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Abstract. Human re-rendering from a single image is a starkly under-
constrained problem, and state-of-the-art algorithms often exhibit un-
desired artefacts, such as over-smoothing, unrealistic distortions of the
body parts and garments, or implausible changes of the texture. To ad-
dress these challenges, we propose a new method for neural re-rendering
of a human under a novel user-defined pose and viewpoint, given one
input image. Our algorithm represents body pose and shape as a para-
metric mesh which can be reconstructed from a single image and eas-
ily reposed. Instead of a colour-based UV texture map, our approach
further employs a learned high-dimensional UV feature map to encode
appearance. This rich implicit representation captures detailed appear-
ance variation across poses, viewpoints, person identities and clothing
styles better than learned colour texture maps. The body model with
the rendered feature maps is fed through a neural image-translation net-
work that creates the final rendered colour image. The above components
are combined in an end-to-end-trained neural network architecture that
takes as input a source person image, and images of the parametric body
model in the source pose and desired target pose. Experimental evalu-
ation demonstrates that our approach produces higher quality single-
image re-rendering results than existing methods.
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1 Introduction

Algorithms to realistically render dressed humans under controllable poses
and viewpoints are essential for character animation, 3D video, or virtual and
augmented reality, to name a few. Over the past decades, computer graph-
ics and vision have developed impressive methods for high-fidelity artist-driven
and reconstruction-based human modelling, high-quality animation, and photo-
realistic rendering. However, these often require sophisticated multi-camera se-
tups, and deep expertise in animation and rendering, and are thus costly, time-
consuming and difficult to use. Recent advances in monocular human recon-
struction and neural network-based image synthesis open up a radically differ-
ent approach to the problem, neural re-rendering of humans from a single image.

Project webpage: gvv.mpi-inf.mpg.de/projects/NHRR/
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Fig. 1. Given an image of a person, our neural re-rendering approach allows synthesis
of images of the person in different poses, or with different clothing obtained from
another reference image.

Given a single reference image of a person, the goal is to synthesise a photo-real
image of this person in, for instance, a user-controlled new pose, modified body
proportions, the same or different garments, or a combination of these.

There has been tremendous progress in monocular human capture and re-
rendering [33, 23, 45, 2, 21, 12, 19, 6, 25] towards this goal. However, owing to the
starkly underconstrained nature of the problem, true photo-realism under all
possible conditions has not yet been achieved. Methods frequently exhibit un-
wanted over-smoothing and a lack of details in the rendered image, unrealistic
distortions of body parts and garments, or implausible texture alterations.

We, therefore, propose a new algorithm for monocular neural re-rendering
of a dressed human under a novel user-defined pose and viewpoint, which has
starkly improved visual quality, see Figures 1, 3, 6, 7. We take inspiration
from recent work on neural rendering of general scenes with a continuous [48]
or a multi-dimensional feature representation with implicit [50] or explicit [47]
occlusion handling that are learned from multi-view images or videos.

Our algorithm represents body pose and shape with the SMPL parametric
human surface model [29], which can be easily reposed. Instead of modelling
appearance as explicit colour maps, e.g., learned colour-based UV texture maps
on the body surface [33, 12], we employ a learned high-dimensional UV feature
map to encode appearance. This rich implicit representation learns the detailed
appearance variation across poses, viewpoints, person identities and clothing
styles. Given a single image of a person, we predict pixel correspondences to
the SMPL [29] mesh using DensePose [37]. We then extract partial UV texture
maps based on the observed body regions and use a neural network to convert
it to a complete UV feature map, with a d-dimensional feature per texel. The
UV feature map is then rendered in the desired target pose and passed through
a neural image translation network that creates the final rendered image. These
components are combined in an end-to-end trained neural architecture. In quan-
titative experiments and a user study to judge the qualitative results, we show
that the visual quality of our results improves over the current state of the art.

Contributions. To summarise, our contributions are as follows:
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– A new end-to-end trainable method that combines monocular parametric
3D body modelling, a learned detail-preserving neural-feature based body
appearance representation, and a neural network based image-synthesis net-
work to enable highly realistic human re-rendering from a single image;

– state-of-the-art results on the DeepFashion dataset [27] which are confirmed
with quantitative metrics, and qualitatively with a user study.

2 Related Work

While our proposed approach relates to many sub-fields of visual computing,
for brevity we only elaborate on the immediately relevant work on human body
re-enactment and neural rendering methods for object and scene rendering.

2.1 Classical Methods for Novel View Synthesis

Earlier methods for image-based 3D reconstruction and novel view synthesis rely
on traditional concepts of multi-view geometry, explicit 3D shape and appear-
ance reconstruction, and classical computer graphics or image-based rendering.
Methods based on light fields use ray space representations or coarse multi-view
geometry models for novel view synthesis [22, 11, 4]. To achieve high quality,
dense camera arrays are required, which is impractical. Other algorithms cap-
ture and operate on dense depth maps [60], layered depth images [41], 3D point
clouds [1, 26, 40], meshes [32, 52], or surfels [36, 5, 55] for dynamic scenes. Multi-
view stereo can be combined with fusion algorithms operating with implicit
geometry and achieving more temporally consistent reconstructions over short
time windows [9, 34, 13]. Dynamic scene capture and novel view synthesis were
also shown with a low number of RGB or RGB-D cameras [57, 49, 15, 58]. While
reconstruction is fast and feasible with fewer cameras, the coarse approximate
geometry often leads to rendering artefacts.

2.2 Neural Rendering of Scenes and Objects

Recently, neural rendering approaches have shown promising results for scenes
and objects. Image-based rendering (IBR) methods reconstruct scene geometry
with classical techniques and use it to render novel views [8, 7]. Lack of obser-
vations can cause high uncertainty in novel views. On the other hand, neural
rendering approaches [48, 47, 51, 66] can generate higher-quality results by lever-
aging collections of training data. Many applications of neural rendering have
been recently shown, ranging from synthesising view-dependent effects [66, 51]
to learning the shape and appearance priors from sparse data [39, 56].

Only a few works on neural scene representation and rendering can handle
dynamic scenes [19, 28]. Some methods combine explicit dynamic scene recon-
struction and traditional graphics rendering with neural re-rendering [31, 19, 18,
51]. Thies et al. [50] combine neural textures with the classical graphics pipeline
for novel view synthesis of static objects and monocular video re-rendering. Their
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technique requires a scene-specific geometric proxy which has to be reconstructed
before the training. Instead of more complex joint reasoning of the geometry and
appearance needed from the intermediate representation by neural rendering ap-
proaches such as that of Sitzmann et al. [48], for our human-specific application
scenario the coarse geometry is handled by the posable SMPL mesh, with a fea-
ture map similar to the Thies et al. [50] capturing clothing appearance, which
includes fine-scaled geometry, and clothing textures.

Several approaches address related problems such as generating images of
humans in new poses [62, 3, 30, 33, 35], or body re-enactment from monocular
videos [6], which are discussed next.

2.3 Human Re-enactment and Novel View Rendering

Recent work on photo-realistic human body re-enactment and novel view ren-
dering can be sub-classified along various dimensions.

Object-agnostic approaches [45, 44] model deformable objects directly in the
image space. Siarohin et al. [45] learn keypoints in a self-supervised manner and
capture deformations in the vicinity of the keypoints using affine transforms.
Features extracted from the source image are deformed to the target using the
predicted transformations and passed on to a generator. Additional predictions
of dis-occluded regions indicate to the generator the regions which have to be
rendered based on the context. Zhu et al. [65] leverage geometric constraints and
optical flow for synthesising novel views of humans from a single image.

Object-specific techniques have the same core components as above, i.e.,
colour or feature transformation from source to target, occlusion reasoning or in-
painting, and photo-realistic image generation from the warped feature or colour
image. The key difference is that the feature transformation, occlusion reasoning,
and inpainting are guided by an underlying object model, which, in our case,
is a parametric human body mesh. Kim et al. [19] achieve full control over the
head pose and facial expressions in photo-realistic renderings of a target actor
by an adversarial training with a performance of the target actor. DensePose
Transfer [33] uses direct texture transfer from the input image to the SMPL
model, inpaints the occluded regions of the texture and renders it in a new pose.
This image is blended with the image resulting from direct conditional genera-
tion from the input image, input Densepose, and target Densepose. Zablotskaia
et al. [59] generate subsequent video frames of human motion and use a direct
warping guided by the reference frame, previously generated frame, and Dense-
Pose representations of the past and future frames. Their method does not rely
on an explicit UV texture map. ClothFlow [14] implicitly captures the geomet-
ric transformation between the source and target image by estimating dense
flow. Chanet al. [6] learn a subject-specific puppeteering system using a video
of the subject such that all parts of the subject’s body are seen in advance. The
GAN-based rendering is driven by 2D pose extracted from the target subject.
Zhou et al. [63] also learn a personalised model using piecewise affine transforms
of the part-segmented source image for modelling pose changes, generating the
person image in front of a clean background plate, with a second stage fusing a
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given background image with the generated person’s image. In contrast to Liu
et al. [25], we transfer appearance from source to target image using a UV fea-
ture map. Instead of directly predicting missing regions of the UV texture map,
coordinate-based inpainting [12] predicts correspondence between all regions on
the UV texture map and the input image pixels. This results in more texture
details in body regions that become dis-occluded when re-posing. As shown in
Sec. 4, our UV feature map based approach yields results of much higher qual-
ity in comparisons. Shysheya et al. [42] explicitly model the body texture and
implicitly handle the shape. In contrast, while we explicitly handle the coarse
shape, we use a UV feature map to model the fine-scaled shape and clothing
texture implicitly. Lazowa et al. [21] propose an approach for reconstruction of
textured 3D human models from a single image. Similar to our approach, it ex-
tracts a partial UV texture map using DensePose but inpaints the UV texture
map using a GAN based supervision directly applied to the texture map. Addi-
tionally — and similar to Alldieck et al. [2] — it predicts a displacement map
on top of the SMPL mesh to capture clothing details not present in the SMPL
model. Our approach does not explicitly model clothing details.

In contrast to existing methods, we propose a new end-to-end trainable
method that combines monocular parametric 3D body modeling [33, 12], a learned
neural detail-preserving surface feature representation [50], and a neural image-
synthesis network for highly realistic human re-rendering from a single image.

3 Method

Given an image Is of a person, we synthesise a new image of the person in a
different target body pose. Our approach comprises of four distinct steps. The
first step uses DensePose [37] to predict dense correspondences between the input
image Is and the SMPL model. This allows a UV texture map Ts to be extracted
for the visible regions. The second step uses a U-Net [38] based network, which
we term FeatureNet, to construct the full UV feature map Fs from the partial
RGB UV texture map Ts. Fs contains a d-dimensional feature representation
for all texels, both visible and occluded in the source image. The third step
takes a target pose as input, and ‘renders’ the UV feature map Fs to produce
a d dimensional Feature image Rs→t. The fourth step uses a generator network
based on Pix2PixHD [54], which we term RenderNet, to generate a photorealistic
image Is→t of the reposed person, from the input Feature image. The overview
of our pipeline is shown in Fig. 2.

3.1 Extracting a Partial UV Texture Map from the Input Image

The pixels of the input image are transformed into UV space through matches
predicted with DensePose. We use the ResNet-101 based variant of DensePose for
predicting the correspondences for the body regions visible in the image. The net-
work is pre-trained on COCO-DensePose dataset and provides 24 body segments
and their part-specific U,V coordinates of SMPL model. For easier mapping, the
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Fig. 2. Pipeline Overview: Given a source image Is, we extract the UV texture map
Ts of an underlying parametric body mesh model for the body regions visible in the
image. FeatureNet converts the partial UV texture map to a full UV feature map,
which encodes a richer 16-dimensional representation at each texel. Given a new pose
Pt, the parametric body mesh can be re-posed and textured with the UV feature map
to produce an intermediate Feature Image Rs→t. RenderNet converts the intermediate
16-channel feature image to a realistic image.

24 part-specific UV maps are combined to form a single UV Texture map Ts in
the format provided in SURREAL dataset [53] through a pre-computed lookup
table. Note that one could putatively use monocular 3D pose estimation meth-
ods (e.g., [17]) to compute SMPL parameters, and subsequently, the DensePose
of the input image. However, frequent misalignments of the predictions with the
end-effector positions in the image lead to significant artefacts in the UV texture
map for hands and feet in that case and thus such an approach is not advised [2].

3.2 Generating the Full UV Feature Map

The partial (on account of occlusion) texture map Ts is converted to a full
UV feature map Fs using a U-Net-like convolutional network f , which we term
FeatureNet. That is,

Fs = f(Ts).

RenderNet comprises of four down-sampling blocks followed by four up-sampling
blocks. Therefore, a partial input texture of the spatial dimension of 256×256 is
transformed into a spatial dimension of 16× 16 in the middle-most layer. Each
downsampling block consists of two convolutions followed by maxpool operation.
For up-sampling blocks, we use bilinear upsampling followed by two convolutions.
The final convolutional layer produces a d-dimensional (channel) UV feature map
which is used subsequently for rendering a feature image. The first three channels
of the UV feature map can be supervised to in-paint the input partial UV texture
map Ts, thus having a small subset of the feature channels resemble the classical
colour texture map. Our experiments use 16 feature channels.
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3.3 Intermediate Feature Image Rendering

The SMPL mesh can be reposed using a target pose Pt, which can be extracted
from a target image It, or obtained from a different source. In our case, when
given a target image It, we directly obtain the DensePose output, which is equiv-
alent to the reposed SMPL model. Given the source feature map Fs, we render
the SMPL mesh through the DensePose output Pt to produce a d-dimensional
Feature Image Rs→t. That is,

Rs→t = r(Fs, Pt).

Note that this feature rendering operation r can be conveniently implemented
by differentiable sampling. In our experiments, we use bilinear sampling for this
operation. The feature image Rs→t, which captures the target pose and the
source appearance is then used as input to the subsequent translation network.

3.4 Creating a Photo-Realistic Rendering

In the final step, the feature image Rs→t is translated to a realistic image Is→t

using a translation network g similar to Pix2Pix, which we term RenderNet :

Is→t = g(Rs→t).

RenderNet comprises of (a) 3 down-sampling blocks, (b) 6 residual blocks, (c) 3
up-sampling blocks and finally (d) a convolution layer with Tanh activation that
gives the final output. The discriminator for adversarial training of RenderNet
also uses the multiscale design of Pix2PixHD [54]. In our experiments, we use a
three scale discriminator network for adversarial training.

3.5 Training Details and Loss Functions

During training, our system takes pairs of images (Is, It) of the same person (but
in different poses) as input. Partial texture Ts extracted from the source image
Is is passed through the above-mentioned operations to produce the generated
output Is→t. That is,

Is→t = g ◦ r ◦ f(Ts, Pt).

Note that all operations g, r and f are differentiable. We train the entire sys-
tem end-to-end and optimise the parameters of FeatureNet (g(·)) and RenderNet
(f(·)). We use the combination of the following loss functions in our system:

– Perceptual Loss: We use a perceptual loss based on the VGG Network
[16] — the difference between the activations on different layers of the pre-
trained VGG network [46] applied on the generated image Is→t and ground
truth image target image It.

Lp =
∑ 1

N j
|pj(Is→t)− pj(It)|.

Here, pj is the activation and N j the number of elements of the j-th layer in
the ImageNet pre-trained VGG network.



8 Sarkar et al.

– Adversarial Loss: We use a multiscale discriminator D of Pix2PixHD [54]
for enforcing adversarial loss Ladv in our system. The multiscale discrimi-
nator D is conditioned on both the generated image and rendered feature
image.

– Face Identity Loss: We use a pre-trained network to ensure that the ex-
tracted UV feature map and RenderNet preserve the face identity on the
cropped face of the generated and the ground truth image.

Lface = |Nface(Is→t)−Nface(It)|.

Here, Nface is the pre-trained SphereFaceNet [24]
– Intermediate in-painting loss: To mimic classical colour texture map, we

enforce a loss Ltex on the first three channels of the output of the in-painting
network. This loss is set to the sum of 1) l1 distance of the visible part of
the partial source texture and generated texture and 2) l1 distance of the
visible part of the partial target texture and generated texture.

The final loss on the generator is then

LG = λV GGLp + λfaceLface + λtexLtex + λGANLadv.

The conditional discriminator D is updated every step enforcing binary cross-
entropy loss on real and fake images. We train the networks end-to-end us-
ing Adam optimiser [20] with an initial learning rate of 2×104, β1 as 0.5 and
no weight decay. The loss weights are set empirically to λGAN = 1, λV GG =
10, λface = 5, λtex = 1. For speed, we pre-compute DensePose on the images
and directly read them as input.

During testing, the system takes as input a single image of a person and a
target Densepose. The target pose can be extracted by DensePose RCNN on
the image of the source person in a different pose (used in the experiments on
DeepFashion dataset), or alternatively it can be obtained by reposing the SMPL
mesh of the source body. In many cases, the actor can be a completely different
person (see Fig. 5 and 7). The neural texture is then rendered using the given
target Densepose which is followed by the translation network to generate a
realistic image of the source person in the target pose.

4 Experimental Results

4.1 Experimental Setup

Datasets We use the In-shop Clothes Retrieval Benchmark of DeepFashion
dataset [27] for our main experiments. The dataset comprises of 52,712 images
of fashion models with 13,029 different clothing items in different poses. For
training and testing, we consider the split provided by Siarohin et al. [43], which
is also used by other related works [33, 12]. We also show qualitative results of
our method with Fashion dataset [59]. Fashion dataset has 500 training and 100
test videos, each containing roughly 350 frames. The videos are single person
sequences, containing different people catwalking in different clothes.
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Fig. 3. Results of our method and that of CBI [12], DSC [43], VUnet [10] and DPT
[33]. Our approach produces higher quality renderings than the competing methods.

4.2 Comparison with SOTA

We compare our results with four state-of-the-art methods, i.e., Coordinate
Based Inpainting (CBI) [12], Deformable GAN (DSC) [43], Variational U-Net
(VUnet) [10] and Dense Pose Transfer (DPT) [33]. The qualitative results are
shown in Fig. 3. It can be observed that our results show higher realism and
better preserve identity and garment details compared to the other methods.

The quantitative results are provided in Table 1. Due to inconsistent report-
ing (or unavailability) of the metrics for the existing approaches, we computed
them ourselves. To this end, we collected the results of 176 testing pairs for each
state-of-the-art method (the testing pairs and results were kindly provided by
the authors of Coordinate Based In-painting [12]) and used them for this report.
We use the following two metrics for comparison - 1) Structural Similarity Index
(SSIM) [64] 2) Learned Perceptual Image Patch Similarity (LPIPS) [61]. SSIM is
a structure preservation metric widely used in the existing literature. Though it
is an excellent metric for assessment of image degradation quality, it often does
not reflect human perception [61]. On the other hand, the recently introduced
LPIPS claims to capture human judgment better than existing hand-designed
metrics. In terms of SSIM, we perform as well as the existing methods, whereas
we significantly outperform them on LPIPS metric. Please note that similar to
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Table 1. Comparison with state-of-the-art methods, using various perceptual metrics,
Structural Similarity Index (SSIM) [64] and Learned Perceptual Image Patch Similarity
(LPIPS) [61]. ↑ (↓) means higher (lower) is better.

SSIM ↑ LPIPS ↓
CBI [12] 0.766 0.178
DSC [43] 0.750 0.214

VUnet [10] 0.739 0.202
DPT [33] 0.759 0.206

Ours 0.768 0.164

GT 1.0 0.0

other learning-based methods, our approach will struggle with poses that are
far from those seen in the training set. However, our method performs well in
such scenarios for many cases. Qualitative results on some target poses outside
of training dataset distribution are shown in Fig. 5.

4.3 User Study

To assess the qualitative impact of our method, we perform an extensive user
study which compares our method with two other state-of-the-art pose trans-
fer methods - Coordinate Base Inpainting (CBI) [12] and DensePose Transfer
(DPT) [33]. We train on the DeepFashion dataset [27] and generate renderings
on the test split. The user study is designed following several criteria. First, it
covers as large a variety of source and target poses. Second, the ratio between the
male and female samples reflects the same ratio of the dataset. It also contains
failure cases as those shown in Fig. 8 with difficult decisions. In total, we prepare
26 samples containing the source image (explicitly marked as such) and three
novel views generated by CBI, DPT and our method (labeled as view A, B or C
in randomised order). For each sample, two questions are asked: 1) Which view
looks the most like the person in the source image? and 2) Which view looks the
most realistic?

The user study was performed with a browser interface, the order of questions
is randomised, and 46 anonymous participants submitted their answers. The
results are as follows. The first question has been answered in 46.2% of the cases
in favour of CBI, and in 53.8% of the cases in favour of our method. In all cases,
DPT has always been the last choice. The second question has been answered
by 30.8% of the participants in favour of CBI, and by 69.2% of the participants
in favour of our approach. Again, DPT was preferred in no case.

The user study shows that our method achieves state-of-the-art quality in
preserving the identity, and significantly outperforms the baselines in the real-
ism of the generated images. In 23% of the overall cases, the participants have
preferred CBI as the best identity-preserving method and, at the same time,
our method as those producing the most realistic renderings. In contrast, there
was only one case (3.8%) when our method had been voted as the best identity-
preserving and, at the same time, CBI was chosen as the approach producing
most realistic renderings.
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Fig. 4. Results of different baselines and our best performing method. No-Int has no
intermediate loss, Warp and WarpCond perform translation on warped partial texture
and IP performs full colour-texture inpainting followed by translation. Under extreme
poses and strong occlusions, our method outperforms all the baselines (see Sec. 4.4).

Fig. 5. Generalisation of our method to new body poses. The images of the target pose
are obtained from the internet.

4.4 Ablation Study

To study the advantage of the learned neural texture over other natural choices
of texture-based human re-rendering, we created the following three baselines.

IP - This baseline involves two stages. First, we train an inpainting network to
generate the full UV texture map from the partial UV texture map extracted
from the input image. We use the same in-painting loss function as described
in Section 3.5 for training this network. After the convergence, we fix and use
this network to generate full colour texture from a partial input texture. This
full 3-channel UV texture map is then rendered into an intermediate image, and
translated through a trained RenderNet g.

Warp - In this experiment, we warp the incomplete partial UV texture map to
the target pose. The reposed incomplete 3-channel intermediate image is then
fed to a trained RenderNet g to produce realistic output.

WarpCond - In this experiment, we warp the partial source texture to the
target pose PT similar to the previous experiment. In addition to the reposed
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Fig. 6. Garment Transfer: Our approach can also be used to render garments from a
source image onto the person in a target image.

incomplete texture, we also condition the generator network g with the target
DensePose image. The target DensePose image acts as a cue to the generator
when the texture information is missing.

In all these baselines, the architecture of RenderNet g and the losses on the
generated image are the same as ours. The only difference is in the number of in-
put channels to RenderNet. Besides, we perform an ablation experiment with an
identical pipeline as ours, except we do not enforce any intermediate texture loss
- No-Int. The qualitative results of all the networks are shown in Figure 4. It can
be seen that our methods using a richer intermediate representation (full and
No-Int) produce more realistic images than the other baselines. Baseline-IP per-
forms well but produces smooth output compared to the other methods. Because
of the lack of details, Baseline-Warp often produces non-realistic output in both
face and garment regions. When the incomplete texture information is super-
vised with additional DesnsePose image (as in Baseline-WarpCond), the output
is of higher quality. However, in the presence of strong occlusions, the method
fails, as the translation network g is incapable of performing both inpainting and
realistic rendering at the same time. In contrast, our methods performed well
in all the scenarios. We observe that adding the intermediate texture loss (to
mimic real texture) to the part of neural texture helps our network to converge
faster. However, over a large number of iterations, the quality of the final result
without such intermediate loss (No-Int) comes out to be similar to that with
intermediate loss.

4.5 Garment Transfer

Our method can be naturally extended to perform garment transfer without any
further training. Given an image of a person with the source body, we extract
the partial texture T ′

s of the ‘body regions’ (e.g., face, hands and regions with
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Target Pose
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Generated ImagesGenerated Images

Target Pose
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Fig. 7. Motion transfer results on the Fashion dataset [59]. Our approach also can
generate realistic renderings for a sequence of poses given a single source image.

garments which remain unchanged). We use part indices provided by DensePose
to extract the partial texture of the required body parts. Next, we extract the
partial texture T ′

t of the ‘garment regions’ of an image with the desired target
garments. We make a union of the extracted partial textures T ′

s ∪ T ′
t based on

their texel regions and feed it to our pipeline with the pose Ps of the body
image. Note that texel occupancies of T ′

s and T ′
t are mutually exclusive as they

are extracted from different body parts. See Fig. 6 for the qualitative results.

4.6 Motion Transfer

Even though we did not train specifically for generating videos, our method can
be applied to each frame of a driving video to create motion transfer. To this end,
we keep the source image of the imitator fixed and use the pose from the actor of
the driving video (for each frame) in our system to create image animation. We
perform the experiment on Fashion Dataset [59] and show our results in Fig. 7.

Please refer to the supplemental document and the accompanying video for
more results.

5 Discussion

Limitations. Even though we produce high-quality novel views which are pre-
serving the identity and look very realistic, there remain certain limitations for
future work to address. Fig. 8 visualises two representative examples which are
difficult for our as well as competing methods. In the first row, the head in the
source image is only partially visible so that the methods have high uncertainty
in the frontal facial view and change the gender to female (e.g., hallucinate long
hair). In the second case, the source texture is too fine-grained for the methods
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Fig. 8. Limitations: Even though our method produces better quality results than all
competing approaches, it nevertheless has some limitations, which are also shared by all
competing methods. The top row highlights failures arising out of biases in the training
set, while the bottom row highlights failures owing to fine scaled textures which are
not effectively captured by any approach. See Sec. 5 for details.

so that some hallucinate repeating patterns and the other ones generate pat-
terns reminiscent of noise. In this case, our method generates a texture which is
neither repetitive nor looks like noise, and which is still far from the reference.

Future Extension of Our UV Feature Maps. Instead of sampling RGB textures
from the input image to construct a partial UV texture map, learned CNN based
features could be used to construct a more informative partial UV feature map,
which putatively captures off-geometry details not modelled by the SMPL mesh.
Then FeatureNet would convert this partial UV feature map to a full UV feature
map. Another alternative would be to use displacement map prediction similar
to prior work [21, 2] to capture off-geometry details.

6 Conclusion

In this work, we present an approach for human image synthesis, which allows
us to change the camera view and the pose and garments of the subject in
the source image. Our approach uses a high-dimensional UV feature map to
encode appearance as an intermediate representation, which is then re-posed
and translated using a generator network to achieve realistic rendering of the
input subject in a novel pose. We qualitatively and quantitatively demonstrate
the efficacy of our proposed approach at better preserving identity and garment
details compared to the other competing methods. Our system, trained once for
pose guided image synthesis, can be directly used for other tasks such as garment
transfer and motion transfer.

Acknowledgements

This work was supported by the ERC Consolidator Grant 4DReply (770784).



Neural Re-Rendering of Humans from a Single Image 15

References

1. Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S.M., Szeliski,
R.: Building rome in a day. Communications of the ACM 54(10), 105–112 (2011)

2. Alldieck, T., Pons-Moll, G., Theobalt, C., Magnor, M.: Tex2shape: Detailed full
human body geometry from a single image. In: International Conference on Com-
puter Vision (ICCV) (2019)

3. Balakrishnan, G., Zhao, A., Dalca, A.V., Durand, F., Guttag, J.V.: Synthesizing
images of humans in unseen poses. Computer Vision and Pattern Recognition
(CVPR) (2018)

4. Buehler, C., Bosse, M., McMillan, L., Gortler, S.J., Cohen, M.F.: Unstructured
lumigraph rendering. In: SIGGRAPH (2001)

5. Carceroni, R.L., Kutulakos, K.N.: Multi-view scene capture by surfel sampling:
From video streams to non-rigid 3d motion, shape and reflectance. International
Journal of Computer Vision (IJCV) 49(2), 175–214 (2002)

6. Chan, C., Ginosar, S., Zhou, T., Efros, A.A.: Everybody dance now. In: Interna-
tional Conference on Computer Vision (ICCV) (2019)
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