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Fig. 1. We present a method for high-quality appearance editing of head portraits. Given an input image, our approach edits its appearance using a target
environment map (see insets), and a target camera viewpoint. We achieve high-quality photorealistic results for in the wild images, capturing a wide variety of
reflectance properties. Our method is trained on a light-stage dataset, using a combination of supervised learning and generative adversarial modeling which
allows for accurate editing as well as generalisation outside the dataset.

Photorealistic editing of head portraits is a challenging task as humans are
very sensitive to inconsistencies in faces. We present an approach for high-
quality intuitive editing of the camera viewpoint and scene illumination
(parameterised with an environment map) in a portrait image. This requires
our method to capture and control the full reflectance field of the person in
the image. Most editing approaches rely on supervised learning using train-
ing data captured with setups such as light and camera stages. Such datasets
are expensive to acquire, not readily available and do not capture all the
rich variations of in-the-wild portrait images. In addition, most supervised
approaches only focus on relighting, and do not allow camera viewpoint
editing. Thus, they only capture and control a subset of the reflectance field.

Recently, portrait editing has been demonstrated by operating in the gen-
erative model space of StyleGAN. While such approaches do not require
direct supervision, there is a significant loss of quality when compared to
the supervised approaches. In this paper, we present a method which learns
from limited supervised training data. The training images only include
people in a fixed neutral expression with eyes closed, without much hair or
background variations. Each person is captured under 150 one-light-at-a-
time conditions and under 8 camera poses. Instead of training directly in
the image space, we design a supervised problem which learns transforma-
tions in the latent space of StyleGAN. This combines the best of supervised
learning and generative adversarial modeling. We show that the StyleGAN
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prior allows for generalisation to different expressions, hairstyles and back-
grounds. This produces high-quality photorealistic results for in-the-wild
images and significantly outperforms existing methods. Our approach can
edit the illumination and pose simultaneously, and runs at interactive rates.

Additional KeyWords and Phrases: Portrait Editing, Relighting, Pose Editing,
Neural Rendering

1 INTRODUCTION
Portrait photos are among the most important photographic de-
pictions of humans and their loved ones. Even though the quality
of cameras and thus the photographs have improved dramatically,
there arises many cases where people would like to change the scene
illumination and camera pose after the image has been captured.
Editing the appearance of the image after capture has applications
in post-production, casual photography and virtual reality. Given
a monocular portrait image and a target illumination and camera
pose, we present a method for relighting the portrait and editing
the camera pose in a photorealistic manner. This is a challenging
task, as the appearance of the person in the image includes complex
effects such as subsurface scattering and self-shadowing. Changing
the camera requires reasoning about occluded surfaces. Humans are
very sensitive to inconsistencies in portrait images, and a high level
of photorealism is necessary for convincing editing. This requires
our method to correctly reason about the interactions of the lights
in the scene with the surface, and edit them at photorealistic quality.
We are interested in editing in-the-wild images with a very wide
range of illumination and pose conditions. We only rely on a single
image of an identity unseen during training. These constraints make
the problem very challenging.

Several methods have been proposed for editing portrait appear-
ance in the literature. One category of methods [Debevec et al. 2000;
Ghosh et al. 2011; Weyrich et al. 2006] address this problem by ex-
plicitly modelling the reflectance of the human face [Kajiya 1986].
While these approaches provide well-defined, semantically mean-
ingful reflectance output, they require the person to be captured
under multi-view and multi-lit configurations. They also do not edit
the full portrait image, just the inner face region, missing out impor-
tant portrait components such as hair and eyes. Recently, several
deep learning-based methods have been proposed for appearance
editing. These methods use large light-stage datasets which consist
of a limited number of people illuminated by different light sources
and captured from different camera viewpoints. A neural network
is trained on such datasets which enables inference from a single
image. Some methods [Lattas et al. 2020; Yamaguchi et al. 2018]
regress the reflectance of the face from a monocular image in the
form of diffuse and specular components. Neural representations
for face reflectance fields have also been explored recently [B R et al.
2020]. While these methods can work with a single image, they still
only model the inner face region, missing out on important details
such as hair and eyes.

In contrast to the previous methods, several approaches only cap-
ture and edit a subset of the reflectance field. These approaches only
allow for the editing of either scene illumination or camera pose.
Most relighting methods directly learn a mapping from the input

image to its relit version using a light-stage training dataset [Nest-
meyer et al. 2020; Sun et al. 2019, 2020]. The controlled setting and
limited variety of such datasets limits performance while generalis-
ing to in-the-wild images. Zhou et al. [2019] attempted to break out
from the complexity of capturing light-stage datasets and from their
limited variations. Instead, they proposed to use a synthetic dataset
of in-the-wild images, synthesised with different illuminations. Illu-
mination is modeled using spherical harmonics. The use of synthetic
data impacts the photorealism of the results. All of these approaches
do not allow for changing the camera pose. Several methods exist
for only editing the camera pose and expressions [Averbuch-Elor
et al. 2017; Geng et al. 2018; Kim et al. 2018; Nagano et al. 2018;
Siarohin et al. 2019; Wiles et al. 2018]. These methods are commonly
trained on videos. While person-specific methods [Kim et al. 2018;
Thies et al. 2019] can obtain high-quality results, methods which
generalise to unseen identities [Siarohin et al. 2019;Wiles et al. 2018]
are limited in terms of photorealism. In addition, none of them can
edit the scene illumination.
Recently, Tewari et al. [2020b] proposed Portrait Image Embed-

ding (PIE), an approach for editing the illumination and camera
pose in portrait images by leveraging the StyleGAN generative
model [Karras et al. 2019]. PIE computes a StyleGAN embedding
for the input image which allows for editing of various face seman-
tics. As StyleGAN represents a manifold of photorealistic portraits,
PIE can edit the full image with high quality. However, due to the
absence of labelled data, the supervision for the method is defined
using a 3D reconstruction of the face. This supervision is indirect
and not over the complete image, leading to results that still lack
sufficient accuracy and photorealism. It uses a low-dimensional
representation of the scene illumination and can thus not synthe-
size results with higher-frequency lights. Furthermore, PIE solves
a computationally expensive optimisation problem taking several
minutes to compute the embedding.

We therefore propose a technique for high-quality intuitive edit-
ing of scene illumination and camera pose in a head portrait im-
age. Our method combines the best of generative modeling and
supervised learning approaches, and creates results of much higher
quality compared to previous methods. We learn to transform the
StyleGAN latent code of the input image into the latent code of
the output. We perform this learning in a supervised manner by
leveraging a light-stage dataset, containing multiple identities shot
from different viewpoints and under several illumination conditions.
Learning in the StyleGAN space allows us to synthesise photore-
alistic results for general person identities seen under in-the-wild
conditions. Our method can handle properties such as shadows and
other complex appearance, and can synthesise full portrait images
including hair, upper body and background. We inherit the high
photorealism and diversity of the StyleGAN portrait manifold in
our solution, which allows us to outperform methods that only use
light-stage training data [Sun et al. 2019]. Our method has analogies
to self-supervised discriminative methods [Jing and Tian 2020]. We
show that the StyleGAN latent representation allows for generali-
sation even with very little training data. We obtain high-quality
results of our method even when trained on just 15 identities. Our
formulation does not make any prior assumptions on the underly-
ing surface reflectance or scene illumination (other than it being
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distant) and rather directly predicts the appearance as a function of
the target environment map and camera pose. This leads to signif-
icantly more photorealistic results compared to methods that use
spherical-harmonic illumination representations [Abdal et al. 2020;
Tewari et al. 2020b; Zhou et al. 2019] which are limited to only mod-
eling low-frequency illumination conditions. Furthermore, directly
supervising our method using a multi-view and multi-lit light-stage
dataset allows us to produce significantly more photorealistic results
than PIE [Tewari et al. 2020b]. Our method can additionally edit at
a faster speed, using just a single feedforward pass, and also edit
both illumination and pose simultaneously, unlike PIE. Compared to
traditional relighting approaches [Sun et al. 2020; Zhou et al. 2019],
we obtain higher-quality results as well as allow for changing the
camera pose. In summary we make the following contributions:

• We combine the strength of supervised learning and genera-
tive adversarial modeling in a newway to develop a technique
for high-quality editing of scene illumination and camera pose
in portrait images. Both properties can be edited simultane-
ously.

• Our novel formulation allows for generalisation to in-the-wild
images with significantly higher quality results than related
methods. It also allows for training with limited amount of
supervision.

2 RELATED WORK
In this section we look at related works that can edit the scene
parameters in a head portrait image. We refer the reader to the
state-of-the-art report of Tewari et al. [2020c] for more details on
neural rendering approaches.
The seminal work of Debevec et al. [2000] introduced a light-

stage apparatus to capture the reflectance field of a human face,
that is, its appearance under a multitude of different lighting direc-
tions. Through weighted superposition of images of the illumination
conditions, their method recreates high-quality images of the face
under any target illumination. By employing additional cameras and
geometry reconstruction, and gathering data from the additional
viewpoints, they further fit a simple bi-directional radiance distribu-
tion function (BRDF) allowing for novel-light and -view renderings
of the face. Their method, however, is limited to reproducing the
specific face that was captured. Weyrich et al. [2006] extend this
concept using a setup with a much larger number of cameras (16)
and a reconstruction pipeline that extracts geometry and a detailed
spatially-varying BRDF (SVBRDF) of a face. By scanning hundreds
of subjects that way, they extract generalisable statistical informa-
tion on appearance traits depending on age, gender and ethnicity.
The generative power of the extracted quantities, however, is heav-
ily constrained, and examples of sematic appearance editing were
limited to subjects from within their face database. In our work,
we revisit their original dataset using a state-of-the-art learning
framework.
Another category of methods tries to infer geometry and re-

flectance properties from single, unconstrained images. Shu et al.
[2017] and Sengupta et al. [2018] decompose the image into simple
intrinsic components, that is, normals, diffuse albedo and shad-
ing. With the assumption of Lambertian surface reflectance, these

methods use spherical harmonics to model the scene illumination;
however, the starkly simplified assumption ignores perceptually
important reflectance properties which leads to limited photrealism.
Others infer more general surface reflectance, with fewer assump-
tions about incident illumination [B R et al. 2020; Lattas et al. 2020;
Yamaguchi et al. 2018]. While such techniques can capture rich re-
flectance properties, they do not synthesise the full portrait, missing
out on important components such as hair, eyes and mouth.
Recently, several methods addressed the simplified problem of

only relighting a head portrait in the fixed input pose [Meka et al.
2019; Nestmeyer et al. 2020; Sun et al. 2019; Wang et al. 2020; Zhang
et al. 2020; Zhou et al. 2019]. Nestmeyer et al. [2020] used a light-
stage dataset to train a model that explicitly regresses a diffuse
reflectance, as well as a residual component which accounts for
specularity and other effects. Similarly, Wang et al. [2020] used a
light-stage dataset to compute the ground truth diffuse albedo, nor-
mal, specularity and shadow images. A network is trained to regress
each of these components which are then used in another network
to finally relight the portrait image. Instead of explicitly estimating
the different reflectance components, methods such as Sun et al.
[2019]; Zhou et al. [2019] directly regress the relighted version of
the portrait given the imput image and target illumination. Here,
the target illumination is parameterised either in the form of envi-
ronment map [Sun et al. 2019] or spherical harmonics [Zhou et al.
2019]. While Sun et al. [2019] used light-stage data to obtain their
ground truth for supervised learning, Zhou et al. [2019] used a ratio
image-based approach to generate synthetic training data.

Recently, Zhang et al. [2020] proposed a method to remove harsh
shadows from a monocular portrait image. They created a synthetic
data from in-the-wild images by augmenting shadows and training
a network to remove these shadows. Using a light-stage dataset,
another network is trained to smooth the artifacts that could remain
from the first network. While the methods of [Meka et al. 2019;
Nestmeyer et al. 2020; Sun et al. 2019; Wang et al. 2020; Zhang
et al. 2020; Zhou et al. 2019] can produce high-quality relighting
results, they either focus on shadow removal [Zhang et al. 2020], are
limited by spherical-harmonics illumination representation [Zhou
et al. 2019]. In addition, methods trained on light-stage or synthetic
datasets struggle to generalise to in-the-wild. They are also limited
to only relighting, as they cannot change the camera viewpoint.
There are several methods for editing the head pose of portrait

images [Averbuch-Elor et al. 2017; Geng et al. 2018; Kim et al. 2018;
Nagano et al. 2018; Siarohin et al. 2019; Wiles et al. 2018]. While
Kim et al. [2018] require a training video of the examined subject,
the techniques of Averbuch-Elor et al. [2017]; Geng et al. [2018];
Nagano et al. [2018]; Siarohin et al. [2019]; Wiles et al. [2018] can
directly operate on a single image. However, Nagano et al. [2018]
does not synthesise the hair and the approaches of Siarohin et al.
[2019]; Wiles et al. [2018] lack explicit 3D modeling and only allow
for control using a driving video. The approaches of Averbuch-Elor
et al. [2017]; Geng et al. [2018] rely on warping of the image guided
by face mesh deformations, and are thus limited to very small edits
in pose. Furthermore, these approaches can not change the scene
illumination.
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Fig. 2. Our method allows for editing the scene illumination 𝐸𝑡 and camera pose 𝜔𝑡 in an input source image 𝐼𝑠 . We learn to map the StyleGAN [Karras et al.
2020] latent code 𝐿𝑠 of the source image, estimated using pSpNet [Richardson et al. 2020] to the latent code 𝐿𝑡 of the output image. StyleGAN [Karras et al.
2020] is then used to synthesis the final output 𝐼𝑡 . Our method is trained in a supervised manner using a light-stage dataset with multiple cameras and light
sources. For training, we use a latent loss and a perceptual loss defined using a pretrained network 𝜙 . Supervised learning in the latent space of StyleGAN
allows for high-quality editing which can generalise to in-the-wild images.

Recently, Tewari et al. [2020b] proposed PIE, a method which can
relight, change expressions and synthesise novel views of the por-
trait image using a generativemodel. PIE is based on StyleRig [Tewari
et al. 2020a] which maps the control space of a 3D morphable face
model to the latent space of StyleGAN [Karras et al. 2019] in a self-
supervised manner. It further imposes an identity perseverance loss
to ensure the source identity is maintained during editing. Even
though PIE inherits the high photorealism of the StyleGAN portrait
manifold, its lack of direct supervision for appearance editing limits
its performance and impacts the overall photorealism. The scene
illumination is parameterised using spherical harmonics as it relies
on a monocular 3D reconstruction approach to define its control
space. Thus, it only allows for rendering using low-frequency scene
illumination. In addition, PIE can not edit the illumination and pose
simultaneously, but rather one at a time. PIE solves an expensive
optimisation for the image which is time consuming, taking around
10 minutes per image on an NVIDIA V100 GPU. Concurrent to us,
Abdal et al. [2020] also propose a method for semantic editing of
portrait images using latent space transformations of StyleGAN.
They use an invertible network based on continuous normalising
flows to map semantic input parameters such as head pose and scene
illumination into the StyleGAN latent vectors. The input parametri-
sation for the illumination is spherical harmonics like PIE, which
limits its relighting capabilities. This method is also trained without
explicit supervision, i.e., images of the same person with different
scene parameters. This limits the quality of the results. While there
are several other approaches which demonstrate transformations of
StyleGAN latent vectors for semantic manipulation [Collins et al.
2020; Härkönen et al. 2020; Shen et al. 2020; Tewari et al. 2020a],
these methods focus on StyleGAN generated images, and do not

Fig. 3. Visualisation of the camera poses in the training dataset.

produce high-quality and high-resolution results for real existing
images.

3 METHOD
Our method takes as input an in-the-wild portrait image, a target
illumination and the target camera pose. The output is a portrait
image of the same identity, synthesised with the target camera
and lit by the target illumination. Given a light-stage dataset of
multiple independent illumination sources and viewpoints, the naive
approach could be to learn the transformations directly in image
space. Instead, we propose to learn the mapping in the latent space
of StyleGAN [Karras et al. 2020]. We show that learning using this
latent representation helps in generalisation to in-the-wild images
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with high photorealism. We use StyleGAN2 in our implementation,
referred to as StyleGAN for better comprehension.

3.1 Dataset
Wemake use of a light-stage [Weyrich et al. 2006] dataset for training
our solution. This dataset contains 341 identities captured with 8
different cameras placed in the frontal hemisphere of the face. The
camera poses available are shown in Fig. 3. The dataset also contains
150 light source evenly distributed on the sphere. Using this setup,
each image is captured with one-light-at-a-time (OLAT) light. Given
150 OLAT images of a person with a specific camera pose, we can
linearly combine them using an environment map to obtain relight
portrait images [Debevec et al. 2000]. We use 205 HDR environment
maps from the Naval Outdoor [Hold-Geoffroy et al. 2019] and 2233
from the Naval Indoor [Gardner et al. 2017] dataset for generating
naturally lit images. Camera poses for the images are estimated
using the approach of Yang et al. [2019]. Out of the 341 identities,
we use 300 for training and the rest for testing. We synthesise
300 transformed images for each identity with randomly selected
environment maps and camera viewpoints. Our training set consists
of input-ground truth pairs of the same identity along with the
target pose and environment map. The camera viewpoint of the
ground truth is kept identical to the input for quarter of the training
data. In the remaining, this camera viewpoint is randomly selected.
The test set includes pairs from the test identities for quantitative
evaluations, as well as in-the-wild images for qualitative evaluations,
see Sec. 4.

3.2 Network Architecture
Fig. 2 shows an overview of our method. Our approach takes as
input a source image 𝐼𝑠 , target illumination 𝐸𝑡 and camera pose 𝜔𝑡 ,
and a binary input 𝑝 . The value of 𝑝 is set to 0 when only relighting
is performed, and 1when we also want to edit the camera pose. This
conditioning input helps in better preservation of the input camera
pose for relighting results. The ground truth image for training is
represented as 𝐼𝑡 . Camera pose is parameterised using Euler angles.
We represent the illumination 𝐸𝑡 as a 450 dimensional vectorised
environment map. This corresponds to the 150 RGB discrete light
sources. A core component of our approach is the PhotoAppNet
neural network, which maps the input image to the edited output
image in the latent space of StyleGAN (see Fig. 2). We first compute
the latent representations of 𝐼𝑠 and 𝐼𝑡 as 𝐿𝑠 and 𝐿𝑡 using the pre-
trained network of Richardson et al. [2020] (pSpNet in Fig. 2). The
latent space used is 18 × 512 dimensional, corresponding to the W+
space of StyleGAN. The output of PhotoAppNet is a displacement
to the input in the StyleGAN latent space. This is then added to
the input latent code to compute 𝐿𝑡 , which is used by StyleGAN to
generate the output image 𝐼𝑡 . We only train PhotoAppNet, while
pSpNet and StyleGAN are pretrained and fixed.

We use an MLP-based architecture with a single hidden layer of
length 512. ReLU activation is used after the hidden layer. We use
independent networks for each of the 18 latent vectors of length
512 corresponding to different resolutions. This is motivated by the
design of the StyleGAN network where each 512 dimensional latent
code controls a different frequency of image features. The output of

each independent network is the output latent code corresponding
to the same resolution.

3.3 Loss Function
We use multiple loss terms to train our network.

L(𝐼𝑡 , 𝐿𝑡 , 𝐼𝑡 , 𝐿𝑡 , 𝜃n) =Ll (𝐿𝑡 , 𝐿𝑡 , 𝜃n) + Lp (𝐼𝑡 , 𝐼𝑡 , 𝜃n) . (1)

Here, 𝜃𝑛 denotes the network parameters of PhotoAppNet. Both
terms are weighed equally. The first term is a StyleGAN latent loss
defined as

Ll (𝐿𝑡 , 𝐿𝑡 , 𝜃n) = ∥𝐿𝑡 − 𝐿𝑡 ∥22 .

It enforces the StyleGAN latent code of the output image 𝐿𝑡 to
be close to the ground truth latent code 𝐿𝑡 . The second term is a
perceptual loss defined as

Lp (𝐼𝑡 , 𝐼𝑡 , 𝜃n) = ∥𝜙 (𝐼𝑡 ) − 𝜙 (𝐼𝑡 )∥22 .

Here, we employ the learned perceptual similaritymetric LPIPS [Zhang
et al. 2018]. An ℓ2 loss is used to compare the AlexNet [Krizhevsky
et al. 2012] features 𝜙 () of the synthesised output and the ground
truth images.

3.4 Network Training
We implement our method in PyTorch and optimise for the weights
of PhotoAppNet by minimising the loss function in Eq. 1. We use
Adam solver with a learning rate of 0.0001 and default hyperpa-
rameters. As mentioned earlier, the StyleGAN encoder (pSpNet)
and generator [Karras et al. 2020; Richardson et al. 2020] are pre-
trained and fixed during training. We optimise over our training
set samples using a batch size equal to 1. Since in-the-wild images
are very different from the light-stage data, it is difficult to assess
convergence using a light-stage validation dataset. As such, we train
our networks using an in-the-wild validation set using qualitative
evaluations. Our network take around 10 hours to train on a single
NVIDIA Quadro RTX 8000 GPU.

3.5 Discussion
Existing image-based relighting approaches such as Sun et al. [2020];
Zhou et al. [2019] rely on much larger trainable networks with
several loss functions, such as losses on the input environment
map and adversarial losses. Approaches for pose editing such as
Kim et al. [2018]; Siarohin et al. [2019]; Thies et al. [2019] rely
on conditional generative networks trained with a combination of
photometric and adversarial losses. Since we rely on a pretrained
generator as our backend renderer, our training is much simpler
than existing approaches. We do not need an adversarial loss as the
pretrained generator already synthesises results at a high quality.
As such, our training is more stable than approaches operating
in image space. In addition. the StyleGAN latent representation
allows for generalisation with high-quality, even when trained on a
dataset with as little as 3 identities (Sec. 4.4). Many existing methods
use specialised network architectures for editing the pose such as
landmark-based warping of the features [Siarohin et al. 2019], or
rendering of a coarse 3D face model [Kim et al. 2018; Thies et al.
2019]. Similarly, common relighting networks are designed in a task-
specific manner where the illumination is predicted at the bottleneck
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Fig. 4. Qualitative illumination and viewpoint editing results. The environment map of the target illumination is shown in the insets. We visualize the StyleGAN
projection of the input image (second column). Our method produces photorealistic editing results even under challenging high-frequency light conditions.

of the architecture [Sun et al. 2020; Zhou et al. 2019]. Our design
results in a compact and convenient to train PhotoAppNet network
that does not require any sophisticated nor specialized network
components. In addition, our method is also faster to train compared
to these approaches, since the task we solve is only to transform
the latent representation of images, unlike end-to-end approaches
which also learn to synthesise high-quality images. When trained
with 15 identities, our network only takes around 6 hours on a single
RTX 8000 GPU to train. In contrast, the method of Sun et al. [2020]
takes around 26 hours on 4 V100 GPUs for training at the same
resolution.

4 RESULTS
We evaluate our technique both qualitatively and quantitatively on
a large set of diverse images. The role of the different loss terms is
studied in Sec. 4.2. We compare against several related techniques in
Sec. 4.3 – the high-quality relighting approaches of Sun et al. [2019]
and Zhou et al. [2019], as well as the recent StyleGAN-based image
editing approaches of Tewari et al. [2020b] and Abdal et al. [2020]

(the latter is concurrent to ours). Furthermore, we show that our
method allows for learning from limited supervised training data
by conducting extensive experiments in Sec. 4.4.

Data PreparationWe evaluate our approach on portrait images
captured in the wild [Karras et al. 2019; Shih et al. 2014]. All data
in our work (including the training data) are cropped and prepro-
cessed as described in Karras et al. [2019]. The images are resized to
a resolution of 1024x1024. Since we need the ground truth images
for quantitative evaluations, we use the test portion of our light-
stage dataset composed of images of 41 identities unseen during
training. We create two test sets, Set1 has the input and ground
truth pairs captured from the same viewpoint while Set2 includes
pairs captured from different viewpoints. The HDR environment
maps, randomly sampled from the Naval Outdoor and Naval Indoor
datasets [Gardner et al. 2017; Hold-Geoffroy et al. 2019] are used
to synthesise the pairs with natural illumination conditions. View-
points are randomly sampled from the 8 cameras of the light-stage
setup. The input and ground truth images are computed using the
same environment map in Set2 for evaluating the viewpoint editing
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Fig. 5. Qualitative illumination and viewpoint editing results. In the first row, we show relighting results where the camera is fixed as in the input. The second
column shows results where both illumination and camera pose is edited. The last row shows results with a moving camera under fixed scene illumination.
Please note the local shading effects such as shadows, as well as view-dependent effects such as specularities in the image

results, while the pairs in Set1 use different environment maps for
relighting evaluations. Set1 includes 883 and Set2 include 792 image
pairs after finding common set of images which works for all the
methods. For each pair, we additionally provide a reference image,
which is used by related methods to estimate the target illumination
and pose in the representation they work with [Abdal et al. 2020;
Sun et al. 2019; Tewari et al. 2020b; Zhou et al. 2019]. In Set1, the
reference image is of an identity different from the input identity.
The ground truth image is directly taken as the reference image
for Set2, since there can be slight pose variations between different
identities for the same camera.

4.1 High-Fidelty Appearance Editing
Figs. 4, 5, and 6 show simultaneous viewpoint and illumination
editing results of our method for various subjects. We also show the
StyleGAN projection of the input images estimated by Richardson
et al. [2020]. Our approach produces high-quality photorealistic
results and synthesises the full portrait, including hair, eyes, mouth,
torso and the background, while preserving the identity, expres-
sion and other properties (such as facial hair). Additionally, the
results show that our method can preserve a variety of reflectance
properties, resulting in effects such as specularities and subsurface
scattering. Please note the view-dependent effects such as specu-
larities in the results(nose, forehead...). Our method can synthesise

results even under high-frequency light conditions resulting in shad-
ows, even though the StyleGAN network is trained on a dataset
of natural images. In Figs. 5-6, we show more detailed editing re-
sults. As it can be noted, the relighting preserve the input pose and
identity. Also, our method can change the viewpoint under a fixed
environment map (third row for each subject).

4.2 Ablation Study
In this section, we evaluate the importance of the different loss terms
of our objective function (Eq. 1). Results are shown in Fig. 7. The
target illumination and viewpoint are visualised using a reference
image (second column) with the same scene parameters. Removing
the latent loss leads to clear distortions of the head geometry. Only
using the perceptual loss leads to results with closed eye expressions,
as our training data only consists of people captured with closed
eyes. We found that the latent loss term helps in generalisation
to unseen expressions. However, using only the latent loss is not
sufficient for high-quality results. In such case, the facial identity
and facial hair (see row 1) are not well preserved, and the relighting
is not very accurate (see rows 1,2,6). A combination of both terms
is essential for high-quality.
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Fig. 6. Qualitative illumination and viewpoint editing results. In the first row, we show relighting results where the camera is fixed as in the input. The second
column shows results where both illumination and camera pose is edited. The last row shows results with a moving camera under fixed scene illumination.
Please note the local shading effects such as shadows, as well as view-dependent effects such as specularities in the image



PhotoApp: Photorealistic Appearance Editing of Head Portraits • 9

Fig. 7. Ablative study on the loss functions. The reference images visualise the target illumination and viewpoint. Removing the latent loss results in distortion
of the head geometry and lower quality results. Removing the perceptual term leads to a loss of facial hair and identity preservation such as beards (for e.g.,
row 1, row 4,5 in light+viewpoint). It also often produces lower-quality results (e.g. row 1,2,6). Both terms are necessary for high-quality results.

4.3 Comparisons to Related Methods
We compare our method with several state of the art portrait editing
approaches. We evaluate qualitatively on in the wild data, as well
as quantitatively on the test set of the light-stage data. We compare
with the following approaches:

• The relighting approach of Sun et al. [2019] which is a data-
driven technique trained on a light-stage dataset. It can only
edit the scene illumination.

• The relighting approach of Zhou et al. [2019] which is trained
on synthetic data. It can also only edit the scene illumination.

• PIE [Tewari et al. 2020b] is a method which computes a Style-
GAN embedding used to edit the image. It can edit the head

pose and scene illumination sequentially (unlike ours, which
can perform the edits simultaneously). It is trained without
supervised image pairs.

• StyleFlow [Abdal et al. 2020], like PIE can edit images by
projecting them onto the StyleGAN latent space. It is also
trained without supervised image pairs. Please note that this
paper is concurrent to us (not counted as prior art). However,
we provide comparisons for completeness.

We show the relighting comparisons on in the wild data in Fig. 8.
Here, the reference image in the second column is used to visualise
the target illumination. Both the light-stage data-driven approach
of Sun et al. [2019] and the synthetic data-driven approach of Zhou
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Fig. 8. Relighting comparisons. Target illumination is visualised using reference images. Our approach clearly outperforms all existing approaches.
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Fig. 9. Comparisons to PIE [Tewari et al. 2020b] and StyleFlow [Abdal et al. 2020]. The reference images visualise the target illumination and viewpoint. Our
approach produces higher-quality results and clearly outperforms these methods.

et al. [2019] produce noticeable artifacts. The approach of Zhou et al.
[2019] only uses single channel illumination as input and can thus
not capture the overall color tone of the illumination. The StyleGAN-
based approach of Abdal et al. [2020] produces less artifacts, however
the quality of relighting is worse than other approaches as it mostly
preserves the input lighting. In addition, similar to Zhou et al. [2019],
this approach cannot capture the color tone of the environment
map. PIE [Tewari et al. 2020b] produces better results but it does

not capture local illumination effects like our approach (for eg.,
rows 5,6,7,8) and can produce significant artifacts in some cases (for
eg., row 8). Our approach clearly outperforms all existing methods,
demonstrating the effectiveness of a combination of supervised
learning and generative modeling. It can capture the global color
tone as well as local effects such as shadows and specularities. It
can synthesise the image under harsh lighting (for e.g., rows 7,8)
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Fig. 10. Our method allows for training with very limited supervision. We show editing results when trained with 3,15,30,150 and 300 identities. Our approach
produces photorealistic results, and outperforms existing methods even with limited training data.
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and remove source-lighting related specularities on the glasses (for
eg., row 5).
Tab. 1 shows the quantitative comparisons with these methods

on the light-stage test set (Set1). We use the Scale invariant-MSE (Si-
MSE) [Zhou et al. 2019] and SSIM [Zhou Wang et al. 2004] metrics.
The Si-MSE metric does not penalize global scale offsets between
the ground truth and results. Our method outperforms all methods
using this metric. The method of Sun et al. [2019] outperforms other
methods on SSIM. Since this method uses a U-Net architecture, it is
easier to copy the details from the input image, and maintain the
pixel correspondences. However, visual results clearly show that
our approach outperforms all related methods, including that of Sun
et al. [2019] (see Fig. 8).
Fig. 9 shows joint editing of the camera viewpoint and scene

illumination for in the wild images. The target viewpoint and illu-
mination are visualised using reference images (see second column).
While PIE [Tewari et al. 2020b] can change the viewpoint, it often
distorts the face in an unnatural way (e.g. row 1,2,7). It also does
not capture local shading effects correctly (e.g. row 1,2,6) and can
produce strong artifacts (e.g. row 4). PIE solves an optimisation
problem to obtain the embedding for each image, which is slow, tak-
ing about 10 mins per image. In contrast, our method is interactive,
only requiring 160ms to compute the embedding and edit it. Style-
Flow [Abdal et al. 2020] can preserve the identity better than PIE,
but results in less photorealistic results compared to our method. In
addition, the relighting results of StyleFlow often fail to capture the
input environment map. Our approach clearly outperforms both
methods both in terms of photorealism as well as the quality of
editing.
Tab. 2 quantitatively compares the joint editing of camera view-

point and scene illumination. We use the Si-MSE and SSIM metrics
and evaluate on the Set2 of the light-stage test data. Our approach
outperforms all methods here in both metrics.

4.4 Generalisation with Limited Supervision
The combination of generative modeling and supervised learning al-
lows us to train from very limited supervised data. We show results
of training with different number of identities in Fig. 10. Results
of PIE [Tewari et al. 2020b], StyleFlow [Abdal et al. 2020] and Sun
et al. [2020] are also demonstrated. Our relighting results outper-
form related methods both in terms of realism as well as quality
of editing, even when trained with as little as 3 identities. We also
consistently outperform PIE and StyleFlow when editing both view-
point and illumination, even when trained with 30 identities. More
identities during training help with better preservation of the facial
identity during viewpoint editing. However, very small training
data is sufficient for relighting.

We also quantitatively evaluate these results in Tables 1 and 2. In
both tables, our method outperforms all related approaches using
the Si-MSE metric, even when trained with just 3 identities. All
versions of our approach perform similar in terms of SSIM. These
evaluations show that while larger datasets lead to better results,
only limited supervised data is required to outperform the state
of the art. Finally, despite the limited expressivity of the training
dataset (subjects in a single expression with eyes and mouth closed),

Table 1. Quantitative comparison with relighting methods. Our approach
achieves the lowest Si-MSE numbers. While Sun et al. [2019] achieves the
highest SSIM score, qualitative results show that our method significantly
outperforms all existing techniques on in the wild images (see Fig. 8).

Si-MSE ↓ SSIM ↑
[Zhou et al. 2019] 0.0037 0.9197

(𝜎= 0.0031) (𝜎= 0.0744)
[Sun et al. 2019] 0.0026 0.9591

(𝜎= 0.0024) (𝜎= 0.0237)
[Tewari et al. 2020b] 0.0051 0.922

(𝜎= 0.0036) (𝜎= 0.029)
[Abdal et al. 2020] 0.0082 0.8909

(𝜎=0.0056) (𝜎= 0.04)
Ours 0.002 0.9199

(𝜎=0.001) (𝜎= 0.0297)
Ours 0.002 0.9192
(150 id.) (𝜎=0.001) (𝜎= 0.0351)
Ours 0.002 0.9188
(30 id.) (𝜎=0.001) (𝜎= 0.0300)
Ours 0.002 0.9191
(15 id.) (𝜎=0.001) (𝜎= 0.0306)
Ours 0.002 0.9193
(3 id.) (𝜎=0.001) (𝜎= 0.0293)

Table 2. Quantitative evaluation with illumination and pose editing meth-
ods using Set2 of the light-stage test set. Our approach outperforms both
competing methods, also clearly illustrated using qualitative results (see
Fig. 9).

Si-MSE ↓ SSIM ↑
[Tewari et al. 2020b] 0.0067 0.9005

(𝜎= 0.0044) (𝜎= 0.0363)
[Abdal et al. 2020] 0.0104 0.8812

(𝜎=0.0071) (𝜎= 0.0469)
Ours 0.0039 0.9086

(𝜎=0.0029) (𝜎=0.0307)
Ours 0.0035 0.9050
(150 id.) (𝜎=0.0020) (𝜎=0.0340)
Ours 0.0040 0.9021
(30 id.) (𝜎=0.0033) (𝜎=0.0312)
Ours 0.0046 0.8974
(15 id.) (𝜎=0.0027) (𝜎=0.0315)
Ours 0.0048 0.9000
(3 id.) (𝜎=0.0031) (𝜎=0.0316)

our method is able to generalise to different expressions, as shown
in our results (mouth and eyes open, smiling, etc.) (see Fig. 3).

4.5 Supplemental Material
In the supplemental video, we show results on videos processed on
a per-frame basis. We can synthesise the input video from different
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Fig. 11. Our method struggles in the presence of accessories such as caps
and sunglasses, and background clutter. Extreme pose and illumination
editing is also difficult for our method.

camera poses and under different scene illumination while preserv-
ing the expressions in the video. We also show additional results on
a large number of images in the supplemental material.

5 LIMITATIONS
While we demonstrate high-quality results of our approach, several
limitations exist, see Fig. 11. Our method can fail to preserve acces-
sories such as caps and glasses in some cases. Background clutter
can lead to a degradation of quality in the results. Our method strug-
gles to preserve the facial identity under large edits for both camera
pose and illumination. While we can preserve the input pose in
the results, our method cannot edit the camera viewpoint without
changing the illumination. In the future, we can use methods that
estimate illumination from portrait images [LeGendre et al. 2020] to
preserve input illumination when editing the viewpoint. While we
show several high-quality results on video sequences, slight flicker
and instability remain. A temporal treatment of videos could lead
to smoother results.

6 CONCLUSION
We presented PhotoApp, a method for editing the scene illumina-
tion and camera pose in head portraits. Our method exploits the
advantages of both supervised learning and generative adversarial
modeling. By designing a supervised learning problem in the latent
space of StyleGAN, we achieve high-quality editing results which
generalise to in the wild images with significantly more diversity
than the training data. Through extensive evaluations, we demon-
strated that our method outperforms all related techniques, both in
terms of realism and editing accuracy. We further demonstrated that
our method can learn from very limited supervised data, achieving
high-quality results when trained with as little as 3 identities cap-
tured in a single expression. While several limitations still exist, we
hope that our contributions inspire future work on using generative
representations for synthesis applications.
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