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Abstract. As more and more personal photos are shared and tagged
in social media, avoiding privacy risks such as unintended recognition,
becomes increasingly challenging. We propose a new hybrid approach to
obfuscate identities in photos by head replacement. Our approach com-
bines state of the art parametric face synthesis with latest advances in
Generative Adversarial Networks (GAN) for data-driven image synthe-
sis. On the one hand, the parametric part of our method gives us control
over the facial parameters and allows for explicit manipulation of the
identity. On the other hand, the data-driven aspects allow for adding
fine details and overall realism as well as seamless blending into the
scene context. In our experiments we show highly realistic output of our
system that improves over the previous state of the art in obfuscation
rate while preserving a higher similarity to the original image content.

1 Introduction

Visual data is shared publicly at unprecedented scales through social media.
At the same time, however, advanced image retrieval and face recognition algo-
rithms, enabled by deep neural networks and large-scale training datasets, allow
to index and recognize privacy relevant information more reliably than ever. To
address this exploding privacy threat, methods for reliable identity obfuscation
are crucial. Ideally, such a method should not only effectively hide the identity
information but also preserve the realism of the visual data, i.e., make obfuscated
people look realistic.

Existing techniques for identity obfuscation have evolved from simply cov-
ering the face with often unpleasant occluders, such as black boxes or mosaics,
to more advanced methods that produce natural images [1–3]. These methods
either perturb the imagery in an imperceptible way to confuse specific recogni-
tion algorithms [2, 3], or substantially modify the appearance of the people in
the images, thus making them unrecognizable even for generic recognition al-
gorithms and humans [1]. Among the latter category, recent work [1] leverages
a generative adversarial network (GAN) to inpaint the head region conditioned
on facial landmarks. It achieves state-of-the-art performance in terms of both
recognition rate and image quality. However, due to the lack of controllability of
the image generation process, the results of such a purely data-driven method
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inevitably exhibit artifacts by inpainting faces of unfitting face pose, expression
or implausible shape. In contrast, parametric face models [4] give us complete
control of facial attributes and have demonstrated compelling results for appli-
cations such as face reconstruction, expression transfer and visual dubbing [4–6].
Importantly, using a parametric face model allows to control the identify of a
person as well as to preserve attributes such as face pose and expression by ren-
dering and blending an altered face over the original image. However, this naive
face replacement yields unsatisfactory results, since (1) fine level details cannot
be synthesized by the model, (2) imperfect blending leads to unnatural output
images and (3) only the face region is obfuscated while the larger head and hair
regions, which also contain a lot of identity information, remain untouched.

In this paper, we propose a novel approach that combines a data-driven
method and a parametric face model, and therefore leverages the best of two
worlds. To this end, we disentangle and solve our problem in two stages (see
Fig. 1): In the first stage, we replace the face region in the image with a rendered
face of a different identity. To this end we replace the identity related component
of the original person in the parameter vector of the face model while preserving
attributes of original facial expression. In the second stage, a GAN is trained
to synthesize the complete head image given the rendered face and an obfus-
cated region around the head as conditional inputs. In this stage, the missing
region in the input is inpainted and fine grained details are added, resulting in a
photo-realistic output image. Our qualitative and quantitative evaluations show
that our approach significantly outperforms the baseline methods on publicly
available datasets with both lower recognition rate and higher image quality.

2 Related work

Identity obfuscation. Blurring the face region or covering it with occluders,
such as a mosaic or a black bar, are still the predominant techniques for visual
identity obfuscation in photos and videos. The performance of these methods in
concealing identity against machine recognition systems has been studied in [7]
and [8]. They show that these simple techniques not only introduce unpleasant
artifacts, but also become less effective due to the improvement of CNN-based
recognition methods. Hiding the identity information while preserving the photo-
realism of images is still an unsolved problem. Only a few works have attempted
to tackle this problem.

For target-specific obfuscations, Sharif et al. [3] and Oh et al. [2] used adver-
sarial example based methods which perturb the imagery in an imperceptible
manner aiming to confuse specific machine recognition systems. Their obfusca-
tion patterns are invisible to humans and the obfuscation performance is strong.
However, obfuscation can only be guaranteed for target-specific recognizers.

To confuse target-generic machine recognizers and even human recognizers,
Brkic et al. [9] generated full body images that overlay with the target person
masks. However, synthesized persons with uniform poses do not match scene
context which leads to blending artifacts in final images. The recent work of [1]
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inpaints fake head images conditioned on the context and blends generated heads
with diverse poses into varied background and body poses in social media photos.
While achieving state-of-the-art performance in terms of both recognition rate
and image quality, the results of such a purely data-driven method inevitably
exhibits artifacts like the change of attributes such as face poses and expressions.

Parametric face models. Blanz and Vetter [10] learn an affine parametric 3D
Morphable Model (3DMM) of face geometry and texture from 200 high-quality
scans. Higher-quality models have been constructed using more scans [11], or
by using information from in-the-wild images [12, 13]. Such parametric models
can act as strong regularizers for 3D face reconstruction problems, and have
been widely used in optimization based [5, 14, 12, 15–17] and learning-based [18–
23] settings. Recently, a model-based face autoencoder (MoFA) has been in-
troduced [4] which combines a trainable CNN encoder with an expert-designed
differentiable rendering layer as decoder, which allows for end-to-end training on
real images. We use such an architecture and extend it to reconstruct faces from
images where the face region is blacked out or blurred for obfuscation. We also
utilize the semantics of the parameters of the 3DMM by replacing the identity-
specific parameters to synthesize overlaid faces with different identities. While
the reconstructions obtained using parametric face models are impressive, they
are limited to the low-dimensional subspace of the models. Many high-frequency
details are not captured and the face region does not blend well with the sur-
roundings in overlaid 3DMM renderings. Some reconstruction methods go be-
yond the low-dimensional parametric models [24, 6, 16, 17, 21, 19] to capture more
detail, but most lack parametric control of the captured high-frequency details.

Image inpainting and refinement. We propose a GAN based method in the
second stage to refine the rendered 3DMM face pixels for higher realism as well
as to inpaint the obfuscated head pixels around the rendered face. In [25, 26],
rendered images are modified to be more realistic by means of adversarial train-
ing. The generated data works well for specific tasks such as gaze estimation and
hand pose estimation, with good results on real images. Raymond et al. [27] and
Pathak et al. [28] have used GANs to synthesize missing content conditioned on
image context. Both of these approaches assume strong appearance similarity
or connection between the missing parts and their contexts. Sun et al. [1] in-
painted head pixels conditioned on facial landmarks. Our method, conditioned
on parametric face model renderings, gives us control to change the identity of
the generated face while also synthesizing more photo-realistic results.

3 Face replacement framework

We propose a novel face replacement approach for identity obfuscation that
combines a data-driven method with a parametric face model.

Our approach consists of two stages (see Fig. 1). Experimenting on different
modalities of input results in different levels of obfuscation 1. In the first stage, we

1 Stage-I input image choices: Original image, Blurred face and Blacked-out face.
Stage-II input image choices: Original hair, Blurred hair and Blacked-out hair.
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can not only render a reconstructed face on the basis of a parametric face model
(3DMM), but can also replace the face region in the image with the rendered
face of a different identity. In the second stage, a GAN is trained to synthesize
the complete head image given the rendered face and a further obfuscated image
around the face as conditional inputs. The obfuscation here protects the identity
information contained in the ears, hair, etc. In this stage, the obfuscated region
is inpainted with realistic content and fine grain details missing in the rendered
3DMM are added, resulting in a photo-realistic output image.
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Fig. 1: Our obfuscation method based on data-driven deep models and parametric
face models. The bottom row shows the input image choices for stage-I and stage-II.
Different input combination results in different levels of obfuscation.

3.1 Stage-I: Face replacement

Stage-I of our approach reconstructs 3D faces from the input images using a
parametric face model. We train a convolutional encoder to regress the model’s
semantic parameters from the input. This allows us to render a synthetic face
reconstructed from a person and also gives us the control to modify its rendered
identity based on the parameter vector.

Semantic parameters. We denote the set of all semantic parameters as p =
(α, β, δ, φ, γ), |p| = 257. These parameters describe the full appearance of the
face. We use an affine parametric 3D face model to represent our reconstructions.
α and β represent the shape and reflectance of the face, and correspond to the
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identity of the person. These parameters are the coefficients of the PCA vectors
constructed from 200 high-quality face scans [10]. δ are the coefficients of the
expression basis vectors computed using PCA on selected blend shapes of [29]
and [30]. We use 80 α, 80 β and 64 δ parameters. Together, they define the per-
vertex position and reflectance of the face mesh represented in the topology used
by [13]. In addition, we also estimate the rigid pose (φ) of the face and the scene
illumination (γ). Rigid pose is parametrized with 6 parameters corresponding
to a 3D translation vector and Euler angles for the rotation. Scene illumination
is parameterized using 27 parameters corresponding to the first 3 bands of the
spherical harmonic basis functions [31].

Our stage-I architecture is based on the Model-based Face Autoencoder
(MoFA) [4] and consists of a convolutional encoder and a parametric face de-
coder. The encoder regresses the semantic parameters p given an input image2.

Parametric face decoder. As shown in Fig. 1, the parametric face decoder
takes the output of the convolutional encoder, p, as input and generates the
reconstructed face model and its rendered image. The reconstructed face can
be represented as vi(p) ∈ R3 and ci(p) ∈ R3, ∀i ∈ [1, N ], where vi(p) and
ci(p) denote the position in camera space and the shaded color of the vertex
i, and N is the total number of vertices. For each vertex i, the decoder also
computes ui(p) ∈ R2 which denotes the projected pixel location of vi(p) using a
full perspective camera model.

Loss function. Our auto-encoder in stage-I is trained using a loss function that
compares the input image to the output of the decoder as

Eloss(p) = Eland(p) + wphotoEphoto(p) + wregEreg(p). (1)

Here, Eland(p) is a landmark alignment term which measures the distance be-
tween 66 fiducial landmarks [13] in the input image with the corresponding
landmarks on the output of the parametric decoder,

Eland(p) =

66∑
i=1

||li − ux(p)||22. (2)

li is the ith landmark’s image position and x is the index of the corresponding
landmark vertex on the face mesh. Image landmarks are computed using the dlib
toolkit [33]. Ephoto(p) is a photometric alignment term which measures the per-
vertex appearance difference between the reconstruction and the input image,

Ephoto(p) =
∑
i∈V

||I(ui(p))− ci(p)||2. (3)

V is the set of visible vertices and I is the image for the current training itera-
tion. Ereg(p) is a Tikhonov style statistical regularizer which prevents degenerate
reconstructions by penalizing parameters far away from their mean,

Ereg(p) =

80∑
i=1

αi

(σs)i
+ we

64∑
i=1

δi
(σe)i

+ wr

80∑
i=1

βi
(σr)i

. (4)

2 We use AlexNet[32] as the encoder.
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σs, σe, σr are the standard deviations of the shape, expression and reflectance
vectors respectively. Please refer to [4, 13] for more details on the face model and
the loss function. Since the loss function Eloss(p) is differentiable, we can back-
propagate the gradients to the convolutional encoder, enabling self-supervised
learning of the network.

Replacement of identity parameters. The controllable semantic parameters
of the face model have the advantage that we can modify them after face recon-
struction. Note that the shape and reflectance parameters α and β of the face
model depend on the identity of the person [10, 20]. We propose to modify these
parameters (referred to as identity parameters from now on) and render syn-
thetic overlaid faces with different identities, while keeping all other dimensions
fixed. While all face model dimensions could be modified we want to avoid un-
fitting facial attributes. For example, changing all dimensions of the reflectance
parameters can lead to misaligned skin color between the rendered face and the
body. To alleviate this problem, we keep the first, third and fourth dimensions
of β, which control the global skin tone of the face, fixed.

After obtaining the semantic parameters on all our training set (over 2k
different identities), we first cluster the identity parameters into 15 different
identity clusters with the respective cluster means as representatives. We then
replace the identity parameters of the current test image with the parameters of
the cluster that is either closest (Replacer1), at middle distance (Replacer8) or
furthest away (Replacer15) to evaluate different levels of obfuscation (Fig. 2).
Note that each test image has its own Replacers.

600_7215762363190
4443_4484296319.jp
g

(a) Original image (b) Rendered face (own) (c) Replacer1 (d) Replacer8 (e) Replacer15

Fig. 2: Replacement of identity parameters in Stage-I allows us to generate faces with
different identities.

Input image obfuscation. In addition to replacing the identity parameters,
we also optionally allow additional obfuscation by blurring or blacking out the
face region in the input image for Stage-I (the face region is determined by re-
constructing the face from the original image). These obfuscation strategies force
the Stage-I network to predict the semantic parameters only using the context
information (Fig. 3), thus reducing the extent of facial identity information cap-
tured in the reconstructions. We train networks for these strategies using the full
body images with the obfuscated face region as input while using the original
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Fig. 3: Stage-I output: If the face in the input image is blacked out or blurred, our net-
work can still predict reasonable parametric reconstructions which align to the contour
of the face region. The appearance is also well estimated from the context information.
The results are further aligned using an optimization-based strategy.

unmodified images in the loss function Eloss(p)
3. This approach gives us results

which preserve the boundary of the face region and the skin color of the person
even for such obfuscated input images (Fig. 3). The rigid pose and appearance
of the face is also nicely estimated.

In addition to reducing the identity information in the rendered face, the
Stage-I network also removes the expression information when faces in the input
images are blurred or blacked out. To better align our reconstructions with the
input images without adding any identity-specific information, we further refine
only the rigid pose and expression estimates of the reconstructions. We minimize
part of the energy term in (1) after initializing all parameters with the predictions
of our network.

p∗ = argmin
p

Erefine(p) (5)

Erefine(p) = Eland(p) + wregEreg(p) (6)

Note that only φ and δ are optimized during refinement. We use 10 non-linear
iterations of a Gauss-Newton optimizer to minimize this energy. As can be seen in
Fig 3, this optimization strategy significantly improves the alignment between
the reconstructions and the input images. Note that input image obfuscation
can be combined with identity replacement to further change the identity of the
rendered face.

The output of stage-I is the shaded rendering of the face reconstruction. The
synthetic face lacks high-frequency details and does not blend perfectly with the
image as the expressiveness of the parametric model is limited. Stage-II enhances
this result and provides further obfuscation by removing/reducing the context
information from the full head region.

3.2 Stage-II: Inpainting

Stage-II is conditioned on the rendered face image from Stage-I and an obfus-
cated region around the head to inpaint a realistic image. There are two ob-
jectives for this inpainter: (1) inpainting the blurred/blacked-out hair pixels in

3 If the input image is not obfuscated in Stage-I, we directly use the pre-trained coarse
model of [13] to get the parameters and the rendered face.
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the head region; (2) modifying the rendered face pixels to add fine details and
realism to match the surrounding image context. The architecture is composed
of a convolutional generator G and discriminator D, and is optimized by L1 loss
and adversarial loss.

Input. For the generator G, RGB channels of both the obfuscated image I and
the rendered face from Stage-I F are concatenated as input. For the discriminator
D, we take the inpainted image as fake and the original image as real. Then, we
feed the (fake, real) pairs into the discriminator. We use the whole body image
instead of just the head region in order to generate natural transitions between
the head and the surrounding regions including body and background, especially
for the case of obfuscated input.

Head Generator (G) and Discriminator (D). The head generator G is
a “U-Net”-based architecture [34], i.e. Convolutional Auto-encoder with skip
connections between encoder and decoder4, following [1][35][36]. It generates a
natural head image given both the surrounding context and the rendered face.
The architecture of the discriminator D is the same as in DCGAN [37].

Loss function. We use L1 reconstruction loss plus adversarial loss, named LG,
to optimize the generator and the adversarial loss, named LD, to optimize the
discriminator. For the generator, we use the head-masked L1 loss such that the
optimizer focuses more on the appearance of the targeted head region,

LG = Lbce(D(G(I, F )), 1) + λ‖(G(I, F )− IO)�Mh‖1, (7)

where Mh is the head mask (from the annotated bounding box), IO denotes
the original image and Lbce is the binary cross-entropy loss. λ controls the im-
portance of the L1 term5. Then, for the discriminator, we have the following
losses:

LD = LD
adv = Lbce(D(IO), 1) + Lbce(D(G(I, F )), 0). (8)

We also tried to add a de-identification loss derived from verification models
[38], in order to change the identity of the person in the generated image. How-
ever, this has a conflicting objective with the L1 loss and we were not able to
find a good trade-off between them.

Fig. 4 shows the effect of our inpainter. In (a) when the original hair image
is given, the inpainter refines the rendered face pixels to match surroundings,
e.g., the face skin becomes more realistic in the bottom image. In (b)(c), the
inpainter not only refines the face pixels but also generates the blurred/missing
head pixels based on the context.

4 Network architectures and hyper-parameters are given in supplementary materials.
5 When λ is too small, the adversarial loss dominates the training and it is more likely

to generate artifacts; when λ is too big, the generator mainly uses the L1 loss and
generates blurry results.



A Hybrid Model for Identity Obfuscation by Face Replacement 9

638_72157624398936567_
7183457826.jpg

698_72157625037042671_499559
7837.jpg

696_72157625037042671_499633
2530.jpg

737_72157625764433963_538203
0894.jpg

660_72157624635635006_485150
6927.jpg

(a) Stage-I rendered faces
overlay on original hair images

699_7215762506
8743294_503951
9007.jpg

826_72157627678
546291_62480113
76.jpg

(a) Original hair

before

after

(b) Blurred hair (c) Blacked-out hair

659_72157624635635006_485143
3589.jpg

Fig. 4: Visualization results before and after inpainting. On the top row, rendered faces
are overlayed onto the color images for better comparison of details.

4 Recognizers

Identity obfuscation in this paper is target-generic: it is designed to work against
any recognizer, be it machine or human. In this paper, we use both recognizers
to test our approach.

4.1 Machine recognizers

We use an automatic recognizer naeil [39], the state-of-the-art for person recog-
nition in social media images [1][40]. In contrast to typical person recognizers,
naeil also uses body and scene context cues for recognition. It has thus proven
to be relatively immune to common obfuscation techniques like blacking-out or
blurring the head region [7].

We first train feature extractors over head and body regions, and then train
SVM identity classifiers on those features. We can concatenate features from
multiple regions (e.g. head+body) to make use of multiple cues. In our work, we
use GoogleNet features from head and head+body for evaluation. We have also
verified that the obfuscation results show similar trends against AlexNet-based
analogues (see supplementary materials).

4.2 Human recognizers

We also conduct human recognition experiments to evaluate the obfuscation
effectiveness in a perceptual way. Given an original head image and the head
images inpainted by variants of our method and results of other methods, we
ask users to recognize the original person from the inpainted ones, and to also
choose the farthest one in terms of identity. Users are guided to focus on identity
recognition rather than the image quality. For each method, we calculate the
percentage of times its results were chosen as the farthest identity (higher number
implies better obfuscation performance).
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5 Experiments

An obfuscation method should not only effectively hide the identity information
but also produce photo-realistic results. Therefore, we evaluate our results on the
basis of recognition rate and visual realism. We also study the impact of different
levels of obfuscation yielded from different input modalities at two stages.

5.1 Dataset

Our obfuscation method needs to be evaluated on realistic social media photos.
PIPA dataset [41] is the largest social media dataset (37,107 Flickr images with
2,356 annotated individuals), which shows people in diverse events, activities and
social relations [42]. In total, 63,188 person instances are annotated with head
bounding boxes from which we create head masks. We split the PIPA dataset
into a training set and a test set without overlapping identities, following [1]. In
the training set, there are 2,099 identities, 46,576 instances and in the test set
257 identities, 5,175 instances. We further prune images with strong profile or
back of the head views from both sets following [1], resulting in 23,884 training
and 1,084 test images. As our pipeline takes a fixed-size input (256 × 256 × 3),
we normalize the image size of the dataset. To this end, we crop and zero-pad
the images so that the face appears in the top middle block of a 3×4 grid in the
entire image. Details of our crop method are given in supplementary materials.

5.2 Input modalities

Our method allows 18 different combinations of input modalities, which is a com-
bination of 3 types of face modalities, 3 types of hair modalities and the choice
of modifying the face identity parameters (default replacer is Replacer15). Note
that, only 17 of them are valid for obfuscation, since the combination of original
face and hair aims to reconstruct the original image. Due to space limitations,
we compare a representative subset, as shown in Table 1. The complete results
can be found in the supplementary material.

In order to blur the face and hair regions in the input images, we use the
same Gaussian kernel as in [1, 7]. Note that in contrast to those methods, our
reconstructed face model provides the segmentation of the face region allowing
us to precisely blur the face or hair region.

5.3 Results

In this section, we evaluate the proposed hybrid approach with different input
modalities in terms of the realism of images and the obfuscation performance.

Image realism. We evaluate the quality of the inpainted images compared
to the ground truth (original) images using Structure Similarity Score (SSIM)
[43]. During training, the body parts are not obfuscated, so we report the mask-
SSIM [1, 35] for the head region only (SSIM scores are in supplementary mate-
rials). This score measures how close the inpainted head is to the original head.
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Table 1: Quantitative results comparing with the state-of-the-art methods [1]. Image
quality: Mask-SSIM and HPS scores (both the higher, the better). Obfuscation effec-
tiveness: recognition rates of machine recognizers (lower is better) and confusion rates
of human recognizers (higher is better). v* simply represents the method in that row.

Obfuscation method Evaluation

Stage-II Image quality Machine Human

Stage-I Hair Rendered face Mask-SSIM HPS head body+head confusion

Original - - 1.00 0.93 85.6% 88.3%

[1] Blackhead+Detect 0.41 0.19 10.1% 21.4% -
[1] Blackhead+PDMDec. 0.20 0.11 5.6% 17.4% -
[1], our crop Blackhead+Detect 0.43 0.34 12.7% 24.0% 4.1%
[1], our crop Blackhead+PDMDec. 0.23 0.15 9.7% 19.7% 20.1%

v1, Original Overlay-No-Inpainting 0.75 0.58 66.9% 68.9%

v2, Original Original Own 0.87 0.71 70.8% 71.5% -
v3, Original Original Replacer15 - 0.49 47.6% 57.4% -

v4, Blurred Original Own 0.86 0.59 59.9% 65.2% -
v5, Blurred Original Replacer15 - 0.41 26.3% 41.7% -
v6, Blurred Blurred Own 0.55 0.55 25.8% 38.0% -
v7, Blurred Blurred Replacer15 - 0.40 12.7% 29.3% -

v8, Blacked Original Own 0.85 0.60 59.3% 64.4% -
v9, Blacked Blacked Own 0.47 0.41 14.2% 25.7% 2.9%
v10, Blacked Blacked Replacer1 - 0.45 11.8% 23.5% 6.2%
v11, Blacked Blacked Replacer8 - 0.39 9.3% 22.4% 31.3%
v12, Blacked Blacked Replacer15 - 0.33 7.1% 18.1% 35.4%

The SSIM metric is not applicable when using a Replacer, as ground truth
images are not available. Therefore, we conduct a human perceptual study (HPS)
on Amazon Mechanical Turk (AMT) following [1, 35]. For each method, we show
55 real and 55 inpainted images in a random order to 20 users, who are asked
to answer whether the image looks real or fake within 1s.

Obfuscation performance. Obfuscation evaluation is to measure how well
our methods can fool automatic person recognizers as well as humans. We have
defined machine recognizers and human recognizers in Section 4.

For machine recognizers, we report the average recognition rates for 1, 084
test images in Table 1. For human recognition, we randomly choose 45 instances
then ask recognizers to verify the identity, given the original image as reference,
from the obfuscated images of six representative methods: two methods in [1]
and four methods indexed by v9-v12, see the last column of Table 1.

Comparison to the state-of-the-art. In Table 1, we report quantitative eval-
uation results on different input modalities and in comparison to [1]. We also
implement the exact same models of [1] on our cropped data for fair comparisons.
We also compare the visual quality of our results with [1], see Fig. 5.

Our best obfuscation rate is achieved by v12. The most comparable method
in [1] is Blackhead+PDMDec, where the input is an image with a fully blacked-
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Fig. 5: Result images by methods v9 and v12, compared to original images and the
results of the Blackhead scenario using PDMDec landmarks in [1]. Note that the image
scale difference with [1] is because of different cropping methods.

out head and the landmarks are generated by PDMDec. Comparing v12 with
it, we achieve 2.6% lower recognition rate (2.6% higher for confusing machine
recognizers) using head features. Our method does even better (15.3% higher)
in fooling human recognizers. In addition, our method has clearly higher image
quality in terms of HPS, 0.33 vs. 0.15 [1]. Figure 5 shows that our method
generates more natural images in terms of consistent skin colors, proper head
poses and vivid face expressions.

Parametric model versus GAN. For the ablation study of our hybrid model,
we replace the parametric model in Stage-I with a GAN. We use the same
architecture as the stage-II network of [1], but without the landmark channel.
This is inspired by the regional completion method using GANs [44]. We consider
two comparison scenarios: when the input face is blacked-out (indexed by v13),
we compare with v8; when the head is blacked-out (indexed by v14), we compare
with v9. We observe that v13 results in a lower mask-SSIM score of 0.80 (v8
has 0.85) with the same recognition rate of 64.4%. This means that the GAN
generates lower-quality images without performing better obfuscation. v14 has
a lower recognition rate of 19.7% vs. v9’s 25.7%, but its mask-SSIM (image
quality) is only 0.23, 0.24 lower than v9’s 0.47. If we make use of face replacement
(only applicable when using our parametric model-based approach), we are able
to achieve a lower recognition rate of 18.1%, sacrificing only 0.08 in terms of
image quality (see HPS of v9 and v12 in Table 1).



A Hybrid Model for Identity Obfuscation by Face Replacement 13

v6

636_72157624392904322_474889
2537.jpg

691_72157624907956927_502414
7816.jpg

733_72157625752247781_537637
6225.jpg

720_72157625508073599_527562
8412.jpg

Original v7

99_866039_34698717.jpg

600_72157623631904443_448429
6319.jpg

691_72157624907956927_502414
6006.jpg

660_72157624635635006_485204
8798.jpg

ID: 99

ID: 600

ID: 691

ID: 733

ID: 660

85.6%
 

recognition: 38.0% 29.3%

0.93HPS score.: 0.55 0.40

71.5%

0.71

v2 v3

57.4%

0.49

Fig. 6: Result images of methods v2, v3, v6 and v7, compared to the original images.

Analysis of different face/hair modalities. Table 1 shows that different
modalities of the input yield different levels of obfuscation and image quality.
In general, the image quality is roughly correlated to the recognition rate. With
higher level of modification to an image, the identity will be more effectively
obfuscated, but the image quality will also deteriorate accordingly. However, we
can observe that the recognition rate drops quicker than the image quality.

It is worth noting that when there is no inpainting on the rendered faces
(v1), HPS score is 0.58, 0.13 lower than v2, verifying that rendered faces are less
realistic than inpainted ones. Not surprisingly, the best image quality is achieved
by v2 which aims to reconstruct the original image without obfuscation. On top
of that, when we use blurred faces in Stage-I (v4), the machine recognition rate
(head) drops from 70.8% to 59.9%. This indicates that blurring the face region
indeed partially conceals the identity information.

When we blur the hair region (v6), the recognition rate sharply drops to
25.8%, which implies that the region around the face contains a large amount
of identity information. When we remove all information from the face and hair
regions (v9), we get an even lower recognition rate of 14.2%.

Face replacement is of great effectiveness. We can see from Table 1 that
replacing the face parameters with those of another identity is an effective way
of hiding the identity information. Regardless of the face and hair input modali-
ties, the obfuscation performances on both recognizers are significantly improved
using Replacer15 rendered faces than using Own rendered faces. Replacing faces
from close to far identities also has an obvious impact on the obfuscation ef-
fectiveness. From v10 to v12 in Table 1, we can see using Replacer8 yields
clearly better obfuscation than the Replacer1, e.g., obfuscation for humans gets
25.1% improvement. This is further evidenced by the comparison between the
Replacer15 and Replacer1. Visually, Fig. 6 and Fig. 5 show that replacing the
face parameters indeed makes the faces very different.

Trade-off between image quality and obfuscation. Fig. 7 shows the ma-
chine recognition rate vs. image quality plots for different obfuscation methods
(some are not in Table 1 but in supplementary materials). Points on the curves
from left to right are the results of using Blacked-out, Blurred and Original hair
inputs for stage-II.
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Fig. 7: Scatter curves of different obfuscation methods. HPS scores change along X-axis
for different obfuscation levels (Blacked-out, Blurred, Original) on hair regions.

This figure allows users to select the method with the highest image qual-
ity given a specified obfuscation threshold. For example, if a user would like to
take the risk of 30% recognizability at most, the highest image quality he/she
can get is about 0.45, corresponding to the middle point on the blue dashed
line (the method of Original image, Blurred hair, Replacer15). On the other
hand, if a user requires the image quality to be at least 0.30, the best ob-
fuscation possible corresponds to the first point of the red dashed line (the
method of Blacked-out face, Blacked-out hair, Replacer15). The global coverage
of these plots show the selection constrains, such as when a user strictly con-
trols the privacy leaking rate under 20%, there are only two applicable methods:
Blackhead+PDMDec [1] (image quality is only 0.15) and ours (Blacked-out face,
Blacked-out hair, Replacer15) where the image quality is higher at 0.33.

6 Conclusion

We have introduced a new hybrid approach to obfuscate identities in photos
by head replacement. Thanks to the combination of a parametric face model
reconstruction and rendering, and the GAN-based data-driven image synthesis,
our method gives us complete control over the facial parameters for explicit
manipulation of the identity, and allows for photo-realistic image synthesis. The
images synthesized by our method confuse not only the machine recognition
systems but also humans. Our experimental results have demonstrated output
of our system that improves over the previous state of the art in obfuscation rate
while generating obfuscated images of much higher visual realism.

Acknowledgments

This research was supported in part by German Research Foundation (DFG CRC
1223) and the ERC Starting Grant CapReal (335545). We thank Dr. Florian
Bernard for the helpful discussions.



A Hybrid Model for Identity Obfuscation by Face Replacement 15

References

1. Sun, Q., Ma, L., Oh, S.J., Gool, L.V., Schiele, B., Fritz, M.: Natural and effective
obfuscation by head inpainting. In: CVPR. (2018)

2. Oh, S.J., Fritz, M., Schiele, B.: Adversarial image perturbation for privacy protec-
tion – a game theory perspective. In: ICCV. (2017)

3. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security.
(2016)
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