

Overview

Our goal is to reconstruct human performances captured outdoors in a multi-camera setup. We introduce a unified implicit representation for both, articulated skeleton tracking and **non-rigid surface shape refinement**. Our method is designed to work on **unsegmented video**.

Model Representation

Layer-I approximates the 3D volume of the actor with a collection of colored 3D Model Gaussians rigidly attached to the skeleton.

Layer-II is derived from the rigged, colored static surface mesh approximated using two sets of fine 3D Gaussians:

- To optimize the surface interior, surface Gaussian are placed at each vertex with the color of the static mesh vertex.
- To align to the surface boundary, **border Gaussians** are placed at • the mesh boundary. Inside Gaussians have the surface color and are paired with outside Gaussians with **inverted color similarity**.

Funding: ERC starting grant CapReal (335545) Project page: gvv.mpi-inf.mpg.de/projects/OutdoorPerfcap

Model-based Outdoor Performance Capture

<u>Nadia Robertini^{1,2} Dan Casas¹ Helge Rhodin¹ Hans-Peter Seidel¹ Christian Theobalt¹</u> ¹Max Planck Institute for Informatics ²Intel Visual Computing Institute

Stage-I – Coarse Tracking

The coarse skeleton motion is tracked based on the approach from Stoll et al. [ICCV 2011]

$$E_{m,i} = \left[\int_{\Omega} \hat{g}_m(x) \hat{i}_c(x) \partial x \right]^2 = 2 - \frac{1}{\sigma}$$

Stage-II – Surface Refinement

Non-rigid cloth and soft tissue deformation is refined by maximizing the agreement between a fine-scale implicit surface representation and the image (without segmentation).

> $E(\mathbf{v}, \mathbf{\theta}) = E_{\text{surf}}(\mathbf{v}) + E_{\text{cont}}(\mathbf{v})$ $w_{\rm skin}E_{\rm skin}(\mathbf{v},\mathbf{\theta}) - w_{\rm smooth}E_{\rm smooth}(\mathbf{v})$

Esurf measures the photo consistency of the surface Gaussians with the input images:

 $E_{\text{surf}}(\mathbf{v}) = \sum_{i=1}^{|\tilde{\mathbf{g}}|} \sum_{i=1}^{|\mathbf{i}|} C(\delta_{s,i}) E_{s,i}$

Econt measures the model-to-image contour alignment, by border Gaussians:

$$E_{\text{cont}}(\mathbf{v}) = \sum_{b}^{|\mathbf{\breve{g}}|} \sum_{i}^{|\mathbf{i}|} C(\delta_{b,i}) E_{b_{\text{in}},i}$$

Eskin is a regularization term that maintains the surface attachment to the skeleton and is used to refine the skeletal pose obtained at Stage I.

Esmooth regularizes unnatural surface deformations with a smoothness Laplacian prior term.

Input

Zoom in

Stage-l

Stage-II, no rigidity mask

N. Robertini, E. De Aguiar, T. Helten, and C. Theobalt. Efficient Multi-view Performance Capture of Fine Scale Surface Detail. 3DV 2014 C. Stoll, N. Hasler, J. Gall, H.-P. Seidel, and C. Theobalt. Fast articulated motion tracking using a sums of Gaussians body model. ICCV 2011 S. Ilic and P. Fua. Implicit meshes for surface reconstruction. PAMI 2006

 $\frac{\sigma_m \sigma_c}{\sigma_m^2 + \sigma_c^2} e^{-\frac{||\mu_m - \mu_c}{\sigma_m^2 + \sigma_c^2}}$

 $+ (1 - C(\delta_{b,i}))E_{b_{out},i}$

Stage-II, with rigidity mask

Results and Evaluation

We succeed in outdoor settings with high reconstruction quality, and show that we are on par with state-of-the-art methods on indoor scenes. We quantitatively assess the performance of our method using a silhouette overlap metric.

Input

Stage-l

Stage-II

Green: false negative, Red: false positive, Purple: true positive, Black: true negative

	F ₁ score	
	Stage-I	Stage-II
cathedral	0.9114 ± 0.0077	0.9362 ± 0.0033
pablo	0.8812 ± 0.0156	0.9212 ± 0.0096
unicampus	0.8962 ± 0.0149	0.9223 ± 0.0083
skirt	0.9271 ± 0.0122	0.9676 ± 0.0056

Table 1: Quantitative evaluation of the sequences tested in this paper. The F₁ score of the Stage-II is consistently higher than in Stage-I

