This forces the network to represent
part of its texture space as an actual RGB image, which is again
inspired by computer graphics pipelines.
Our total loss is finally defined as:

𝐿total = 𝑤1𝐿VGG (𝐼 , 𝐼 ) +𝑤2ℓ1 (𝑀, �̂�) +𝑤3𝐿VGG (𝑆, 𝑆) +𝑤4𝐿VGG (𝐼 , 𝑁 ),
(1)

where𝑤𝑖 are used to control the contribution of the individual
loss functions to the total loss. For our experiments we use𝑤1 = 1.0,
𝑤2 = 0.25,𝑤3 = 0.5, and𝑤4 = 1.0.

4.3 Implementation Details
We implemented our training pipeline in TensorFlow where we
distribute the training across 8 NVIDIA Tesla V100 GPUs. At each
iteration we randomly pick a target OLAT per GPU. The feature
extractor module in Sec. 3.1 is run on each camera independently.
Since our system consists of 58 RGB cameras, this requires a substan-
tial amount of computation and memory. Indeed during training,
the system will need to extract and pool features multiple times, for
potentially millions of iterations. In order to speed up this phase
we consider only a neighborhood of 3 cameras around the target
OLAT, which are computed to cover all the target pixels in UV tex-
ture space. Note that these features are average-pooled in UV space,
making this operation independent of the order and the number of
cameras.

We use the ADAM optimizer [Kingma and Ba 2014] with a learn-
ing rate of 10−4, employing an exponential decay of the learning

rate of 0.1 every 100𝑘 iterations. We optimize our network for 500𝑘
iterations before the training converges, which usually takes 2-3
days.
At test-time, we pre-compute the learned texture by extracting

features from all the cameras. This allows us to only run the neural
render to infer the desired viewpoint and lighting conditions. The
evaluation of all the OLAT’s for a given frame is performed in a
fully parallelized fashion on the cloud using Intel 2.6 Ghz processors
with 32 cores.

5 EVALUATION
In this section we provide an exhaustive evaluation of the proposed
approach. We specifically focus our experiments as to elucidate our
approach’s ability to disentangle lighting, viewpoint and appear-
ance.
Note that in many of the experiments we aim to synthesize an

image from a desired viewpoint under a single directional light
source. This scenario actually emphasizes complex light transport
effects such as specular highlights and subsurface scattering, which
are crucial to achieve true photorealism. Additionally, since lighting
is additive, a simple linear combination of these directional light
sources can be formed to generate arbitrary relighting provided,
for instance, by an HDRI map [Debevec et al. 2000]. The results
obtained using HDRI relighting are shown and discussed in Section
6.

Dataset Acquisition. For this work we acquired data from 70 par-
ticipants with different skin color and clothing. Moreover, we asked
participants to perform specific poses, in order to present the net-
work with sufficient variability. Following ML fairness practices,
we ensured that our dataset was as diverse as possible. For each
subject we acquired 331 OLATs, 2 gradient images from 58 RGB
images and 32 IR images. Each user provides ∼ 30, 000 images with
2000 × 1500 pixels that are used as training examples. A few repre-
sentative examples of the acquired groundtruth data can be seen in
Figure 7. We hold out a few subjects from the dataset to show the
generalization capabilities of the method. All the results are shown
under conditions that were not presented to the network during
training.
Notably, each subject is reconstructed independently and there-

fore they do not share the samemesh topology and parameterization.
Nevertheless, we prove that our approach is able to generalize to
unseen performers and changing parameterizations.
Finally, we automatically detect and discard OLAT images that

contain strong lens flares such as the ones shown in Figure 8. In
order to find those cases, we check if the projected 3D position of
a light is in the field of view of the camera or if the angle between
the camera viewpoint and the light is greater than 130◦. We found
this simple strategy to be very effective and it is able remove most
of the images that could corrupt the groundtruth data, at the same
time the learning scheme is able to generalize well to those missing
training examples.

Metrics. In order to analyze the quantitative performance of the
system we report the following measurements: PSNR, MultiScale-
SSIM, Photometric error, i.e. ℓ1-loss, and Perceptual loss [Zhang
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Fig. 6. Visualization of the reflection saliency used in the loss function. The contribution of this component is crucial to recover specular highlights and view
dependent effects.

Fig. 7. Our dataset includes 70 subjects performing a wide range of poses.
Our capture setup allows us to capture images simultaneously frommultiple
viewpoints under 331 One-Light-At-a-Time lighting conditions.

et al. 2018]. The perceptual loss is calculated using an ℓ1 distance
in feature space. Features are extracted using a pre-trained VGG
architecture: in particular only the two first convolutional layers
are used.

Fig. 8. Examples of automatically discarded OLAT images that could corrupt
the training data due to lens flares.

5.1 Qualitative Results
We here show multiple test results generated with our system and
analyze the various capabilities.

Rendering Under Novel Illumination. Wefirst show that the system
is able to synthesize any desired directional lighting condition. Re-
sults are shown in Figure 9, top row. Please note the recovered high
frequency details such as specularities on the forehead and view
dependent effects. In Section 6 we show how to linearly combine
multiple directional light sources to perform HDRI relighting.

Rendering Novel Viewpoints. In Figure 9, middle row, we demon-
strate the capabilities of our system by rendering a subject from com-
pletely novel viewpoints. As can be seen, the images are compelling
throughout the multiple rendered viewpoints. In the supplementary
video we show multiple fly through examples where the method
handles changing direction as well as scaling.

Rendering Diverse Appearances. In Figure 9, bottom row we show
additional results of generated lighting and viewpoints on a diverse
set of multiple performers. Note how we are able to render com-
plex hair shapes (third and sixth examples), general apparel (first
example), and self occlusions (fifth column).
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Fig. 9. Examples of synthesized results. Top: a fixed subject and viewpoint with changing lighting direction. Middle: a fixed subject and illumination with
changing viewpoint. Bottom: rendered subjects with different viewpoints and illumination.

Simultaneous Light, View and Appearance Rendering. In Figure 10,
we demonstrate our systems ability to relightmoving subjects under
new lighting conditions and any desired viewpoint. Additionally,
thanks to the use of 1 × 1 convolutions in UV space, the system
handles different UV parameterizations changing appearance over
time.
In contrast to other work [Thies et al. 2019] that would need to

train a neural texture for every new UV parameterization, our frame-
work directly infers a neural texture at test time. We observe that
such generated temporal sequences show a remarkable amount of
temporal stability and a high degree of photorealism. More examples
are shown in the supplementary video.

Alpha Mask Prediction. As by product, our method can predict
an alpha mask which is key for convincing compositing of the
performers in any desired environment. In Figure 11 we show the
predicted mask for selected viewpoints and subjects. The inferred
matte captures a fair amount of details, however it is still far from
the groundtruth quality. This is somehow expected since the mask
prediction network needs to handle any desired viewpoint, differ-
ently from the groundtruth mattes that can be only acquired from
fixed camera positions. Please see more results in the supplemen-
tary video, where temporal stability can also be appreciated. For

practical applications such as relighting and compositing (Section
6) we found the alpha prediction to be fairly effective.

5.2 Comparisons with State-of-the-Art
We here compare the method with the state-of-the-art. In particular
we selected traditional computer graphics approaches ([Guo et al.
2019; Wenger et al. 2005b]) as well as recent neural rendering-based
methods [Martin-Brualla et al. 2018; Meka et al. 2019; Thies et al.
2019]. Note that many of these methods can only perform one single
task at a time such as view synthesis or light interpolation and may
not be applicable to dynamic sequences. As discussed in Table 1, our
method uniquely supports all of the capabilities of these methods
simultaneously.

Rendering Novel Viewpoints. In Figure 12 we compare our method
to other state-of-the-art methods for novel view synthesis. Notice
how our results are comparable and often superior to the state-of-
the-art method of Thies et al. [2019], which requires to be trained
per object, or every time the UV parameterization changes. Our
method instead is able to support dynamic sequences with changing
UV parameterization and relighting (Figure 10), all capabilities that
Thies et al. [2019] cannot achieve.

Additionally, despite being trained on images containing the
masked foreground, Thies et al. [2019] does not predict an explicit
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Fig. 10. Simultaneous Illumination, Viewpoint and Appearance Synthesis of Dynamic Performers. Thanks to the use of 1 × 1 convolutions in UV space, our
method handles different UV parameterizations depicted in the top right corner of each frame.

background or alpha mask, hence the method cannot be used di-
rectly for compositing applications and often leads to inconsistent
background over time as shown in the supplementary video.

Compared to Martin-Brualla et al. [2018], our method better gen-
eralizes to free-viewpoint camera trajectories, keeps high frequency
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Fig. 11. Alpha prediction results. The predictedmattes are key for convincing
compositing effects from any desired viewpoint.

details sharper and view dependent effects follow the target view-
point more naturally (see supplementary video). This is somehow
expected as Martin-Brualla et al. [2018] method is a particular case
of the framework we propose: indeed in Martin-Brualla et al. [2018],
authors use a neural re-renderer on images rendered by a computer
graphics pipeline, whereas our approach generates neural features
directly from input images.

In comparison with state-of-the-art volumetric capture pipelines
[Guo et al. 2019], our approach leads to more photorealistic results
since it does not make any approximation on the BRDF model and
learns the rendering function directly from the data. Additionally,
like other neural rendering methods, our approach is more robust
to geometry imperfections.

Rendering Under Novel Illumination. In Figure 13 we compare our
method to other state-of-the-art algorithms for relighting. In this
case, our results outperform the competitors, while maintaining the
additional capabilities outlined in Table 1.

Indeed, methods like Guo et al. [2019] and Wenger et al. [2005b]
rely on standard computer graphics rendering techniques with ap-
proximated BRDF models. These systems cannot capture complex
light transport effects, limiting their realism. For instance Guo et al.
[2019] relies on a cosine lobe model [Fyffe et al. 2009], where the
shininess factor does not capture specularities and view dependent
effects. Whereas HDRI lighting results shown in the original pa-
per are impressive, these maps are usually well approximated by
low-frequency lighting conditions where specularities play a mar-
ginal role. On the contrary, when we use a single directional light
instead (e.g. sunlight), like in our comparisons, these high order,
light transport effects become more evident and crucial to achieve
photorealism.
On the other hand, machine learning based methods can learn

these complex light transport interactions directly from the data.

Fig. 12. Comparisons with state-of-the-art methods on the view synthesis
task. Note how our framework is on par and often better than other neu-
ral rendering methods [Martin-Brualla et al. 2018; Thies et al. 2019] and
computer graphics pipelines [Guo et al. 2019].

The method of Meka et al. [2019] was retrained on our dataset
and, as shown in Figure 13, it is able to generalize well to full body
captures, despite being designed for facial performances. However,
since it is an image based method, it cannot handle self-occlusions
accurately as demonstrated in Figure 13, first column. Moreover the
approach is limited to fixed viewpoints and it cannot synthesize
novel views.
Thanks to the underlying geometry, the proposed approach is

designed to handle full body performance capture, relightability
from multiple viewpoints and complex light transport effects that
are learned directly from the data.
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Fig. 13. Above we demonstrate how our results are comparable or superior
to state-of-the-art neural rendering methods such as Meka et al. [2019]
that can control the light from a fixed view during a performance capture.
The underlying geometry allows for better occlusion handling compared to
Meka et al. [2019]. In comparisons with computer graphics pipelines [Guo
et al. 2019; Wenger et al. 2005a], our approach achieves more photorealistic
results.

5.3 Quantitative Results
To complete our analysis, we also perform quantitative evaluations
on test subjects, reporting the metrics described in Section 5.
Table 2 shows a quantitative analysis for the proposed method

and compares it with state-of-the-art approaches. We conducted

the evaluation on two different tasks: novel view synthesis and
relighting. Our method is able to simultaneously perform both tasks.
The results are given in Table 2. Note that the only method that is
able to perform simultaneous view synthesis and relighting is the
approach of Guo et al. [2019]: the proposed framework is able to
outperform it substantially on both tasks on all absolute image error
metrics.
The top part of Table 2 shows how our method performs com-

parable to other related works for novel view synthesis, achieving
similar results in terms of photometric, PSNR, MS-SSIM and also
perceptual dissimilarity. While other neural rendering methods such
as Martin-Brualla et al. [2018] perform slightly better than our ap-
proach, note however that the method performs poorly for arbitrary
camera trajectories, exhibiting strong temporal artifacts that are not
captured by these metrics (see supplementary video).
Regarding the relighting task, the bottom part of Table 2 shows

how our method performs very similarly and marginally better than
the relighting method of Meka et al. [2019] and outperforms the
others significantly. Please note that our method can also perform
novel-view synthesis, unlike the competing method of Meka et al.
[2019].

In practice, it is important to note that these metrics only capture
a holistic view of the rendered images and they do not really provide
useful insights on important details such as view dependent effects,
specular highlights, shadows, complex geometric shapes such as
hair. These details are very important to achieve photorealism and
we refer the reader to the qualitative results and the supplementary
video for more exhaustive comparisons.

5.4 Ablation Study
In this section we study the effects of various design decisions in
our pipeline.

5.4.1 Use of Light Visibility Maps. We evaluate the advantage of
using a light visibility map. This map provides very strong cues
on occlusion shadows and intensity of the light. Without such a
map, the network would spend a lot of capacity trying to add con-
vincing shadows. As can be seen in Figure 14, the realism of the
novel renderings suffers without this map. Notably, these shadows
come from the approximate acquired geometry, which generates
rough visibility maps and does not model high frequency details,
nevertheless, the network is able to compensate for many of these
issues shown in the Figure.

5.4.2 Use of Reflection Maps. The reflection map guides the net-
work towards specularities and view dependent effects. The im-
portance of this input is shown in Figure 15. For this particular
experiment we focused on very challenging illumination conditions,
to highlight the view dependent effects. Note how the renderings
generated with the network without reflection map have a more
diffuse look and they are overall lower quality. This is expected
since the network has no clue where specularities should occur and
will try to hallucinate (memorize) them. On the other hand, by using
the reflection map as input, the network’s task reduces to learning
the material properties (e.g. clothing vs skin).
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Table 2. Quantitative evaluations on test images. We compare our method on two tasks: view synthesis and novel lighting. Note that some competitors cannot
handle both the tasks simultaneously and we mark them as Not Applicable (N/A). Perceptual error [Zhang et al. 2018] corresponds to the squared Euclidean
distance between feature representations extracted using a pre-trained VGG model (the highest resolution feature map of the encoder is used). In bold we
show the best overall metrics, in red we show the best method among the approaches that support simultaneous view synthesis and relighting.

Proposed Guo et al. [2019] Thies et al. [2019] Martin-Brualla et al. [2018] Wenger et al. [2005a] [Meka et al. 2019]
Novel View Photometric Error ↓ 1.5672 3.2339 2.0499 1.5211 N/A N/A

PSNR ↑ 34.0750 28.6620 31.9682 34.3952 N/A N/A
MS-SSIM ↑ 0.9705 0.9425 0.9630 0.9729 N/A N/A
Perceptual ↓ 0.0583 0.0834 0.0713 0.0561 N/A N/A

Novel Illumination Photometric Error ↓ 2.4560 4.054 N/A N/A 2.6830 2.5336
PSNR ↑ 31.5059 27.5980 N/A N/A 30.6604 31.4041
MS-SSIM ↑ 0.9495 0.9130 N/A N/A 0.9424 0.9449
Perceptual ↓ 0.0634 0.0870 N/A N/A 0.0660 0.0649

Fig. 14. Light visibility map ablation. See how self occlusions and shadows
are better captured thanks to the proposed approach.

5.4.3 Neural Renderer Size. In this experiment we evaluate the
impact of the neural rendering size. In particular we consider the
architecture presented in Section 3.3 in the main paper and remove
half of the layers. In Figure 16 we show a comparison between the
two architectures. The small neural rendering module is able to
capture the majority of the details including view dependent effects

Fig. 15. Reflection map ablation. The reflection map is the key to recover
view dependent effects in challenging illumination conditions. Note how
without this map, the subject looks more diffuse and lacks photorealism.

on the skin. Not surprisingly, the bigger architecture does a better
job in terms of sharpness, however this demonstrates that smaller
architectures are still valuable when efficiency becomes a critical
constraint.
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Fig. 16. Neural renderer size ablation. We compare the full size neural
rendering module described in Section 3.3 in the main paper, with a model
that has half the number of layers and therefore lightweight. Notice how
even the small model is able to capture the majority of the details including
specularities on skin. The large model is however able to retrieve sharper
results as expected.

Fig. 17. Generalization experiment comparing an unseen subject (right)
with the same fine-tuned model on the subject (middle). View and light
condition are both unseen to the network.

5.4.4 Seen vs Unseen Subjects. Here we compare our model trained
on all the subjects with the same model but fine-tuned on an unseen
performer. The fine-tuning can be efficiently done in a few hours of
training: empirically we found the neural renderer is the component
that benefits the most from this. Indeed, whereas the feature extrac-
tors may capture more general properties of the human bodies, the
neural renderer module is more dependent on the specific geometry
as also shown by Martin-Brualla et al. [2018].
The goal of this experiment is to demonstrate generalization ca-

pabilities with respect to appearance. Figure 17 shows the results.
Overall the model generalizes well on the unseen performer, thanks

to the feature extractors that can build neural textures on the fly
and the 1 × 1 convolutions that do not depend on the specific pa-
rameterization.
Some loss in sharpness is however noticeable and for brightly-

hued scenes a slight color shift may occur, which we argue is due
to the small training dataset, which does not contain enough vari-
ability. In practice, this can be mitigated by recording a short OLAT
sequence for each new subject before the actual performance, and
fine-tune the neural renderer. This seems a reasonable approach
since introduces very little overhead to the system.

6 FREE-VIEWPOINT RELIGHTING AND COMPOSITING
The ambitious goal of a volumetric capture system consists of ren-
dering captured humans photorealistically in virtual scenes with
convincing illumination. To do so, three main components are nec-
essary: free viewpoint rendering, relighting and compositing. Rel-
atively few earlier methods [Einarsson et al. 2006; Guo et al. 2019;
Li et al. 2013; Theobalt et al. 2007] have demonstrated this for dy-
namic performances, with the latest method by Guo et al. [2019]
showing the highest visual quality. Although the improvements
over previous work are consistent, their final results are still far
from photorealistic (discussed in the Appendix). In this section we
show that our framework is the first neural rendering approach
able to achieve free-viewpoint relighting and compositing of dy-
namic performances, surpassing the state-of-the-art in terms of
photorealism.

6.1 Static HDRI Relighting
Our system is able to infer OLAT images from any desired viewpoint,
and, due the additive property of light, an image can be rendered
under a completely arbitrary lighting condition, albeit with a fair
amount of computation.
To achieve this, following the seminal work of Debevec et al.

[2000], we render a dense set of (331) OLAT images covering the
shell of the Light Stage. For an arbitrary lighting condition, encoded
as a full HDR map, one can look up a weight in the map for each
light in the stage. The OLAT images can then be linearly combined,
using the looked up weights as coefficients, to obtain a realistic
image of the subject under the desired lighting condition.

In order to generate compelling compositing results, we leverage
the alpha mask prediction networks to blend the relit foreground
into a new background. Thus we realistically augment virtual scenes
with arbitrary lighting conditions.

Figure 18 shows our synthesized images and compares them
with the groundtruth compositing and with the method of Guo
et al. [2019]. Note how our framework generates visually pleasant
images with an increase in photorealism. Although we rely on the
same geometry of Guo et al. [2019], our neural renderer is able to
mitigate imperfections, particularly in hair and on the neck. View
dependent effects and specularities are better captured, especially
in environments with strong directional light sources. Finally, our
alpha mask prediction provides a more convincing blending with
the virtual environments.
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Fig. 18. Relighting and Compositing results from multiple viewpoints. For a set of fixed viewpoints and a static subject, the acquired OLATs and alpha masks
are used to generate the groundtruth compositing. Our method shows an increase of photorealism compared to Guo et al. [2019]: note how imperfections in
the geometry are mitigated, view dependent effects are better captured and the predicted alpha masks allow for more convincing compositing results.

6.2 Dynamic HDRI Relighting
Whenwe consider sequences withmoving performers, OLAT images
cannot be captured since they require the subject static for the
whole acquisition. Only a few methods can provide simultaneous
free-viewpoint synthesis and relighting of dynamic performances
[Einarsson et al. 2006; Guo et al. 2019; Li et al. 2013; Theobalt et al.
2007], and the work of Guo et al. [2019] is the most advanced one
achieving the highest visual fidelity. Here we demonstrate that our
work achieves more convincing results also in this setting.

To perform HDRI relighting of a dynamic sequence, OLAT images
must be available for each frame. In particular, for a 10 seconds clip
at 60Hz (600 frames per sequence), we need to run our method to
generate 200, 000 OLATs. We recall that once we build the neural

textures, only the neural rendering needs to run to generate novel
viewpoints and lighting conditions. This can be efficiently done
with a cloud implementation, that takes roughly 2 hours to generate
all the outputs. In fact, a non-optimized CPU implementation runs
roughly at 1 fps per rendering, which is already sufficient to generate
renderings at scale in the cloud with no manual intervention.
In Figure 19, we compare our approach with Guo et al. [2019].

Note how our approach generates more realistic images in every
environment. In particular, our renderings look more visually pleas-
ant when a strong directional light is in the scene (first column).
We are also able to capture complex geometric structure such as
hair (second and third column). View dependent effects are better
modeled by the neural renderer (see first and fourth example). Fi-
nally, because of the predicted alpha mask, our renderings have a
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Fig. 19. Dynamic HDRI Relighting and Compositing from arbitrary viewpoints. Our method provides more visually pleasant results compared to the previous
state-of-the-art approach of Guo et al. [2019]. Note how our approach mitigates geometric errors in complex structure such as hair, view dependent effects are
better captured by the neural renderer and our alpha mask prediction enables a more natural blend of the subject in the virtual scene.

more natural silhouette and they blend more naturally into the envi-
ronment. More examples can be appreciated in the supplementary
video.

7 LIMITATIONS
Although our neural rendering approach achieves consistently higher
quality compared to standard graphics rendering pipelines, it still
has its limitations. Similar to previous performance capture works
[Collet et al. 2015; Guo et al. 2019], it requires an elaborate multi-
view setup with custom hardware, due to which this high-quality
performance capture can only be performed in a studio and does not
generalize to in-the-wild settings. Note that while our framework
uses 58 RGB cameras, this is still substantially lower than neural
rendering based volumetric capture methods [Mildenhall et al. 2020;
Thies et al. 2019] that require hundreds or even thousands of views.

Our method also generates very strong view and light-direction
dependent specular effects. But these specularities can sometimes
have a ‘flat’ appearance due to the low dynamic range of our input
and output images, as apparent in the eye and hair regions in Figure
20. This can be improved using HDR cameras with higher bit-depth.
The limitation of convolutional neural networks in generating very
high spatial frequencies, or the implicit spatial smoothness in their
output, can also be a contributing factor. Recent work has shown
that using periodic activation functions [Sitzmann et al. 2020] in the
network architecture or applying fourier feature mapping [Tancik

et al. 2020] to the input and output images may help in resolving
this issue.
While the method offers a good degree of robustness to imper-

fections in geometry estimate, it still suffers when poor 3D recon-
struction leads to large pieces of missing surfaces. These are likely
irrecoverable as the projected neural texture must be in the recep-
tive field of the feature extractor and neural renderer for infilling to
occur. Similarly, non-opaque surfaces such as glasses or jewelry that
exhibit transparency, scattering and refraction effects will introduce
large geometric errors causing the neural texture to be projected to
incorrect portions of the image. Examples of these limitations can
be observed in Figure 20.

While our result look photorealistic, the network introduces some
blur and loss in resolution when compared to the actual groundtruth
images. In brightly-hued apparel we also sometimes notice a slight
color shift. The predicted alpha mask is also not always of the
same quality as the groundtruth matte. These limitations are more
evident in unseen subjects, although this can be mitigated either
by acquiring a larger training set with more variability or simply
by capturing an extra static OLAT sequence per performer, which
introduces a 6 second recording overhead that is, in our experience,
relatively minor.
Finally, leveraging the additive property of light to perform re-

lighting under an arbitrary lighting condition produces a bottleneck
as our system must first render 331 OLATs per frame. Although
this can be done efficiently with a parallel processing system in the
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Fig. 20. Examples of failure cases. Despite the achieved photorealism com-
pared to previous work, very high frequency details such as earrings and
individual hair strands are not correctly recovered.

cloud, more compact lighting representations can be used to enable
real-time HDRI relighting.

8 DISCUSSION
We presented a novel system that makes significant progress to-
wards achieving photorealism for relightable humans in motion
synthesized from arbitrary viewpoints. The key intuition is the
employment of a neural renderer that leverages an approximate
mesh, but crucially can compensate for errors in the geometry and
reflectance properties.

This is achieved by sampling a learned neural texture and using
an image-space neural renderer to synthesize the final output image.
Contrary to other work that optimizes a neural texture to reproduce
a set of ground truth images [Thies et al. 2019], our system can
directly infer neural textures from multi-view color gradient images
for a new subject. As result, the proposed framework provides a
practical way to control lighting and viewpoint while changing the
appearance of the subject.
Interesting directions of future work could be to remove the

dependency on a mesh with an explicit UV parameterization. Also,
removing the computationally intensive requirement of rendering a
full set of OLATs in order to generate a relit image for a given HDRI
map and instead directly rendering the desired image could also be
practically impactful. Finally, the proposed system gives an effective
way to generate ground truth at scale of moving performers.
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PRELIMINARIES ON VOLUMETRIC PERFORMANCE
CAPTURE
In this Appendix, we give the reader more context regarding state-
of-the-art volumetric performance capture pipelines and their main
drawbacks. The goal is to provide additional motivations for our
work and in more general, the use of neural rendering for perfor-
mance capture.

Volumetric capture, also known as free viewpoint videos, started
with early works of Starck and Hilton [2007]; Tanco and Hilton
[2000] and it has recently gained a lot of attention in the context of
AR/VR [Collet et al. 2015]. Previous works [Li et al. 2013; Theobalt
et al. 2007] have also shown how to capture dynamic subjects and
relight them for more convincing renderings. Recent advances in
Guo et al. [2019] pushed the technology even further, achieving
convincing results.

In the following, we analyze the recent work of Guo et al. [2019],
being currently the most advanced volumetric capture pipeline with
realistic relighting, and describe its drawbacks in detail. Note that
the elements discussed here are general and valid for many related
works, since often these systems [Collet et al. 2015; Dou et al. 2017,
2016; Guo et al. 2019] share many similarities and building blocks.
A performance capture system usually consists of three main

components: geometry acquisition, reflectance estimation, and ren-
dering, which are depicted in Figure 21.

In Guo et al. [2019], 3D geometry is captured using 16 high resolu-
tion custom active depth sensors, which provide𝑚𝑚 precision in the

considered range. The well established screened Poisson reconstruc-
tion [Kazhdan and Hoppe 2013] is used to obtain a 3D mesh. Despite
the advances in 3D reconstruction, any mesh of a reasonable size
and resolution would struggle at capturing very complex structures
such as hair, which is one of the main limitations highlighted in
Guo et al. [2019]. Once a 3D mesh is available, these systems [Collet
et al. 2015; Guo et al. 2019] retrieve a parameterization often using
the UVAtlas algorithm [Microsoft 2014]. The parameterized mesh
allows for a common 2D texture space for all the multiview im-
ages. In order to build a texture map, a typical approach [Carranza
et al. 2003; Collet et al. 2015] is to compute a weighted average of
all views based on the surface normals and view direction of each
camera. However, due to imperfect geometry and sub-pixel camera
miscalibration, the rendered images are less detailed compared to
the original raw images.
Reflectance Estimation in [Guo et al. 2019] relies on two lighting

conditions proposed in [Fyffe et al. 2009]. In particular, the system
captures two interleaved gradient illumination conditions. Con-
secutive frames are aligned through 2D optical flow, allowing for
per-pixel correspondences in UV space between the two comple-
mentary illumination conditions. A cosine lobe model is then used
to retrieve material properties such as albedo, gloss map and surface
normals via simple per-pixel operations in RGB space. This com-
ponent has multiple limitations: first, it relies on perfectly aligned
gradient illumination conditions in texture space; second it assumes
a hand-crafted cosine lobe BRDF, which, as detailed in the original
paper [Guo et al. 2019], cannot accurately model specular highlights
and view dependent effects due to its approximations; finally, per-
pixel operations in RGB space are very sensitive to image noise.

Photorealistic Rendering of humans using traditional computer
graphics pipelines remains a very challenging and an active topic of
research. Recent movie productions [Seymour 2020] model geome-
try and texture up to pore-level and use multiple post-production
effects to create realistic looking imagery of humans. But even given
perfect geometry and material properties, photorealistic rendering
of many people at scale (i.e. with no manual post-processing by
skilled 3D artists) remains an unsolved problem.

Examples of these drawbacks are depicted in Figure 22. In b), we
show a model with pre-baked (fixed) lighting (Figure 22, matching
the groundtruth photograph (Figure 22, a). This shows a high degree
of photorealism, and when a desired lighting condition is known,
capturing in this modality always guarantees the best possible re-
sults, note however that this model is not relightable. Additionally,
despite this subject having a simple geometry, fine details like ear-
rings are not correctly captured and view dependent effects (e.g.
specular highlights) are also baked-in and do not follow the actual
camera viewpoint.

More commonly, volumetric capture systems usually acquire per-
formers with fully lit illumination, which approximates their albedo
(Figure 22, c). This modality still looks compelling in terms of quality
and photorealism, but it does not match the desired illumination.
The system of Guo et al. [2019], allows for the estimation of re-

flectance maps such as albedo, photometric normals and gloss map.
This model offers relightability and can be rendered in new environ-
ments. In Figure 22, d,e, we show examples of diffuse renderings and
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Fig. 21. Preliminaries on performance capture. A state-of-the-art volumetric capture and rendering pipeline (e.g. [Guo et al. 2019]) estimates a parameterized
mesh using custom high resolution depth sensors. RGB images are acquired with interleaved spherical gradient illuminations that are used to estimate the
reflectance maps. However, dense but finite resolution of the mesh model does not capture fine details such as hair; imperfect geometry and calibration may
cause oversmooth texture maps. Hand-crafted BRDF models cannot accurately model high frequency details and view dependent effects. Finally, Physically
Based Rendering is still a challenging topic especially when performed at scale with no manual post-processing. See text for details.

Fig. 22. Comparison between a captured photograph (a) and various rendering techniques. A 3D model captured with baked-in lighting (matching the
photograph conditions) achieves the highest level of photorealism (b), this model is however not relightable and does not capture view dependent effects. The
rendered albedo computed using Guo et al. [2019] also exhibits high degree of photorealism (c), but it does not match the photo illumination. When we relight
the same model under the desired lighting condition, then the results start to move away from photorealism (d,e). See text for details.

the full model used by Guo et al. [2019]. Despite the evident improve-
ments over previous work the final renderings start to look uncanny
and not realistic due to the approximations discussed above.

These preliminaries motivate our approach and, more in general,
the use of neural rendering for performance capture. Whereas im-
proving traditional geometric reconstruction and rendering pipelines

will still cover a key role for the next few years, we believe that
neural rendering approaches, such as ours, will become more popu-
lar to overcome the limitations we discussed. As demonstrated in
this paper, our goal is to enhance traditional performance capture
systems and push the limits of photorealism.

ACM Trans. Graph., Vol. 39, No. 6, Article 259. Publication date: December 2020.


	Abstract
	1 Introduction
	2 Related Work
	3 Neural Rendering for Performance Capture
	3.1 Inputs and Feature Extraction
	3.2 Learn to Regress the Texture Space
	3.3 Neural Rendering

	4 Training Details
	4.1 Groundtruth Acquisition
	4.2 Loss Functions
	4.3 Implementation Details

	5 Evaluation
	5.1 Qualitative Results
	5.2 Comparisons with State-of-the-Art
	5.3 Quantitative Results
	5.4 Ablation Study

	6 Free-Viewpoint Relighting and Compositing
	6.1 Static HDRI Relighting
	6.2 Dynamic HDRI Relighting

	7 Limitations
	8 Discussion
	References

