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A Network architectures

In Fig. 1, we present the U-Net architecture for the Head Generator G, which
corresponds to the Inpainter in Fig.1 of the main paper. Note that the output of
the deep network is the image (256x256x3) including the body and the head. In
the final layer, the output is cropped based on the head mask and pasted onto
the obfuscated image (one of the inputs). Therefore, only the head region can
provide any feedback during back-propagation. This follows from [1].
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Fig. 1: The network architecture of Head Generator G used in the stage-II.

B Implementation details

For the Stage-I network (Section 3.1 in the main paper), AlexNet is used as the
encoder (“Conv Encoder” in the Fig.1 of the main paper). We use AdaDelta [2]
(200k iterations) to optimize the weights of the network with a batch size of 5
and a learning rate of 10−3.

In the Inpainter (Section 3.2 in the main paper), the Head Generator is
trained using the Adam optimizer [3] with λH = 1000 (in the main paper Eq.
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(7)). Initial learning rates (for both generator G and discriminator D) are 2 ×
10−5, which decays to half every 5, 000 iterations. The batch size is set to 6;
optimization stops after 10, 000 iterations; each iteration consists of 5 and 1
parameter updates for the generator and the discriminator respectively. It takes
around 9 epochs for training the generator and around 2 epochs for training the
discriminator.

To prepare a 256 × 256 body crop (Section 5.1 in the main paper), keeping
the ratio of the head (width/height) unchanged, we first resize the original image
such that the head height is 1/4 of 256. Then, we crop a 3 head weight × 4 head
height region from the input image, making the head lying in the upper middle
region of the crop. We zero-pad the image if its dimensions are smaller than the
crop size, thereby obtaining the final crop with the desired 256 × 256 size.

C Obfuscation performance against AlexNet

In the experiments provided in the main paper, we focused on the obfuscation
performance using a GoogleNet-based recognizer. However, as we have men-
tioned, our approach is target-generic: it is expected to work against a generic
system.

Therefore, in this section, we additionally present the obfuscation perfor-
mance with respect to an AlexNet-based recognizer. Following the same “feature
extraction - SVM prediction” framework as in the main paper, we replace the
feature extractor with AlexNet. Table 1 shows the quantitative comparisons be-
tween GoogleNet and AlexNet recognizers on different versions of our approach.
Note that in this table, v1∼12 are the same representative versions as shown
in Table 1 of the main paper. All other versions are also added here. Note that
v13 and v14 are indexing two hybrid models, different with the GAN models
for stage-I ablation study in the main paper.

Some recognition rate differences exit between the two recognizers. First of
all, on original (ground truth) images, AlexNet performs worse than GoogleNet
(81.6% < 85.6%). On images generated by our method (v1∼21), AlexNet per-
forms similarly when using head features, achieving a higher recognition rate
for 12 input modalities out of 21, compared to GoogleNet. However, while us-
ing head+body features, GoogleNet recognition rates are higher for 18 differ-
ent input modalities. The possible reason could be that the 1024-dimensional
GoogleNet features are more compact than the AlexNet features, which are
4096-dimensional. From the discriminative head images, less compact features
can extract more information in the additional feature dimensions. On the other
hand, concatenation of features from the noisy body images could reduce the
final recognition rates.

D Visualization results

In this section, we show visualization results using different modalities (v2 to
v21), corresponding to Table 1.
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Respectively in Figure 2, Figure 3 and Figure 4, we show results with rendered
faces from Original images, Blurred face images and Blacked-out face images.
Note that, the results are consistently cropped to have small zero-padded regions.
In most cases, the best visual quality is achieved in the second column which
uses Original hair images. The largest visual differences compared to the original
faces are visible in the last column when the rendered faces are replaced and the
hair regions are entirely obfuscated by blacking-out.
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Fig. 2: Result images of methods v2 to v15 in the block named “Original in the Stage-I”
in Table 1, compared to original images.
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Fig. 3: Result images of methods v4 to v18 in the block named “Blurred in the Stage-I”
in Table 1, compared to original images.
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Fig. 4: Result images of methods v8 to v12 in the block named “Blacked in the Stage-I”
in Table 1, compared to original images.
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Table 1: Quantitative results comparing with the state-of-the-art methods [1]. Image
quality: Mask-SSIM, SSIM and HPS scores (both the higher, the better). Obfusca-
tion effectiveness: recognition rates of machine recognizers (lower is better). v* simply
represents the method in that row, noting that supplementary methods are numbered
after v12 according to the Table 1 of our main paper. To save space, we use some ab-
breviations of input data as Rendered.=Rendered Face, Orig.=Original, Blu.=Blurred,
Bla.=Blacked and Overlay-No-Inp.=Overlay-No-Inpainting, while full names were used
in the Table 1 of our main paper.

Obfuscation method Evaluation

Stage-II Image quality Google Net Alex Net

Stage-I Hair Rendered. Mask-SSIM SSIM head body+head head body+head

Orig. - - 1.00 1.00 85.6% 88.3% 81.6% 85.3%

[1] Blu.+Detect 0.68 0.96 43.7% 51.7% 49.0% 48.9%
[1] Blu.+PDMDec. 0.59 0.95 37.9% 49.1% 45.1% 45.6%
[1] Bla.+Detect 0.41 0.90 10.1% 21.4% 11.4% 20.5%
[1] Bla.+PDMDec. 0.20 0.86 5.6% 17.4% 7.4% 16.6%
[1], our crop Blu.+Detect 0.64 0.98 40.5% 47.8% 43.6% 43.2%
[1], our crop Blu.+PDMDec. 0.47 0.97 30.6% 38.6% 35.4% 37.0%
[1], our crop Bla.+Detect 0.43 0.97 12.7% 24.0% 15.1% 23.4%
[1], our crop Bla.+PDMDec. 0.23 0.96 9.7% 19.7% 10.5% 19.2%

v1, Orig. Overlay-No-Inp. 0.75 0.96 66.9% 68.9% 64.0% 54.9%

v2, Orig. Orig. Own 0.87 0.99 70.8% 71.5% 66.6% 58.3%
v3, Orig. Orig. Replacer15 - - 47.6% 57.4% 45.1% 47.9%
v13, Orig. Blu. Own 0.58 0.98 36.6% 48.2% 42.4% 43.2%
v14, Orig. Blu. Replacer15 - - 18.0% 30.8% 22.9% 30.2%
v15, Orig. Bla. Own 0.50 0.97 22.5% 35.5% 30.3% 33.9%
v16, Orig. Bla. Replacer15 - - 7.1% 21.3% 13.2% 21.5%

v4, Blu. Orig. Own 0.86 0.99 59.9% 65.2% 57.8% 52.0%
v5, Blu. Orig. Replacer15 - - 26.3% 41.7% 24.1% 31.8%
v6, Blu. Blu. Own 0.55 0.98 25.8% 38.0% 28.2% 33.5%
v7, Blu. Blu. Replacer15 - - 12.7% 29.3% 14.8% 23.3%
v17, Blu. Bla. Own 0.44 0.97 15.7% 28.2% 19.7% 25.7%
v18, Blu. Bla. Replacer15 - - 7.2% 20.7% 9.9% 18.9%

v8, Bla. Orig. Own 0.85 0.99 59.3% 64.4% 54.8% 49.1%
v19, Bla. Orig. Replacer15 - - 27.0% 41.4% 25.0% 31.3%
v20, Bla. Blu. Own 0.53 0.98 28.1% 38.6% 31.0% 34.7%
v21, Bla. Blu. Replacer15 - - 11.2% 25.9% 14.7% 22.1%
v9, Bla. Bla. Own 0.47 0.97 14.2% 25.7% 19.1% 24.4%
v12, Bla. Bla. Replacer15 - - 7.1% 18.1% 9.7% 16.5%


