
PIE: Portrait Image Embedding for Semantic Control

AYUSH TEWARI, MOHAMED ELGHARIB, and MALLIKARJUN B R,Max Planck Institute for Informatics, SIC
FLORIAN BERNARD,Max Planck Institute for Informatics, SIC and Technical University of Munich
HANS-PETER SEIDEL,Max Planck Institute for Informatics, SIC
PATRICK PÉREZ, Valeo.ai
MICHAEL ZOLLHÖFER, Stanford University
CHRISTIAN THEOBALT,Max Planck Institute for Informatics, SIC

Fig. 1. We present an approach for embedding portrait images in the latent space of StyleGAN [Karras et al. 2019b] (visualized as “Projection“) which allows
for intuitive photo-real semantic editing of the head pose, facial expression, and scene illumination using StyleRig [Tewari et al. 2020]. Our optimization-based
approach allows us to achieve higher quality editing results compared to the existing embedding method Image2StyleGAN [Abdal et al. 2019]. Image from Shen
et al. [2016].

Editing of portrait images is a very popular and important research topic with
a large variety of applications. For ease of use, control should be provided
via a semantically meaningful parameterization that is akin to computer
animation controls. The vast majority of existing techniques do not provide
such intuitive and fine-grained control, or only enable coarse editing of a
single isolated control parameter. Very recently, high-quality semantically
controlled editing has been demonstrated, however only on synthetically
created StyleGAN images. We present the first approach for embedding real
portrait images in the latent space of StyleGAN, which allows for intuitive
editing of the head pose, facial expression, and scene illumination in the
image. Semantic editing in parameter space is achieved based on StyleRig, a
pretrained neural network that maps the control space of a 3D morphable
face model to the latent space of the GAN. We design a novel hierarchi-
cal non-linear optimization problem to obtain the embedding. An identity
preservation energy term allows spatially coherent edits while maintaining
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facial integrity. Our approach runs at interactive frame rates and thus allows
the user to explore the space of possible edits. We evaluate our approach on
a wide set of portrait photos, compare it to the current state of the art, and
validate the effectiveness of its components in an ablation study.
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1 INTRODUCTION
Portrait images, showing mainly the face and upper body of people,
are among the most common and important photographic depic-
tions. We look at them to emotionally connect with friends and
family, we use them to best present ourselves in job applications and
on social media, they remind us of memorable events with friends,
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and photographs of faces are omnipresent in advertising. Nowa-
days, tools to computationally edit and post-process photographs
are widely available and heavily used. Professional and hobby pho-
tographers use them to bring out the best of portrait and social
media photos, as well as of professional imagery used in advertising.
Photos are often post-processed with the purpose to change the
mood and lighting, to create a specific artistic look and feel, or to
correct image defects or composition errors that only become ap-
parent after the photo has been taken. Today, commercial software1
or recent research software [Gatys et al. 2016; Luan et al. 2017]
offers a variety of ways to edit the color or tonal characteristics of
photos. Some tools even enable the change of visual style of photos
to match certain color schemes [Luan et al. 2017; Shih et al. 2014],
or to match a desired painterly and non-photo-realistic style [Gatys
et al. 2016; Selim et al. 2016]. In many cases, however, edits to a
portrait are needed that require more complex and high-level modi-
fications e.g. modifying head posture, smile or scene illumination
after the capture. Enabling such edits from a single photograph is
an extremely challenging and underconstrained problem. This is
because editing methods need to compute reliable estimates of 3D
geometry of the person and lighting in the scene. Moreover, they
need to photo-realistically synthesize modified images of the per-
son and background in a perspectively correct parallax-respecting
manner, while inpainting disoccluding regions.
For ease of use, editing methods should use semantically mean-

ingful parameterizations, which for the rest of the paper means the
following: Head pose, face expression and scene lighting should
be expressed as clearly disentangled and intuitive variables akin
to computer animation controls, such as coordinates and angles,
blendshape weights, or environment map parameterizations. Exist-
ing methods to edit human portrait imagery at best achieve parts of
these goals. Some model-based methods to realistically edit human
expression [Thies et al. 2019, 2016] and head pose [Kim et al. 2018]
fundamentally require video input and do not work on single images.
Other editing approaches are image-based and cannot be controlled
by intuitive parametric controls [Averbuch-Elor et al. 2017; Geng
et al. 2018; Siarohin et al. 2019; Wang et al. 2019a; Zakharov et al.
2019], only enable editing of a single semantic parameter dimension,
e.g., scene illumination [Meka et al. 2019; Sun et al. 2019; Zhou
et al. 2019], or do not photo-realistically synthesize some important
features such as hair [Nagano et al. 2018].
Recently, generative adversarial neural networks, such as Style-

GAN [Karras et al. 2019b], were trained on community face image
collections to learn a manifold of face images. They can be sampled
to generate impressive photo-realistic face portraits, even of peo-
ple not existing in reality. However, their learned parameterization
entangles important face attributes (most notably identity, head
pose, facial expression, and illumination), which thus cannot be in-
dependently and meaningfully controlled in the output. It therefore
merely allows control on a coarse style-based level, e.g., to adapt or
transfer face styles on certain frequency levels between images. To
overcome this limitation, StyleRig [Tewari et al. 2020] describes a
neural network that maps the parameters of a 3D morphable face
model (3DMM) [Blanz and Vetter 1999] to a pretrained StyleGAN

1For example: www.adobe.com/Photoshop

for face images. However, while their results show disentangled
control of face images synthesized by a GAN, they do not allow for
editing real portrait photos.
On the other hand, some approaches have tried to embed real

images in the StyleGAN latent space. Abdal et al. [2019, 2020a]
demonstrate high-quality embedding results, which are used to
perform edits such as style or expression transfer between two
images, latent space interpolation for morphing, or image inpainting.
However, when these embeddings are used to edit the input images
using StyleRig [Tewari et al. 2020], the visual quality is not preserved
and the results often have artifacts. High-quality parametric control
of expression, pose or illumination on real images has not yet been
shown to be feasible.

We therefore present the first method for embedding real portrait
images in the StyleGAN latent space which allows for photo-realistic
editing that combines all the following features: It enables photo-
real semantic editing of all these properties — head pose, facial
expression, and scene illumination, given only a single in-the-wild
portrait photo as input, see Fig. 1. Edits are coherent in the entire
scene and not limited to certain face areas. Edits maintain perspec-
tively correct parallax, photo-real occlusions and disocclusions, and
illumination on the entire person, without warping artifacts in the
unmodeled scene parts, such as hair. The embedding is estimated
based on a novel non-linear optimization problem formulation. Se-
mantic editing in parameter space is then achieved based on the
pretrained neural network of Tewari et al. [2020], which maps the
control space of a 3D morphable face model to the latent space of
StyleGAN. These semantic edits are accessible through a simple user
interface similar to established face animation control. We make the
following contributions:

• We propose a hierarchical optimization approach that em-
beds a portrait image in the latent space of StyleGAN while
ensuring high-fidelity as well as editability.

• Moreover, in addition to editability of the head pose, facial
expression and scene illumination, we introduce an energy
that enforces preservation of the facial identity.

2 RELATED WORK
We define face editing as the process of changing the head pose, fa-
cial expression, or incident illumination in a portrait image or video.
Many recent editing techniques are learning-based. We distinguish
between person-specific techniques that require a large corpus of
images (or a long video) of the person, few-shot techniques that only
require a small number of images, and single-shot techniques that
only require a single image as input. Our Portrait Image Embedding
(PIE) approach is part of the third category and enables intuitive
editing of a portrait image by a set of semantic control parameters.
In addition to these categories, we will also summarize existing
works related to portrait relighting.

2.1 Person-specific Video Editing Techniques
There has been a lot of research on person-specific techniques [Bansal
et al. 2018; Kim et al. 2019, 2018; Thies et al. 2019, 2016; Wiles et al.
2018] that require a large training corpus of the target person as
input. These approaches can be classified into model-based [Kim
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et al. 2019, 2018; Thies et al. 2019, 2016] and image-based [Bansal
et al. 2018] techniques. Model-based techniques employ a paramet-
ric face model to represent the head pose, facial expression, and
incident scene illumination. The semantic parameter space spanned
by the model can be used to either perform intuitive edits or transfer
parameters from a source to a target video. On the other end of the
spectrum are image-based techniques that can transfer parameters,
but do not provide intuitive semantic control.

Model-based Video Editing Techniques. Facial reenactment ap-
proaches [Thies et al. 2019, 2016] change the facial expressions
in a target video to the expressions in a driving source video. These
approaches achieve impressive results, but require a video of the
target person as input and do not enable editing of the head pose
and incident illumination. Kim et al. [2018] proposed the first full
head reenactment approach that is able to edit the head pose as
well as the facial expression. A conditional deep generative model
is leveraged as a neural rendering engine. While these approaches
[Kim et al. 2018; Thies et al. 2019, 2016] produce exciting results,
they do not preserve the speaking style of the target. In Kim et
al. [2019], an approach is proposed for editing the expressions of
a target subject while maintaining his/her speaking style. This is
made possible by a novel style translation network that learns a
cycle-consistent mapping in blendshape space. In contrast to our
approach, all these techniques require a long video of the target as
input and cannot edit a single image of an arbitrary person.

Image-based Video Editing Techniques. Image-based techniques
enable to control a target face through a driving video. The approach
of Bansal et al. [2018] allows them to modify the target video while
maintaining the speaking style. A novel recycle loss is defined in the
spatio-temporal video domain. This approach obtains high-quality
results for expressions and pose transfer. In contrast to our approach,
image-based approaches do not provide intuitive control via a set
of semantic control parameters and have to be trained in a person-
specific manner. Thus, they cannot be employed to edit a single
given image.

2.2 Few-shot Editing Techniques
Few-shot editing techniques [Wang et al. 2019a; Wiles et al. 2018;
Zakharov et al. 2019] require only a small set of images of the target
person as input. Given multiple frames showing a target person,
X2Face [Wiles et al. 2018] drives a frontalized face embedding by a
regressed warp field that is estimated by an encoder-decoder net-
work. The approach can also drive faces based on audio. Wang et
al. [2019a] presented a few-shot video editing approach and showed
its application to driving a target face via a source video. A novel
network weight generation module is proposed that is based on an
attention mechanism. To animate faces, the network is trained to
transfer image sketches to photo-realistic face images. The network
is trained on a large multi-identity training corpus and can be ap-
plied to new unseen still images. Zakharov et al. [2019] presented
a few-shot technique for animating faces. Their solution has three
components: 1) a generator network that translates landmark posi-
tions to photo-realistic images, 2) an embedding network that learns
an intermediate representation for conditioning the generator, and

3) a discriminator. The network is trained on a large corpus of face
images across multiple identities and generalizes to new identities
at test time. Impressive results are shown in animating images, in-
cluding legacy photos and even paintings. The learned models of
few-shot techniques [Wang et al. 2019a; Wiles et al. 2018; Zakharov
et al. 2019] can be improved by fine-tuning on a few example images
of the target person, e.g., images taken at different view-points or
at different time instances. The learned models can also be applied
directly to new still images without fine-tuning.

2.3 Single-shot Editing Techniques
Several works [Averbuch-Elor et al. 2017; Geng et al. 2018; Nagano
et al. 2018] exist for controlling the expression and head pose given
a single image as input. Nagano et al. [2018] presented paGAN, an
approach for creating personalized avatars from just a single image
of a person. However, the work does not synthesize photo-realistic
hair. The approach of Averbuch-Elor et al. [2017] brings portrait
images to life by animating their expression and pose. The target
image is animated through a 2D warp that is computed from the
movement in the source video. The mouth interior is copied from
the source and blended into the warped target image. The approach
of Geng et al. [2018] employs deep generative models to synthesize
more realistic facial detail and a higher quality mouth interior. First,
a dense spatial motion field is used to warp the target image. Af-
terwards, the first network corrects the warped target image and
synthesizes important skin detail. Finally, the second network syn-
thesizes the mouth interior, including realistic teeth. Siarohin et
al. [2019] proposed a method for animating a single image based on
a driving sequence. By detecting keypoints in both the target image
and the driving frames, the method uses a neural network to com-
pute a dense warping field, specifying how to translate the driving
frames into the target image. Based on this information a second
network produces high-quality output frames. Since keypoint ex-
traction is also learned during training, the method is applicable
for any category of input, and in particular works for face and full
body images. While existing single-shot editing techniques can only
be controlled via a driving video, our approach enables intuitive
editing of the head pose, facial expression and incident illumination
in a portrait image through intuitive parametric control, as well as
through a driving video.

2.4 Portrait Relighting
Relighting approaches modify the incident illumination on the
face [Meka et al. 2019; Peers et al. 2007; Shu et al. 2017; Sun et al.
2019; Zhou et al. 2019]. Earlier works [Peers et al. 2007; Shu et al.
2017] require an exemplar portrait image that has been taken un-
der the target illumination conditions. More recent techniques use
deep generative models [Meka et al. 2019; Sun et al. 2019; Zhou
et al. 2019] and can relight images based on an environment map.
Zhou et al. [2019] train a relighting technique based on a large cor-
pus of synthetic images. Relighting is performed in the luminance
channel, which simplifies the learning task. Sun et al. [2019] use light
stage data to train their relighting approach. At test time, the net-
work produces high quality relighting results, even for in-the-wild
images. While training with light stage data leads to high-quality
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results, their scarcity and careful recording protocol can limit their
adaptation. Meka et al. [2019] showed that the 4D reflectance field
can be estimated from two color gradient images captured in a light
stage. This provides more movement flexibility for the subject dur-
ing recording, and hence takes an important step towards capturing
relightable video.

2.5 Image Editing using SyleGAN
Several recent methods have been proposed to edit StyleGAN gener-
ated images. Most approaches linearly change the StyleGAN latent
codes for editing [Härkönen et al. 2020; Shen et al. 2020; Tewari et al.
2020]. Non-linear editing has been shown in Abdal et al. [2020b].
Image2StyleGAN [Abdal et al. 2019, 2020a] is a popular approach
for embedding real images into the StyleGAN latent space with very
high fidelity. InterFaceGAN [Shen et al. 2020] and StyleFlow [Ab-
dal et al. 2020b] demonstrate editing of real images using these
embeddings. Very recently, Zhu et al. [2020] introduce a domain-
guided embedding method which allows for higher-quality editing,
compared to Image2StyleGAN. However, they do not demonstrate
results at the highest resolution for StyleGAN. In this paper, we
design an embedding method which allows for high-quality portrait
editing using StyleRig [Tewari et al. 2020].

3 RIGGING STYLEGAN-GENERATED IMAGES
StyleGAN [Karras et al. 2019b] can synthesize human faces at an un-
precedented level of photorealism. However, their edits are defined
in terms of three main facial levels (coarse, medium and fine), with
no semantic meaning attached to them. StyleRig [Tewari et al. 2020]
attaches a semantic control for a StyleGAN embedding, allowing
edits for head pose, illumination and expressions. The control is
defined through a 3D Morphable Face Model (3DMM) [Blanz and
Vetter 1999].

3.1 StyleRig in more detail
Faces are represented by a 3DMM model with𝑚 = 257 parameters

\ = (𝜙, 𝜌, 𝛼, 𝛿, 𝛽,𝛾) ∈ R257 . (1)

Here, (𝜙, 𝜌) ∈ R6 are the rotation and translation parameters of
the head pose, where rotation is defined using Euler angles. The
vector 𝛼 ∈ R80 represents the geometry of the facial identity, while
𝛽 ∈ R64 are the expression parameters. Skin reflectance is defined
by 𝛿 ∈ R80 and the scene illumination by 𝛾 ∈ R27. The basis vectors
of the geometry and reflectance models are learned from 200 facial
3D scans [Blanz and Vetter 1999]. The expression model is learned
from FaceWarehouse [Cao et al. 2014] and the Digital Emily project
[Alexander et al. 2010]. Principal Components Analysis (PCA) is
used to compress the original over-complete blendshapes to a sub-
space of 64 parameters. Faces are assumed to be Lambertian, where
illumination is modeled using second-order spherical harmonics
(SH) [Ramamoorthi and Hanrahan 2001].

StyleRig [Tewari et al. 2020] allows one to semantically edit
synthetic StyleGAN images. To this end, StyleRig trains a neural
network, called RigNet, which can be understood as a function
rignet(·, ·) that maps a pair of StyleGAN code v and subset of 3DMM
parameters \𝜏 to a new StyleGAN code v̂, i.e. v̂ = rignet(v, \𝜏 ). In

practice, the 3DMM parameters are first transformed before being
used in the network. Please refer to the supplemental document
for details. With that, Iv̂ shows the face of Iv modified according to
\𝜏 (i.e. with edited head pose, scene lighting, or facial expression),
where Iv is the StyleGAN image generated using the latent code v.
Thus, editing a synthetic image Iv amounts to modifying the com-
ponent 𝜏 in the parameter \ , and then obtaining the edited image
as Iv̂ = I(rignet(v, \𝜏 )). Multiple RigNet models are trained, each
to deal with just one mode of control (pose, expression, lighting).
Although RigNet allows for editing of facial images, it has the major
shortcoming that only synthetic images can be manipulated, rather
than real images. This is in contrast to this work, where we are
able to perform semantic editing of real images. Different from the
original RigNet design where a differentiable face reconstruction
network regresses the 3DMM parameters from a StyleGAN code,
we use a model-based face autoencoder [Tewari et al. 2017] which
takes an image as an input. This change is necessary, as we initially
do not have the StyleGAN code for the real image we want to edit.

4 SEMANTIC EDITING OF REAL FACIAL IMAGES
We present an approach that allows for semantic editing of real
facial images. The key of our approach is to embed a given facial
image in the StyleGAN latent space [Karras et al. 2019b], where we
pay particular attention to finding a latent encoding that is suitable
for editing the image. This is crucial, since the parameter space of the
StyleGAN architecture is generally under-constrained. For example,
it has been shown that a StyleGAN trained for human faces is able
to synthesize images that show completely different content with
high fidelity, such as images of cat faces [Abdal et al. 2019] Our
goal is to compute embeddings which can be edited using 3DMM
parameters using StyleRig.

Problem Statement. We will refer to the image that we want to
make editable as I (without any subscripts or arguments), which we
assume to be a given input. Moreover, we will refer to the StyleGAN
code that will make image I editable asw, which is the desired output
of our approach. As such, wewill introduce an energy function 𝐸 (w),
which is minimized by solving a numerical optimization problem.
This energy function accounts for the high fidelity of the synthesized
image based on w (explained in Sec. 4.1), for editing-suitability
(described in Sec. 4.2), as well as for consistent face identity before
and after the edit (Sec. 4.3). We emphasize that our approach is
based on non-linear optimization techniques, and does not perform
any learning of network weights, which in turn means that we
do not require any ground truth data of edited facial images. In
order to formulate the energy function we will make use of several
existing neural networks, where all of them are pretrained and
remain fixed throughout the optimization. We will now introduce
some technical notations, which will allow us to have an additional
layer of abstraction and thereby facilitate a more comprehensive
description of the main concepts.

Notation. Throughout this paper we will use w exclusively to
refer to the (unknown) StyleGAN embedding that we want to find,
and we will use v (potentially with subscripts) to refer to general
StyleGAN embeddings. We note that the StyleGAN embeddings w
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Fig. 2. Given a portrait input image, we optimize for a StyleGAN embedding which allows to faithfully reproduce the image (synthesis and facial recognition
terms), editing the image based on semantic parameters such as head pose, expressions and scene illumination (edit and invariance terms), as well as preserving
the facial identity during editing (facial recognition term). A novel hierarchical non-linear optimization strategy is used to compute the result. StyleGAN
generated images (image with edit parameters) are used to extract the edit parameters during optimization. At “test time”, i.e. for performing portrait image
editing, the image with edit parameters is not needed. Note that the identity term is not visualized here. Images from Shih et al. [2014].

and v can have two different forms, where each form has a different
dimension, which wewill describe in detail in Sec. 4.4. StyleGAN can
be understood as a function stylegan(·) thatmaps a given latent code
to a portrait image. To simplify notation, we will use the function
notation I(v) := stylegan(v) in order to emphasize that we use the
StyleGAN embedding v to generate the image I(v). Analogously, we
overload I(·), so that it can also take a 3DMM parameter \ as input.
As such, I(\ ) refers to an image rendered using the face model that
is parameterized by \ (Sec. 3.1), where differentiable rendering is
employed [Tewari et al. 2017]. Note that this rendered image is only
defined on foreground face pixels as opposed to StyleGAN images.
We use the variable 𝜏 ∈ {𝜙, 𝛽,𝛾} to indicate the user-defined

facial semantic variable that is to be edited, which in our case can
be the head pose 𝜙 , facial expression 𝛽 , or illumination 𝛾 . Similarly,
we use the complement notation 𝜏 ⊂ {𝜙, 𝜌, 𝛼, 𝛿, 𝛽,𝛾}, to indicate
all other variables, i.e., the ones that shall not be modified. With
that, we use the notation \𝜏 (or \𝜏 ) to refer to the extraction of the
𝜏-component (or 𝜏-components) of \ . Since facial editing is imple-
mented by modifying the 𝜏-component of the 3DMM parameter \ ,
we write \ ′ = [\𝜏1 , \

𝜏
2 ] to indicate that the respective 𝜏-component

of \1 is replaced by the corresponding component in \2. For example,
for 𝜏 = 𝛽 ,

\1 = (𝜙1, 𝜌1, 𝛼1, 𝛿1, 𝛽1, 𝛾1) , and (2)
\2 = (𝜙2, 𝜌2, 𝛼2, 𝛿2, 𝛽2, 𝛾2) , we have (3)

[\𝜏1 , \
𝜏
2 ] = (𝜙1, 𝜌1, 𝛼1, 𝛿1, 𝛽2, 𝛾1) . (4)

Moreover, we use the notation \ (v) to extract the 3DMM param-
eters from the StyleGAN embedding v. In order to compute this, the
embedding v is first used to synthesize the image I(v) (using Style-
GAN), followed by performing a 3D reconstruction based on the
pretrained Model-based Face Autoencoder (MoFA) network [Tewari
et al. 2017]. Hence, for MoFA(·) being the function that performs

Table 1. Summary of notation.

Symbol Meaning

w StyleGAN embedding that we want to find
v other StyleGAN embedding(s)
\ 3DMM parameter
𝜏 component that is to be edited (𝜏 ∈ {𝜙, 𝛽,𝛾})
I input image that we want to edit
I(v) StyleGAN-synthesized image
I(\ ) image of 3DMM rendering
\𝜏 extraction of 𝜏-component of \
[\𝜏1 , \

𝜏
2 ] combine 𝜏-components in \1 with 𝜏-component in \2

\ (v), \v 3D reconstruction of 3DMM parameters from I(v)
\ (I′), \I′ 3D reconstruction of 3DMM parameters from I′

3D reconstruction for a given image by estimating the 3DMM pa-
rameters, we define

\ (v) = MoFA(I(v)) . (5)

For any image I′, we use the short-hand notation \ (I′) = MoFA(I′).
Similarly as above, we will use \𝜏 (v) and \𝜏 (I′) to extract only the
𝜏-component from the 3DMM parameters. Whenever arguments of
\ (·) or I(·) are fixed, i.e., the arguments are not a variable, we use
the short-hand notations \v = \ (v), \I′ = \ (I′), or Iv = I(v). We
summarize the most important part of our notations in Table 1.

Objective function. We solve for w by minimizing the energy
function

𝐸 (w) = 𝐸syn (w) + 𝐸id (w) + 𝐸edit (w) + 𝐸inv (w) + 𝐸recog (w) . (6)

𝐸syn is a synthesis term enforcing the StyleGAN-synthesized image
I(w) to be close to I (Sec. 4.1). 𝐸id, 𝐸edit, 𝐸inv are face modification
terms (Sec. 4.2) enforcing edits to take place on the modified facial
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semantics while at the same time ensuring unmodified facial seman-
tics to remain un-edited. 𝐸recog (w) is a face recognition term that
will be introduced in Sec. 4.3. A conceptual illustration of the energy
function and the overall pipeline is shown in Fig. 2. Next, we will
discuss each term in more detail.

4.1 High-Fidelity Image Synthesis
Similarly to Image2StyleGAN [Abdal et al. 2019], we use the follow-
ing energy term that accounts for the StyleGAN-synthesized image
I(w) being close to I:

𝐸syn (w) = _ℓ2 ∥I − I(w)∥22 + _p∥Φ(I) − Φ(I(w)∥22 . (7)

The first term in the energy 𝐸syn penalizes the discrepancy be-
tween I and the synthesized image in terms of the (squared) ℓ2-norm,
whereas the second term penalizes discrepancies based on the per-
ceptual loss [Johnson et al. 2016]. The perceptual loss is estimated on
images downsampled by a factor of 4, based on ℓ2-losses over VGG-
16 layers conv1_1, conv1_2, conv3_2 and conv4_2 [Simonyan and
Zisserman 2015]. The notation Φ(·) refers to the function that down-
samples a given input image and extracts features. The scalars _ℓ2
and _p are the relative weights of both terms.
In principle, we could minimize the energy 𝐸syn in (7) in order

to obtain the StyleGAN code w, as done in Abdal et al. [2019],
and perform editing operations on w. A so-obtained code vector w
allows the use of StyleGAN to obtain a highly accurate synthetic
version of the input face, which is even capable of reconstructing
backgrounds with high accuracy. However, such a w is sub-optimal
for performing semantic face editing, as we later demonstrate in
Fig. 6.

4.2 Face Image Editing
We augment the synthesis term with an editing energy that is based
on the StyleRig framework [Tewari et al. 2020], which allows us to
obtain more accurate semantic editing while preserving the non-
edited attributes. Here, the StyleGAN embedding w that is to be
determined should have the following three properties in order to
be suitable for semantic editing:

Identity Property. The identity property is phrased in terms of the
ℓ2-norm of the difference of StyleGAN embeddings and is given by

𝐸id (w) = _id∥w − rignet(w, \𝜏 (w))∥22 . (8)

As such, whenever the RigNet is used to modify w with \𝜏 (w),
i.e., a component of the 3DMM parameter extracted from w, the
embedding w should not be modified.

Edit Property. In order to get around the obstacle of defining a
suitable metric for 3DMM parameter vectors, whose components
may be of significantly different scale, and the relative relevance
of the individual components is not easily determined, we phrase
the edit property in image space, as in StyleRig [Tewari et al. 2020].
As such, a facial edit is implicitly specified in image space via the
StyleGAN embedding v, where the 𝜏-component of the respective
3DMM parameters of v, i.e. \𝜏v , specifies the edit operation. The
image-space version of the edit property reads

∀ v : Iv = I( [\𝜏v, \𝜏 (rignet(w, \𝜏v))]) . (9)

Note that this true equality cannot hold in practice, since the two
images are from different domains (real image and amesh rendering).
We are interested in minimimzing the difference between these
terms. This equation is best fulfilled whenever the 𝜏-component of
the edited 3DMM parameters \𝜏 (rignet(w, \𝜏v)) is equal to \𝜏v , i.e.
the edit has been successfully applied. Since computationally we
cannot evaluate all choices of v, we sample StyleGAN embeddings
v as done in Tewari et al. [2020], and then use the expected value as
loss. For integrating this property into our optimization framework
we use a combination of a photometric term and a landmark term,
which is defined as

ℓ (I′, \ ) = _ph∥I′ − I(\ )∥2
,
+ _lm∥LI′ − L(\ )∥2𝐹 . (10)

The norm ∥ · ∥, computes the ℓ2-norm of all foreground pixels (the
facial part of the image), whereas ∥ · ∥𝐹 is the Frobenius norm. By
LI′ ∈ R66×2 we denote the matrix of 2D facial landmarks extracted
from the image I (based on Saragih et al. [2011]), and L(\ ) ∈ R66×2
refers to the corresponding landmarks of the 3DMM after they have
been projected onto the image plane. With that, the edit property
energy reads

𝐸edit (w) = _e Ev [ℓ (Iv, [\𝜏v, \𝜏 (rignet(w, \𝜏v))])] . (11)

Invariance Property. Similarly as the edit property we phrase the
invariance property also in image space as

∀ v : I = I( [\𝜏 (rignet(w, \𝜏v)), \𝜏I ]) . (12)

While the edit property imposes that the 𝜏-component of the edited
3DMM parameter \𝜏 (rignet(w, \𝜏v)) is modified as desired, the in-
variance property takes care of all 𝜏 . It is fulfilled whenever it holds
that \𝜏 (rignet(w, \𝜏v)) = \𝜏I , i.e. the components 𝜏 that are not to be
edited are maintained from the input image I.

Analogously to the edit property, we base the respective energy
on the combination of a photometric term and a landmark term as
implemented by ℓ (·), so that we obtain

𝐸inv (w) = _inv Ev [ℓ (I, [\𝜏 (rignet(w, \𝜏v)), \𝜏I ])] . (13)

4.3 Face Recognition Consistency
In addition to the synthesis and editing terms, we incorporate
two face recognition consistency terms to preserve the facial in-
tegrity while editing. On the one hand, it is desirable that the syn-
thesized image I(w) is recognized to depict the same person as
shown in the given input image I. On the other hand, the edited
image, stylegan(rignet(w, \𝜏v)) should also depict the same person
as shown in the input I.

In order to do so, we use VGG-Face [Parkhi et al. 2015] to extract
face recognition features, where we use the notation Ψ(·) to refer to
the function that extracts such features from a given input image.
We define the recognition loss

ℓrecog (I′, v) = ∥Ψ(I′) − Ψ(I(v))∥2𝐹 , (14)

which is then used to phrase the recognition energy term as

𝐸recog (w) = _rw ℓrecog (I,w) + _rŵ Ev [ℓrecog (I, rignet(w, \𝜏v))] .
(15)
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Fig. 3. Pose Editing. Our approach can handle a large variety of head pose modifications including out-of-plane rotations in a realistic manner. Im-
age2StyleGAN [Abdal et al. 2019] embeddings often lead to artifacts when edited using StyleRig. Images from Shen et al. [2016].

Fig. 4. Illumination Editing. Our approach can realistically relight portrait images. Each edited image corresponds to changing a different Spherical Harmonics
coefficient, while all other coefficients are kept fixed. The environment maps are visualized in the inset. Image2StyleGAN [Abdal et al. 2019] embeddings often
lead to artifacts when edited using StyleRig. Images from Shen et al. [2016].
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Fig. 5. Expression Editing. Our approach can also be used to edit the facial
expressions in a portrait image in a realistic manner. We obtain more plau-
sible results, compared to Image2StyleGAN [Abdal et al. 2019] embeddings.
Images from Shen et al. [2016] and Shih et al. [2014].

4.4 Optimization
Our energy function 𝐸 (·) in (6) depends on a range of highly non-
linear functions, such as stylegan(·),MoFA(·), Φ(·) and Ψ(·), which
are implemented in terms of (pretrained) neural networks. We im-
plement our energy minimization within TensorFlow [Abadi et al.
2015] using ADADELTA optimization [Zeiler 2012]. In each itera-
tion we stochastically sample a different v. The optimization uses a
hierarchical approach that we describe next.

Hierarchical Optimization. StyleGAN is based on a hierarchy of
latent spaces, where a stage-one embedding 𝑍 with |𝑍 | = 512 is
randomly sampled first. This is then fed into a mapping network
that produces𝑊 as output, where |𝑊 | = 512. Subsequently,𝑊 is
extended to𝑊 +, where |𝑊 + | = 18 × 512, and used as input to 18
network layers. It has been shown that𝑊 + is the most expressive
space for fitting to real images [Abdal et al. 2019]. However, we found
that a direct optimization over this space leads to lower-quality
editing results with severe artifacts. This is because the optimized
variable can be far from the prior distribution of StyleGAN. To
address this, we first optimize for the embedding in the𝑊 -space,
meaning that in the first stage of our optimization the variable w
is understood as an embedding in the𝑊 -space. We optimize in𝑊 -
space for 2000 iterations. We then transfer the result to𝑊 +-space,
initialize the variable w respectively, and continue optimizing in the
𝑊 +-space for another 1000 iterations. Optimizing in this hierarchical
way allows us to represent the coarse version of the image in the
𝑊 -space, which is less expressive and thereby closer to the prior
distribution. Finetuning on the𝑊 + space then allows us to fit the
fine-scale details, while preserving editing quality.

5 RESULTS
In the following, we demonstrate the high-quality results of our
method, analyze its different components, as well as compare to
several state-of-the-art approaches for portrait image editing.

Implementation Details. We use the following weights for our
energy terms: _ℓ2 = 10−6, _p = 10−6, _id = 1.0, _ph = 0.001, _lm =

0.2, _e = 10.0, _inv = 10.0, _rw = 0.1, _rŵ = 0.1. We use a starting
step size of 50 when optimizing over embeddings in𝑊 space, and
10 in𝑊 + space. The step size is then exponentially decayed by a
factor of 0.1 every 2000 steps. Optimization takes approximately
10 minutes for 3000 iterations per image on an NVIDIA V100 GPU.
Once the embedding is obtained, the portrait image can be edited at
an interactive speed.

Feedback. We noticed that a simple feedback loop allows us to
get more accurate editing results. We update the parameters used
as input to RigNet in order to correct for the editing inaccuracies
in the output. Given target 3DMM parameters \ , we first obtain
the embedding for the edited image, rignet(w, \𝜏 ). We then esti-
mate the 3DMM parameters from the edited embedding, \est =

\ (rignet(w, \𝜏 )). The final embedding is computed as rignet(w, \𝜏new)
with \new = \ + (\ − \est).

5.1 High-Fidelity Semantic Editing
We evaluate our approach on a large variety of portrait images taken
from Shen et al. [2016] and Shih et al. [2014]. The images are prepro-
cessed as in StyleGAN [Karras et al. 2019b]. Figs. 3, 4, 5 show results
of controlling the head pose, scene illumination, and facial expres-
sions, respectively. The projections onto the StyleGAN space are
detailed, preserving the facial identity. Our approach also produces
photo-realistic edits. Fig. 3 shows that our approach can handle a
large variety of head pose modifications, including out-of-plane
rotations. It also automatically inpaints uncovered background re-
gions in a photo-realistic manner. Fig. 4 demonstrates our relighting
results. Our approach can handle complex light material interac-
tions, resulting in high photo-realism. The relighting effects are not
restricted to just the face region, with hair and even eyes being relit.
Our approach also allows for editing facial expressions, see Fig. 5.
For smooth temporal editing results of portrait images, please refer
to the supplementary video.

5.2 Ablation Studies
Here, we evaluate the importance of the different proposed loss
functions, and also evaluate the hierarchical optimization strategy.
Please refer to the supplemental document for the evaluation of the
feedback strategy.

Loss Functions. Fig. 6 shows qualitative ablative analysis for the
different loss functions. We group the edit, invariance and identity
terms as modification terms. Adding face recognition consistency
without the modification terms lead to incorrect editing in some
cases. Adding the modification terms without face recognition con-
sistency leads to the method being able to accurately change the
specified semantic property, but the identity of the person in the
image is not preserved. Using all terms together leads to results with
photorealistic edits with preservation of identity. We do not evaluate
the importance of the individual components of the modification
terms, as it was already evaluated in Tewari et al. [2020].
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Fig. 6. Ablative analysis of the different loss functions.Modification refers to the edit, invariance and identity terms simultaneously. The left block shows
results for editing the head pose and the right block shows results for editing scene illumination. All losses are required to obtain high-fidelity edits. Images
from Shen et al. [2016].

Fig. 7. Ablative analysis with and without hierarchical optimization. The left block shows the results for pose editing and the right block for illumination
editing. Without our hierarchical optimization, the obtained embedding cannot be easily edited and artifacts appear in the modified images. Images from Shen
et al. [2016].

Table 2. We compare different settings quantitatively using several metrics for pose editing. All numbers are averaged over more than 2500 pose editing
results. We measure the quality of the fit by comparing them to the input image using PSNR and SSIM metrics. Editing error is measured as the angular
difference between the desired and achieved face poses. Recognition error measures the value of the facial recognition error for the edited images. There
is usually a trade-off between the quality and accuracy of editing, as lower recognition errors correspond to higher editing errors. We also compare to
Image2StyleGAN [Abdal et al. 2019] embeddings using these metrics. While it achieves the highest quality fitting, the editing results do not preserve the facial
identity well.

synthesis synthesis +
recognition

synthesis +
modification all terms (PIE) all terms (direct opt.) Image2StyleGAN

PSNR (dB) ↑ / SSIM ↑ 30.15 / 0.70 29.84 / 0.69 30.15 / 0.70 29.96 / 0.70 29.76 / 0.69 31.21 / 0.75
Editing Error (rad) ↓ 0.06 0.11 0.036 0.08 0.037 0.07
Recognition Error ↓ 95.76 43.64 90.10 42.82 51.65 275.40

Hierarchical Optimization. Hierarchical optimization is an impor-
tant component of our approach. Fig. 7 shows results with and with-
out this component. Without hierarchical optimization, the method
directly optimizes for w ∈𝑊 +. While this leads to high-quality fits,
the obtained embedding can be far from the training distribution of
StyleRig. Thus, the quality of edits is poor. For example in Fig. 7 (top),

the StyleGAN network interprets the ears as background, which
leads to undesirable distortions. With hierarchical optimization, the
results do not suffer from artifacts.

Quantitative Analysis. We also analyze the effect of different de-
sign choices quantitatively, see Tab. 2. We look at three properties,
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the quality of recostruction (measured using PSNR and SSIM be-
tween the projected image and the input), the accuracy of edits
(measured as the angular distance between the desired and esti-
mated head poses), and idenity preservation under edits (measured
using the second term in Eq. 15) during editing. The numbers re-
ported are averaged over more than 2500 pose editing results. We
can see that removing the recognition term changes the identity
of the face during editing, and removing the modification loss in-
creases the editing and recognition error. Hierarchical optimization
also leads to better facial identity preservation, compared to direct
optimization. This is expected, since the results with direct optimiza-
tion often have artifacts. Note that the artifacts outside of the face
region (hair, ears) would not increase the recognition errors signifi-
cantly. The recognition term introduces a clear trade-off between
the quality of identity preservation under edits and the accuracy of
edits. The modification terms allow for slight improvements in both
identity preservation as well as the accuracy of the edits.

5.3 Comparison to the State of the Art
5.3.1 Image2StyleGAN. Image2StyleGAN [Abdal et al. 2019] also
projects real images to the StyleGAN latent space, and is thus a
closely related approach. The source code of Image2StyleGAN was
kindly provided by the authors. We show editing results using Im-
age2StyleGAN embeddings in Figs. 1, 3, 4 and 5. Since these em-
beddings are optimized only using the synthesis terms and without
using hierarchical optimization, the results are often implausible, as
is most evident when editing the head pose and scene illumination.
However, Image2StyleGAN projections are more detailed than ours.
We also quantitatively compare to Image2StyleGAN in Tab. 2. Im-
age2StyleGAN obtains the highest quality projections in terms of
PSNR and SSIM. When combined with StyleRig, it also leads to low
editing errors. However, the recognition errors are very high due to
the artifacts in the results, as shown in the qualitative results.

5.3.2 Other Aproaches. We also compare our approach to a number
of related techniques, X2Face [Wiles et al. 2018], Geng et al. [2018]
and Siarohin et al. [2019]. We compare our relighting capabilities
to the single-image relighting approach of Zhou et al. [2019]. The
source codes of these techniques are publicly available. For Geng et
al. [2018], we estimated the landmarks using the dlib tracker [King
2009] as suggested by the authors. We also trained the few shot
video-to-video translation method of Wang et al. [2019a] for portrait
image editing. We trained on 700 videos from the FaceForensics
dataset [Rössler et al. 2019]. Landmarks were extracted using the dlib
tracker as recommended by the authors. The approaches of Geng
et al. [2018],Wiles et al. [2018] ,Wang et al. [2019a] and Siarohin et al.
[2019] are trained on a video corpus. In contrast, our method does
not use any direct supervision of the edited images. We compare
to these methods in two different settings, self-reenactment and
cross-identity reenactment.

Self-Reenactment. For self-reenactment, we capture several im-
ages of a person in different poses. We pick the first image and
use the other images of the person as reference to edit the head
pose. We captured 9 people in different poses, resulting in 31 images
in the test set. Fig. 8 shows some qualitative results. Geng et al.

Table 3. Evaluation of pose edits: We measure landmark alignment er-
rors for same-subject reenactment on 31 images, and facial recognition
distances for cross-subject reenactment on 49 images. Existing landmark
detection [Saragih et al. 2009] and facial recognition [King 2009] often fail
on images from competing methods, implying higher realism of our results.

Landmark Alignment
(number of images)

Recognition
(number of images)

Wiles et al. [2018] 10.9 (22) 0.52 (42)
Wang et al. [2019a] 28.19 (24) 0.49 (45)
Siarohin et al. [2019] 11.97 (31) 0.51 (46)
Ours 20.12 (31) 0.40 (49)

[2018] use a warp-guided algorithm. While this enables expression
changes and in-plane head motion, out-of-plane motion cannot
be handled as shown in Fig. 8. We also compare to X2Face [Wiles
et al. 2018], which samples a learned embedded face in order to
synthesize portrait images with different poses and expressions. As
such, it shares its limitations with Geng et al. [2018] and produces
artifacts for strong pose changes. All approaches do not share the
same cropping method, which makes it difficult to quantitatively
evaluate the results. In addition, translation of the head during cap-
ture can lead to different illumination conditions. Thus, instead
of directly computing errors in the image space, we first detect
66 facial landmarks [Saragih et al. 2009] on all results, as well as
the reference images. We then compute the landmark alignment
error, which is the averaged ℓ2-distance between the landmarks
after 2D Procrustes alignment (including scale). The implementa-
tion of Geng et al. [2018] often fails to generate such large pose
edits, so we do not consider this approach in the quantitative evalu-
ation. Due to artifacts, the landmark detector fails on 29% images
for the approach of Wiles et al. [2018] and on 23% for Wang et al.
[2019a]. All our results, as well as those of Siarohin et al. [2019] pass
through the detector. This can be considered as a pseudo-metric
of realism, since the landmark detector is trained on real portrait
images, implying that our results are better than those of Wiles
et al. [2018] and Wang et al. [2019a], and on par with Siarohin et al.
[2019]. Table 3 shows the errors for different methods. The low er-
rors for Wiles et al. [2018] are possibly due to the landmark detector
failing in challenging cases. We obtain only slightly worse results
compared to Siarohin et al. [2019], even though our method does not
have access to ground truth during training. Siarohin et al. [2019]
train on videos allowing for supervised learning. In addition, their
edits are at a lower resolution of 256 × 256, compared to our image
resolutions of 1024 × 1024.

Cross-identity Reenactment. We also compare to others in cross-
identity reenactment, which is closer to our setting of semantically
disentangled editing. Here, the image being edited and the reference
image have different identities. Fig. 8 shows some qualitative results.
The implementation of Geng et al. [2018] does not support this
setting. Wiles et al. [2018] and Wang et al. [2019a] result in similar
artifacts as discussed before. Unlike other approaches, Siarohin et al.
[2019] uses two driving images in order to edit the input image,
where they use the deformations between the two images as input.
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Fig. 8. Comparison of head pose editing for self-reenactment (first two rows) and cross-identity reenactment (last two rows). We compare our approach to
Wiles et al. [2018], Wang et al. [2019b], Siarohin et al. [2019] and Geng et al. [2018]. The pose from the reference images is transferred to the input. Our
approach obtains higher quality head pose editing results, specially in the case of cross-identity transfer. All approaches other than ours are incapable of
disentangled edits, i.e., they cannot transfer the pose without also changing the expressions. The implementation of Geng et al. [2018] does not handle
cross-identity reenactment. Note that while the three competing approaches require a reference image in order to generate the results, we allow for explicit
control over the pose parameters. Image from Shen et al. [2016].

Fig. 9. Comparison of our relighting results with Zhou et al. [2019]. The
illumination in the reference image is transferred to the input. Our results
are more natural and achieve more accurate relighting. We can edit colored
illumination while Zhou et al. [2019] can only edit monochrome light. In
addition, we can also edit the head pose and facial expressions, while Zhou
et al. [2019] is trained only for relighting. Images from Shih et al. [2014].

In the case of self-reenactment, we provide the input image as the
first driving image. We do the same here, which leads to the two
driving images with different identities. This significantly alters the
facial identity in the output image. We also quantitatively evaluate
the extent of identity preservation for different methods using a
facial recognition tool [King 2009], see Table. 3. All methods other
than ours do not support semantically disentangled editing. As can
be seen in Fig. 8 (bottom), other methods simultaneously change
the expressions in addition to the head pose.

Interactive User Interface. While all existing approaches need a
driving image(s) for editing, we allow for explicit editing, using
intuitive controls. We developed an interactive user interface to edit

images, see supplemental video. The user can change the head pose
using a trackball mouse interface. Spherical harmonic coefficients
and blendshape coefficients are changed using keyboard controls.
All editing results run at around 5fps on a TITAN X Pascal GPU.

Relighting. We compare our relighting results to the single-image
relighting approach of Zhou et al. [2019], see Fig. 9. Our approach
allows for colored illumination changes, as shown in Fig. 4. Our
approach produces higher-quality and more realistic output images.
We also quantitatively compare the relighting quality of these ap-
proaches in an illumination transfer setting, where the illumination
in a reference image is transferred to a given input image. Since we
do not have ground truth data available, we compare the results
using a network which predicts the illumination from the refer-
ence and the relighted results. We use a model-based face autoen-
coder [Tewari et al. 2017], trained on the VoxCeleb dataset [Chung
et al. 2018]. This network predicts a 27 dimensional spherical har-
monics coefficients. We compare the predictions using a scale-
invariant ℓ2-loss. We obtain higher quality (0.34), compared to Zhou
et al. [2019] (0.36). The numbers are averaged over 100 relighting
results. While the method of Zhou et al. [2019] is only trained for
relighting, our method allows us to also edit the head pose and facial
expressions.

5.4 Generality of the embeddings
Sequential Editing. Our method also allows for sequential editing

of the different semantic parameters, see Fig. 10. Here, we optimize
for the embedding using the pose RigNet network. After editing the
pose, we can use the new embedding as input to the illumination and
expression RigNets. Since all three versions of RigNet were trained
on the same training data, this still produces plausible results.
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Fig. 10. PIE also allows for sequential editing. We optimize for the StyleGAN
embedding using the pose RigNet. We can then use the edited pose results
with the RigNets for other semantic components for sequential editing.
Images from Shen et al. [2016].

Fig. 11. Our embeddings obtain similar quality editing results with the
InterFaceGAN [Shen et al. 2020] editing approach. We also notice similar
improvements over Image2StyleGAN [Abdal et al. 2019] embeddings. Images
from Shen et al. [2016].

Other StyleGAN editing methods. Our approach obtains a Style-
GAN embedding which can be edited using StyleRig. In order to test
the generality of these embeddings, we attempt to edit them using
InterFaceGAN [Shen et al. 2020], see Fig. 11. Our improvements over
Image2StyleGAN generalize to InterFaceGAN editings. We better
preserve the facial identity and produce fewer artifacts. The editing
results with InterFaceGAN are of a similar quality to those obtained
using StyleRig. However, InterFaceGAN cannot change the scene
illumination.

Fig. 12. Limitations: Large edits can lead to artifacts. High-frequency texture
on the foreground or background is difficult to fit. Our method also cannot
handle cluttered backgrounds or occlusions. Images from Shen et al. [2016].

Fig. 13. Scatterplot of the editing (left) and recognition errors (right), with
respect to the magnitude of the desired pose edits for over 2500 pose editing
results. Larger edits lead to both higher editing and recognition errors.

6 LIMITATIONS
Even though we have demonstrated a large variety of compelling
portrait image editing results, there is still room for further improve-
ment of our approach: (1) At the moment, our approach has a limited
expressivity, i.e., it does not allow the artifact-free exploration of
the whole parameter space of the underlying 3D morphable face
model. For example, we cannot change the in-plane rotation of the
face or arbitrarily change the lighting conditions. The main limiting
factor is the training corpus (FFHQ [Karras et al. 2019b]) that has
been used to pretrain the StyleGAN-generator, since it does not
contain such variations. Due to the same reason, our approach is
also not yet suitable for video-based facial reenactment, since the
variety of facial expressions in the training corpus is severely lim-
ited. This problem could be alleviated by pretraining the generator
on a larger and less biased training corpus that covers all dimen-
sions well. (2) Our method only allows for independent control over
the semantic parameters, which is important for editing applica-
tions. While sequential control is possible, simultaneous control
is a more challenging problem. (3) Our approach does not provide
explicit control over the synthesized background. At the moment,
the background changes during the edits and does not remain static
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as it should, since the network has learned correlations between
the face and the background. This could potentially be alleviated
by learning an explicit foreground-background segmentation and
having a consistency loss on the static background region. (4) In
challenging cases with large deformations, cluttered backgrounds
or occlusions and high-frequency textures, our method can fail to
faithfully fit to the input image and preserve editing properties at
the same time, see Fig. 12. In addition, 3D face reconstruction also
often fails under occlusions which would lead to incorrect data for
our approach. (5) Larger edits generally correspond to worse results,
and can often lead to artifacts, as shown in Fig. 12. This can also
be seen in Fig. 13, where larger pose edits correlate with higher
editing and facial recognition errors. (6) Similar to StyleGAN, our
approach also sometimes shows droplet-like artifacts. This could be
alleviated by switching to a higher quality generator architecture,
such as StyleGAN2 [Karras et al. 2019a], which has been shown to
solve this problem. (7) While we show results for people of different
ethnicities, genders and ages, we did not extensively study the biases
present in the method. Some of the components used, such as the
3DMM are known to have racial biases [Tewari et al. 2018]. (8) Our
results are not guaranteed to be temporally consistent. While we
show temporal editing results (in the supplemental video), our re-
sults could be made even more consistent by employing a temporal
network architecture and space-time versions of our losses. Never-
theless, our approach, already now, enables the intuitive editing of
portrait images at interactive frame rates.

7 CONCLUSION
We have presented the first approach for embedding portrait photos
in the latent space of StyleGAN, which allows for intuitive editing
of the head pose, facial expression, and scene illumination. To this
end, we devised a hierarchical optimization scheme that embeds a
real portrait image in the latent space of a generative adversarial
network, while ensuring the editability of the recovered latent code.
Semantic editing is achieved by mapping the control space of a
3D morphable face model to the latent space of the generator. In
addition, a novel identity preservation loss enables to better preserve
the facial identity.
Our approach is a first step towards intuitive and interactive

editing of portrait images using a semantic control space akin to
computer animation controls. In addition, our approach provides
more insights into the inner workings of GANs, since it allows the
intuitive and interactive exploration of the space of face images.
This can shed light on the biases the model has learned from the
employed training corpus. By using high-quality 3D face models,
approaches such as StyleRig would produce better quality with
more fine-grained control, and thus would further improve our
results. Our paper brings the two different domains of 2D and 3D
face models together, thus opening the road towards even more
interesting edits.
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