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Our novel monocular reconstruction approach estimates high-quality facial geometry, skin reflectance (including facial hair)
and incident illumination at over 250 Hz. A trainable multi-level face representation is learned jointly with the feed forward
inverse rendering network. End-to-end training is based on a self-supervised loss that requires no dense ground truth.

Abstract

The reconstruction of dense 3D models of face geom-
etry and appearance from a single image is highly chal-
lenging and ill-posed. To constrain the problem, many ap-
proaches rely on strong priors, such as parametric face
models learned from limited 3D scan data. However, prior
models restrict generalization of the true diversity in fa-
cial geometry, skin reflectance and illumination. To alle-
viate this problem, we present the first approach that jointly
learns 1) a regressor for face shape, expression, reflectance
and illumination on the basis of 2) a concurrently learned
parametric face model. Our multi-level face model com-
bines the advantage of 3D Morphable Models for regular-
ization with the out-of-space generalization of a learned
corrective space. We train end-to-end on in-the-wild im-
ages without dense annotations by fusing a convolutional
encoder with a differentiable expert-designed renderer and
a self-supervised training loss, both defined at multiple de-
tail levels. Our approach compares favorably to the state-
of-the-art in terms of reconstruction quality, better general-
izes to real world faces, and runs at over 250 Hz.

1. Introduction

Monocular face reconstruction has drawn an incredible
amount of attention in computer vision and graphics in the
last decades. The goal is to estimate a high-quality per-
sonalized model of a human face from just a single photo-
graph. Such a model ideally comprises several interpretable
semantic dimensions, e.g., 3D facial shape and expressions

as well as surface reflectance properties. Research in this
area is motivated by the increasing availability of face im-
ages, e.g., captured by webcams at home, as well as a wide
range of important applications across several fields, such
as facial motion capture, content creation for games and
movies, virtual and augmented reality, and communication.

The reconstruction of faces from a single photograph is
a highly challenging and ill-posed inverse problem, since
the image formation process convolves multiple complex
physical dimensions (geometry, reflectance and illumina-
tion) into a single color measurement per pixel. To deal
with this ill-posedness, researchers have made additional
prior assumptions, such as constraining faces to lie in
a low-dimensional subspace, e.g., 3D Morphable Models
(3DMM) [8] learned from scan databases of limited size.
Many state-of-the-art optimization-based [6, 7, 52, 61, 26]
and learning-based face reconstruction approaches [16, 48,
49, 62, 60] heavily rely on such priors. While these algo-
rithms yield impressive results, they do not generalize well
beyond the restricted low-dimensional subspace of the un-
derlying model. Consequently, the reconstructed 3D face
may lack important facial details, contain incorrect facial
features and not align well to an image. For example,
beards have shown to drastically deteriorate the reconstruc-
tion quality of algorithms that are trained on pure synthetic
data [48, 49, 54] or employ a 3DMM for regularization
[8, 61, 26, 62, 60]. Some approaches try to prevent these
failures via heuristics, e.g., a separate segmentation method
to disambiguate disjunct skin and hair regions [52]. Recent
methods refine a fitted prior by adding fine-scale details, ei-
ther based on shape-from-shading [26, 48] or pre-learned
regressors [16, 49]. However, these approaches rely on



Figure 1. Our approach regresses a low-dimensional latent face representation at over 250 Hz. The feed forward CNN is jointly learned
with a multi-level face model that goes beyond the low-dimensional subspace of current 3DMMs. Trainable layers are shown in blue and
expert-designed layers in gray. Training is based on differentiable image formation in combination with a self-supervision loss (orange).

slow optimization or require a high-quality annotated train-
ing corpus. Besides, they do not build an improved sub-
space of medium-scale shape, reflectance and expression,
which is critical for generalization. Very recently, Sela et
al. [54] predicted a per-pixel depth map to deform and fill
holes of a limited geometry subspace learned during train-
ing. While the results are impressive, the non-rigid registra-
tion runs offline. Furthermore, their method captures face
geometry only and fails if the faces differ drastically from
the training corpus, e.g., in terms of skin reflectance and fa-
cial hair. Ideally, one would like to build better priors that
explain a rich variety of real-world faces with meaningful
and interpretable parameters. Learning such models in the
traditional way requires large amounts of densely labeled
real world data, which is practically infeasible.

We present an entirely new end-to-end trainable method
that jointly learns 1) an efficient regressor to estimate
high-quality identity geometry, face expression, and col-
ored skin reflectance, alongside 2) the parameterization of
an improved multi-level face model that better generalizes
and explains real world face diversity. Our method can
be trained end-to-end on sparsely labeled in-the-wild im-
ages and reconstructs face and illumination from monocu-
lar RGB input at over 250 Hz. Our approach takes advan-
tage of a 3DMM for regularization and a learned corrective
space for out-of-space generalization. To make end-to-end
training on in-the-wild images feasible, we propose a hy-
brid convolutional auto-encoder that combines a CNN en-
coder with a differentiable expert-designed rendering layer
and a self-supervision loss, both defined at multiple levels
of details. In addition, we incorporate a novel contour con-
straint that generates a better face alignment. Unlike Tewari
et al. [60], our auto-encoder learns an improved multi-level
model that goes beyond a predefined low-dimensional para-
metric face prior. Experimental evaluations show that our
approach is more robust, generalizes better, and estimates
geometry, reflectance and lighting at higher quality.

2. Related Work

We focus our discussion on optimization- and learning-
based approaches that employ parametric models. While

high-quality multi-view 3D reconstruction methods [4, 13,
5, 24, 30, 69] exist, we are interested in the harder monocu-
lar reconstruction problem.

Parametric Face Models: The most widely used face
model is the 3D Morphable Model (3DMM) [8], which is
an affine parametric model of face geometry and texture
that is learned from high quality scans. A similar model
for facial animation is presented in [6]. Recently, Booth et
al. [11] created a Large-scale Facial Model (LSFM) from
around 10,000 facial scans which represents a richer shape
distribution. In Booth et al. [10], the face model is aug-
mented with an ‘in-the-wild’ texture model. Fitting such a
model to an image is a non-convex optimization problem,
akin to frameworks based on Active Shape (ASMs) [22]
and Appearance (AAMs) [21] Models. Although 3DMMs
are highly efficient priors, they limit face reconstruction to a
restricted low-dimensional subspace, e.g., beards or charac-
teristic noses can not be reconstructed. We, on the contrary,
extend the limited subspace by jointly learning a correction
model that generalizes much better to real-world data.

Optimization-based Approaches: Many approaches
for monocular face reconstruction [50], reconstruction
based on image collections [51], and the estimation of high-
quality 3D face rigs [26] are based on energy optimization.
Impressive face reconstruction results have been obtained
from varying data sources, e.g., photo collections [36], in-
ternet photos [35] or videos [59]. Also, methods that do not
rely on a trained shape or appearance model have been pro-
posed, e.g., they use a model obtained using modal analysis
[1], or leverage optical flow in combination with message-
passing [25]. While real-time face tracking is in general
feasible [61, 31], optimization-based face reconstruction is
computationally expensive. Moreover, optimization-based
approaches are sensitive to initialization, thus requiring 2D
landmark detection [66, 34]. Some approaches allow the 3D
face silhouette to slide over a predefined path (e.g., isolines)
[17, 71] or iterate over a fixed vertex set to find 3D contour
correspondences [23]. Our approach requires neither an ex-
pensive optimization strategy nor parameter initialization,
yet it accurately fits a 3D face mesh to an image by taking
silhouettes into account during training.



Learning-based Approaches: In addition to
optimization-based reconstruction approaches, there
are many learning-based methods [72, 41, 27, 20, 56].
Among them there are methods that learn to detect fiducial
points in images with high accuracy, e.g., based on CNNs
[58, 70, 15] or Restricted Boltzmann Machines [67].
Furthermore, we can also find (weakly) supervised deep
networks that integrate generative models to solve tasks
like facial performance capture [39]. Ranja et al. [47]
proposed a multi-purpose CNN for regressing semantic
parameters (e.g., age, gender, pose) from face images.
Richardson et al. [48] proposed a hybrid learning- and
optimization-based method that reconstructs detailed facial
geometry from a single image. The work presented in [49]
train an end-to-end regressor to recover facial geometry at a
coarse- and fine-scale level. In [62], face shape and texture
are regressed for face identification. The generalization of
the latter face reconstruction approaches ([48, 49, 62]) to
the real-world diversity of face is limited by the underlying
low-dimensional face model.

Corrective Basis and Subspace Learning: Face re-
construction quality can be improved by adding medium-
scale detail. Li et al. [40] use incremental PCA for on-the-
fly personalization of the expression basis. Bouaziz et al.
[12] introduced medium-scale shape correctives based on
manifold harmonics [65]. Recently, Garrido et al. [26] pro-
posed to learn medium-scale shape from a monocular video
based on a fixed corrective basis. Sela et al. [54] directly
regress depth and per-pixel correspondence, thus going be-
yond the restricted subspace of a 3DMM. Nonetheless, they
do not recover colored surface reflectance and require an
off-line non-rigid registration step to obtain reconstructions
with known consistent topology. To the best of our knowl-
edge, there is no algorithm that jointly learns geometry and
reflectance correctives from in-the-wild images.

Deep Integration of Generative Models: The seminal
work by Jaderberg et al. [32] introduced spatial transformer
nets that achieve pose-invariance within a neural network.
The authors of [3] extend this work by using a 3DMM as
spatial transformer network. Perspective transformer nets
[68] are able to obtain a 3D object representation from a
single 2D image. The gvvn library [28] implements low-
level computer vision layers for such transformations. Re-
cently, a model-based face autoencoder (MoFA) [60] has
been proposed for monocular face reconstruction that com-
bines an expert-designed rendering layer with a trainable
CNN encoder. Their results are remarkable but limited
to the fixed low-dimensional subspace of the face model.
Out-of-subspace variation, e.g., facial detail and personal-
ized noses, are not reproduced and severely degrades the
reconstruction quality. Our approach addresses all these
challenges, achieving more robustness and higher quality
in terms of geometry and reflectance.

3. Method Overview
Our novel face reconstruction approach estimates high-

quality geometry, skin reflectance and incident illumination
from a single image. We jointly train a regressor for all di-
mensions on the basis of a concurrently learned multi-level
parametric face model, see Fig. 1.

Parameter Regression: At test time (Fig. 1, left), a
low-dimensional, yet expressive and discriminative, latent
space face representation is computed in under 4ms using a
feed forward CNN, e.g., AlexNet [38] or VGG-Face [45].
Our latent space is based on a novel multi-level face model
(Sec. 4) that combines a coarse-scale 3DMM with train-
able per-vertex geometry and skin reflectance correctives.
This enables our approach to go beyond the restricted low-
dimensional geometry and skin reflectance subspaces, com-
monly used by 3DMM-based methods for face fitting.

Self-Supervised Training: We train (Fig. 1, right)
the feed forward network jointly with the corrective space
based on a novel CNN architecture that does not rely on a
densely annotated training corpus of ground truth geometry,
skin reflectance and illumination. To this end, we combine
the multi-level model with an expert-designed image for-
mation layer (Sec. 5) to obtain a differentiable computer
graphics module. To enable the joint estimation of our
multi-level face model, this module renders both the coarse
3DMM model and the medium-scale model that includes
the correctives. For training, we employ self-supervised
loss functions (Sec. 6) to enable efficient end-to-end train-
ing of our architecture on a large corpus of in-the-wild face
images without the need for densely annotated ground truth.
We evaluate our approach qualitatively and quantitatively,
and compare it to state-of-the-art optimization and learning-
based face reconstruction techniques (see Sec. 7).

4. Trainable Multi-level Face Model
At the core of our approach is a novel multi-level face

model that parameterizes facial geometry and skin re-
flectance. Our model is based on a manifold template mesh
with N ∼ 30k vertices and per-vertex skin reflectance. We
stack the x-, y- and z-coordinates of all vertices vi ∈ V in
a geometry vector vf ∈ R3N . Similarly, we obtain a vector
of per-vertex skin reflectance rf ∈ R3N . We parameterize
geometry and reflectance as follows:

vf(xg) = vb(α) + Fg(δg|Θg) ∈ R3N (geometry), (1)

rf(xr) = rb(β) + Fr(δr|Θr) ∈ R3N (reflectance), (2)

where xg = (α, δg,Θg) and xr = (β, δr,Θr) are the ge-
ometry and reflectance parameters, respectively. At the base
level is an affine face model that parameterizes the (coarse)
facial geometry vb and (coarse) skin reflectance rb via a
low-dimensional set of parameters (α,β). In addition, we



employ correctives to add medium-scale geometry Fg and
reflectance Fr deformations, parametrized by (δg,Θg) and
(δr,Θr), respectively. A detailled explanation will follow
in Sec. 4.2. A combination of the base level model with the
corrective model yields the final level model, parameteriz-
ing vf and rf. In the following, we describe the different
levels of our multi-level face model.

4.1. Static Parametric Base Model

The parametric face model employed on the base level
expresses the space of plausible facial geometry and re-
flectance via two individual affine models:

vb(α) = ag +

ms+me∑
k=1

αkb
g
k (geometry) , (3)

rb(β) = ar +

mr∑
k=1

βkb
r
k (reflectance) . (4)

Here, ag ∈ R3N is the average facial geometry and ar ∈
R3N the corresponding average reflectance. The subspace
of reflectance variations is spanned by the vectors {br

k}
mr

k=1,
created using PCA from a dataset of 200 high-quality face
scans (100 male, 100 female) of Caucasians [8]. The geom-
etry subspace is split into ms and me modes, representing
shape and expression variations, respectively. The vectors
spanning the subspace of shape variations {bg

k}
ms

k=1 are con-
structed from the same data as the reflectance space [8]. The
subspace of expression variations is spanned by the vectors
{bg

k}
ms+me

k=ms+1 which were created using PCA from a sub-
set of blendshapes of [2] and [18]. Note that these blend-
shapes have been transferred to our topology using defor-
mation transfer [57]. The basis captures 99% of the vari-
ance of the used blendshapes. We employ ms = mr = 80
shape and reflectance vectors, andme = 64 expression vec-
tors. The associated standard deviations σg and σr have
been computed assuming a normally distributed population.
The model parameters (α,β) ∈ R80+64 × R80 constitute a
low-dimensional encoding of a particular face. Even though
such a parametric model provides a powerful prior, its low
dimensionality is a severe weakness as it can only represent
coarse-scale geometry.

4.2. Trainable Shape and Reflectance Corrections

Having only a coarse-scale face representation is one
of the major shortcomings of many optimization- and
learning-based reconstruction techniques, such as [8, 6, 61,
60]. Due to its low dimensionality, the base model de-
scribed in Sec. 4.1 has a limited expressivity for modeling
the facial shape and reflectance at high accuracy. A partic-
ular problem is skin albedo variation, since the employed
model has an ethnic bias and lacks facial hair, e.g., beards.
The purpose of this work is to improve upon this by learning

a trainable corrective model that can represent these out-of-
space variations. Unlike other approaches that use a fixed
pre-defined corrective basis [26], we learn both the gener-
ative model for correctives and the best corrective parame-
ters. Furthermore, we require no ground truth annotations
for geometry, skin reflectance and incident illumination.

Our corrective model is based on (potentially non-linear)
mappings F• : RC → R3N that map the C-dimensional
corrective parameter space onto per-vertex corrections in
shape or reflectance. The mapping F•(δ•|Θ•) is a function
of δ• ∈ RC that is parameterized by Θ•. The motivation
for disambiguating between δ• and Θ• is that during train-
ing we learn both δ• and Θ•, while at test time we keep
Θ• fixed and directly regress the corrective parameters δ•
using the feed forward network. In the affine/linear case,
one can interpret Θ• as a basis that spans a subspace of the
variations, and δ• is the coefficient vector that reconstructs
a given sample using the basis. However, in general we do
not assume F• to be affine/linear. The key difference to the
base level is that the correction level does not use a fixed
pre-trained basis but learns a generative model, along with
the coefficients, directly from the training data.

5. Differentiable Image Formation Model

To train our novel multi-level face reconstruction ap-
proach end-to-end, we require a differentiable image forma-
tion model. In the following, we describe its components.

Full Perspective Camera: We parameterize the posi-
tion and rotation of the virtual camera based on a rigid trans-
formation Φ(v) = Rv + t, which maps a model space 3D
point v onto camera space v̂ = Φ(v). Here, R ∈ SO(3)
is the camera rotation and t ∈ R3 is the translation vector.
To render virtual images of the scene, we use a full perspec-
tive camera model to project the camera space point v̂ into
a 2D point p = Π(v̂) ∈ R2. The camera model contains
the intrinsics and performs the perspective division.

Illumination Model: We make the assumption of dis-
tant lighting and approximate the incoming radiance using
spherical harmonics (SH) basis functions Hb : R3 → R.
We assume that the incoming radiance only depends on the
surface normal n:

B̃(r,n,γ) = r�
B2∑
b=1

γbHb(n) . (5)

Here, � denotes the Hadamard product, r is the surface re-
flectance andB is the number of spherical harmonics bands.
γb ∈ R3 are coefficients to control the illumination. Since
the incident radiance is sufficiently smooth, an average error
below 1% [46] can be achieved with only B = 3 bands in-
dependent of the illumination. This leads to ml = B2 = 9
variables per color channel.



Image Formation: Our differentiable image formation
layer takes as input the per-vertex shape and reflectance in
model space. This can be the model of the base level vb

and rb or of the final level vf and rf that include the learned
correctives. Let v`

i ∈ R3 and r`i ∈ R3 denote the posi-
tion and the reflectance of the i-th vertex for the base level
(` = b) and the final level (` = f). Our rendering layer
takes this information and forms a point-based rendering of
the scene, as follows. First, it maps the points onto camera
space, i.e., v̂`

i = Φ(v`
i ), and then computes the projected

pixel positions of all vertices as

u`
i(x) = Π(v̂`

i ) .

The shaded colors c`i at these pixel locations are computed
based on the illumination model described before:

c`i(x) = B̃(r`i , n̂
`
i ,γ) ,

where n̂`
i are the associated camera space normals to v̂`

i .
Our image formation model is differentiable, which enables
end-to-end training using back propagation. The free vari-
ables that the regressor learns to predict are: The model
parameters (α,β, δg, δr), the camera parameters R, t and
the illumination parameters γ. In addition, during training,
we learn the corrective shape and reflectance bases Θg , Θr.
This leads to the following vector of unknowns:

x = (α,β, δg, δr,R, t,γ,Θg,Θr) ∈ R257+2C+|Θg|+|Θr| .

6. Self-supervised Learning

Our face regression network is trained using a novel self-
supervision loss that enables us to fit our base model and
learn per-vertex correctives end-to-end. Our loss function
consists of a data fitting and regularization term:

Etotal(x) = Edata(x) + wregEreg(x) , (6)

where Edata penalizes misalignments of the model to the in-
put image andEreg encodes prior assumptions about faces at
the coarse and medium scale. Here, wreg is a trade-off factor
that controls the amount of regularization. The data fitting
term is based on sparse and dense alignment constraints:

Edata(x) = Esparse(x) + wphotoEphoto(x) . (7)

The regularization term represents prior assumptions on the
base and corrective model:

Ereg(x) = Estd(x)+Esmo+Eref(x)+Eglo(x)+Esta(x) .
(8)

In the following, the individual terms are explained in detail.

Figure 2. We distinguish between fixed and sliding feature points.
This leads to better contour alignment. Note how the outer contour
depends on the rigid head pose (left). The skin mask (right) is
employed in the global reflectance constancy constraint.

6.1. Data Terms

Multi-level Dense Photometric Loss: We employ a
dense multi-level photometric loss function that measures
the misalignment of the coarse and fine fit to the input. Let
V̄ be the set of all visible vertices. Our photometric term is
then defined as:

Ephoto(x) =
∑

`∈{b,f}

1

N

∑
i∈V̄

∥∥∥I(u`
i(x)

)
− c`i(x)

∥∥∥
2
. (9)

Here, u`
i(x) is the screen space position, c`i(x) is the shaded

color of the i-th vertex, and I is the current image during
training. For robustness, we employ the `2,1-norm, which
measures the color distance using the `2-norm, while the
summation over all pixel-wise `2-norms encourages spar-
sity as it corresponds to the `1-norm. Visibility is computed
using backface culling. This is an approximation, but works
well, since faces are almost convex.

Sparse Feature Points: Faces contain many salient fea-
ture points. We exploit this by using a weak supervision
in the form of automatically detected 66 facial landmarks
f ∈ F ⊂ R2 [53] and associated confidence cf ∈ [0, 1]
(1 confident). The set of facial landmarks falls in two cat-
egories: Fixed and sliding feature points. Fixed feature
points, e.g. eyes and nose, are associated with a fixed ver-
tex on the template model, whereas sliding feature points,
e.g., the face contour, change their position on the template
based on the rigid pose, see Fig. 2. We explicitly model this
as follows:

Esparse(x) =
1

|F|
∑
f∈F

cf ·
∥∥f − ub

kf
(x)
∥∥2

2
. (10)

Here, kf is the index of the target vertex. For fixed feature
points, we hard-code the index of the corresponding mesh
vertex. The indexes for sliding feature points are computed
via an alternation scheme: In each step of stochastic gradi-
ent descent, we find the mesh vertex that is closest to the 3D
line, defined by the camera center and the back-projection
of the detected 2D feature point. Based on the squared Eu-
clidean distance we set kf to the index of the closest vertex.



6.2. Regularization Terms

Statistical Regularization: We enforce statistical regu-
larization on the 3DMM model parameters of the base level
to ensure plausible reconstructions. Based on the assump-
tion that the model parameters follow a zero-mean Gaussian
distribution, we employ Tikhonov regularization:

Estd(x) =
ms+me∑

k=1

(
αk

(σg)k

)2

+ wrstd

mr∑
k=1

(
βk

(σr)k

)2

. (11)

This is a common constraint [8, 61, 26, 60] that prevents the
degeneration of the facial geometry and face reflectance in
the ill-posed monocular reconstruction scenario.

Corrective Smoothness: We also impose local smooth-
ness by adding Laplacian regularization on the vertex dis-
placements for the set of all vertices V:

Esmo(x)=
wsmo

N

∑
i∈V

∥∥∥ 1

|Ni|
∑
j∈Ni

(
(Fg(x))i−(Fg(x))j

)∥∥∥2

2
.

(12)
Here, (Fg(x))i = (Fg(δg|Θg))i denotes the correction for
the i-th vertex given the parameter x, and Ni is the 1-ring
neighborhood of the i-th vertex.

Local Reflectance Sparsity: In spirit of recent intrinsic
decomposition approaches [9, 43], we enforce sparsity to
further regularize the reflectance of the full reconstruction:

Eref(x) = wref
1

N

∑
i∈V

∑
j∈Ni

wi,j ·
∥∥∥rf

i(x)− rf
j(x)

∥∥∥p
2
.

(13)
Here, wi,j = exp(−α · ||I(uf

i(x
old)) − I(uf

j(x
old))||2) are

constant weights that measure the chromaticity similarity
between the colors in the input, where xold are the param-
eters estimated in the previous iteration. We assume that
pixels with the same chromaticity are more likely to have
the same reflectance. The term || · ||p2 enforces sparsity on
the combined reflectance estimate. We employ α = 50 and
p = 0.9 in all our experiments.

Global Reflectance Constancy: We enforce skin re-
flectance constancy over a fixed set of vertices that covers
only the skin region, see Fig. 2 (right):

Eglo(x) = wglo
1

|M|
∑
i∈M

∑
j∈Gi

∥∥∥rf
i(x)− rf

j(x)
∥∥∥2

2
. (14)

Here,M is the per-vertex skin mask and Gi stores 6 random
samples of vertex indexes of the mask region. The idea is to
enforce the whole skin region to have the same reflectance.
For efficiency, we use reflectance similarity between ran-
dom pairs of vertices in the skin region. Note that regions
that may have facial hair were not included in the mask.
In combination, local and global reflectance constancy effi-
ciently removes shading from the reflectance channel.

Figure 3. Our approach allows for high-quality reconstruction of
facial geometry, reflectance and incident illumination from just a
single monocular color image. Note the reconstructed facial hair,
e.g., the beard, reconstructed make-up, and the eye lid closure,
which are outside of the space of the used 3DMM.

Figure 4. Jointly learning a multi-level model improves the ge-
ometry and reflectance compared to the 3DMM. Note the better
aligning nose, lips and the reconstructed facial hair.

Figure 5. Comparison of linear and non-linear corrective spaces.

Stabilization: We also ensure that the corrected geome-
try stays close to the base reconstruction by enforcing small
vertex displacements:

Esta(x) = wsta
1

N

∑
i∈V

∥∥∥(Fg(x))i

∥∥∥2

2
. (15)

7. Results
We demonstrate joint end-to-end self-supervised train-

ing of the feed forward encoder and our novel multi-level
face representation based on in-the-wild images without the
need for densely annotated ground truth. Our approach
regresses pose, shape, expression, reflectance and illumi-
nation at high-quality with over 250 Hz, see Fig. 3. For
the feed forward encoder we employ a modified version of
AlexNet [38] that outputs the parameters of our face model.
Note that other feed forward architectures could be used.
We implemented our approach using Caffe [33]. Training



Figure 6. Comparison to Garrido et al. [26]. We achieve higher
quality reconstructions, since our jointly learned model general-
izes better than a corrective space based on manifold harmonics.

is based on AdaDelta with a batch size of 5. We pretrain
our network up to the base level for 200k iterations with a
learning rate of 0.01. Afterwards, we finetune our com-
plete network for 190k iterations with a learning rate of
0.001 for the base level, 0.005 for the geometry and 0.01
for the reflectance correctives. All components of our net-
work are implemented in CUDA [44] for efficient training,
which takes 16 hours. We use the same weights w• in all
experiments. In the following, we fix the size, C of the cor-
rective parameters to 500 for both geometry and reflectance.
We tested different corrective spaces (linear and non-linear),
see Fig. 5. A linear corrective basis gave the best results, so
we use it for all following experiments. Please refer to the
supplemental document and video1 for more details. Our
approach is trained on a corpus of in-the-wild face images,
without densely annotated ground truth. We combined four
different datasets: CelebA [42], LFW [29], FaceWarehouse
[17], and 300-VW [19, 55, 63]. Sparse landmark annota-
tions are obtained automatically [53] and we crop to a tight
face bounding box of 240× 240 pixels using Haar Cascade
Face Detection [14]. Images with bad detections are auto-
matically removed based on landmark confidence. In total,
we use 144k images, which we split into a training (142k
images) and validation (2k images) set.

We compare our final output (‘final’) to the base low-
dimensional 3DMM reconstruction (‘base’) obtained from
the pretrained network to illustrate that our multi-level
model lets us recover higher quality geometry and re-
flectance (Fig. 4). In the following, we show more results,
evaluate our approach, and compare to the state-of-the-art.

7.1. Comparisons to the State-of-the-art

Optimization-based Techniques: We compare to the
optimization-based high-quality reconstruction method of
Garrido et al. [26], see Fig. 6. Our approach obtains sim-
ilar geometry quality but better captures the person’s char-
acteristics due to our learned corrective space. Since our
approach jointly learns a corrective reflectance space, it can
leave the restricted subspace of the underlying 3DMM and

1http://gvv.mpi-inf.mpg.de/projects/FML

Figure 7. In contrast to the texture model of Booth et al. [10] that
contains shading, our approach yields a reflectance model.

Figure 8. Comparison to [60]. We achieve higher quality (without
surface shrinkage), due to our jointly trained model.

Figure 9. Comparison to [48, 49, 54]. They obtain impressive
results within the span of the synthetic training corpus, but do not
handle out-of-subspace variations, e.g., beards. Our approach is
robust to hair and make-up, since the model is jointly learned.

thus produces more realistic appearance. Note, unlike Gar-
rido et al., our approach does not require landmarks at test
time and runs orders of magnitude faster (4ms vs. 120s
per image). We also compare to the approach of Booth
et al. [10], see Fig. 7. Our approach jointly learns a bet-
ter shape and reflectance model, while their approach only
builds an ‘in-the-wild’ texture model that contains shading.
In contrast to our approach, Booth et al. is based on opti-
mization and requires initialization or landmarks.

Learning-based Techniques: We compare to the high-
quality learning-based reconstruction approaches of Tewari
et al. [60] (Fig. 8), Richardson et al. [48, 49] (Fig. 9) and
Sela et al. [54] (Fig. 9). These approaches obtain impressive
results within the span of the used synthetic training cor-
pus or the employed 3DMM model, but suffer from out-of-
subspace shape and reflectance variations, e.g., people with
beards. Our approach is not only robust to facial hair and
make-up, but also automatically learns to reconstruct such
variations based on the jointly learned model. Reconstruc-
tion requires 4 ms, while [54] requires slow off-line non-
rigid registration to obtain a hole free reconstruction from
the predicted depth map. In addition, we jointly obtain a re-
construction of colored reflectance and illumination. Due to
our model learning, our approach is able to leave the low-
dimensional space of the 3DMM, which leads to a more

http://gvv.mpi-inf.mpg.de/projects/FML


Table 1. Geometric error on FaceWarehouse [17]. Our approach
outperforms the deep learning techniques of [60] and [37]. It
comes close to the high-quality approach of [26], while being or-
ders of magnitude faster and not requiring feature detection.

Ours Others
Learning Learning Optimization

Fine Coarse [60] [37] [26]
Mean 1.84 mm 2.03 mm 2.19 mm 2.11 mm 1.59 mm
SD 0.38 mm 0.52 mm 0.54 mm 0.46 mm 0.30 mm

Time 4 ms 4 ms 4 ms 4 ms 120 s

Figure 10. We obtain higher quality than previous learning-based
approaches on FaceWarehouse [17] and Volker [64].

Figure 11. Euclidean photometric error in RGB space, each chan-
nel in [0, 1]. Our final results significantly improve fitting quality.

realistic reconstruction of facial appearance and geometry.

7.2. Quantitative Results

We evaluated our approach quantitatively. For geome-
try, we use the FaceWarehouse [17] dataset and reconstruct
180 meshes (9 identities, 20 expressions each). We com-
pare various approaches, after alignment (rigid transform
plus isotropic scaling), to the provided ground truth us-
ing the Hausdorff distance. Our approach outperforms the
learning-based techniques of Tewari et al. [60] and Kim et
al. [37], see Tab. 1. We come close to the high-quality op-
timization approach of Garrido et al. [26], while being or-
ders of magnitude faster (4ms vs. 120sec) and not requiring
feature detection at test time, see Fig. 10 (top). [17] con-
tains mainly ‘clean’ faces without make-up or beards, since
this causes problems even for high-quality offline 3D recon-
struction approaches. Our interest is in robustly handling
this harder scenario, in which we demonstrate that our ap-
proach significantly outperforms previous approaches, see
Figs. 6, 8, and 9. We also evaluate our approach on a video
sequence (300 frames) with challenging expressions and a
characteristic face, which is outside the span of the 3DMM.
The ground truth has been obtained by Valgaerts et al. [64].
The results can be found in Tab. 2 and in Fig. 10 (bottom),
where it can be seen that our method outperforms other
learning- and optimization-based approaches [26, 60]. We

Table 2. On the Volker sequence, our approach outperforms the
results of [26], even if their fixed shape correctives are employed.

Ours Others
Learning Learning Optimization [26]

Fine Coarse [60] Medium Coarse
Mean 1.77 mm 2.16 mm 2.94 mm 1.97 mm 1.96 mm
SD 0.29 mm 0.29 mm 0.28 mm 0.41 mm 0.35 mm

Figure 12. External occluders are baked into our correctives.

evaluate the photometric fitting error of our approach on our
validation set, see Fig. 11. Our final results (mean: 0.072,
SD: 0.020) have significantly lower error (distance in RGB
space, channels in [0, 1]) than the base level (mean: 0.092,
SD: 0.025) due to our learned corrective basis.

8. Limitations
We demonstrated high-quality monocular reconstruction

at over 250Hz, even in the presence of facial hair, or for
challenging faces. Still, our approach has a few limitations,
which can be addressed in future work: External occlu-
sion, e.g., by glasses, are baked into our correctives, see
Fig. 12. Resolving this would require a semantic segmenta-
tion of the training corpus. We can not guarantee the con-
sistent reconstruction of occluded face regions. We enforce
low-dimensionality of our corrective space for robust model
learning. Thus, we can not recover fine-scale surface detail.
We see this as an orthogonal research direction, which has
already produced impressive results [48, 49, 54].

9. Conclusion
We have presented the first approach that jointly learns a

face model and a parameter regressor for face shape, expres-
sion, appearance and illumination. It combines the advan-
tages of 3DMM regularization with the out-of-space gen-
eralization of a learned corrective space. This overcomes
the disadvantages of current approaches that rely on strong
priors, increases generalization and robustness, and leads to
high quality reconstructions at over 250Hz. While in this
work we have focused on face reconstruction, our approach
is not restricted to faces only as it can be generalized to fur-
ther object classes. As such, we see this as a first important
step towards building 3D models from in-the-wild images.
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