

Fast Simultaneous Gravitational Alignment of Multiple Point Sets

Christian Theobalt

max planck institut informatik

Vladislav Golyanik Max Planck Institute for Informatics

Soshi Shimada

Saarland Informatics Campus

Rigid Point Set Alignment

Recovery of a displacements and correspondences between point sets

Three point sets

Structured light [1]

[2]

Ten point sets

Registration result

Contributions

i) The first gravitational method for multi-body point set alignment i) Acceleration of globally multiply-linked point interactions with a 2^{D} -tree; this data structure enables a new fast shape signature based on polynomial fitting

Related Works

Different Data Modality

RGB-D [2]

Registration result

Joint Alignment

iii) Experimental evaluation with SotA results

References

[1] V. Golyanik et al. Accelerated Gravitational Point Set Alignment with Altered Physical Laws. In ICCV, 2019

LIDAR [3]

Gravitational approach

[1]

- [2] G. D. Evangelidis and R. Horaud. Joint alignment of point sets with batch and incremental expectation maximization. TPAMI, 2018.
- [3] F. Järemo Lawin et al. Density adaptive point set registration. In CVPR, 2018.
- [4] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. TPAMI, 1992.
- [5] A. Fitzgibbon, Robust registration of 2d and 3d point sets. In BMVC, 2003.

Number of Points

Runtime vs Accuracy