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• Matching problems on 3D shapes and images often lead to difficult combinatorial, 
quadratic assignment problems (QAPs)  

• We address the question, how quantum annealers can help solving QAPs.
• For this we develop multiple methods to write following optimization over permutations

where                      and                                     , in an unconstrained form.
• We perform experiments on a quantum annealer as well as numerical simulations and 

compare the methods with each other.

Overview

• The equality constraints                                             are of the form                , where     is a 
matrix and    is a vector.

• For sufficiently large           :

• Third method: Inserting the equalities to eliminate variables 

Shape Matching

• Stochastic algorithm comparable to simulated annealing, but with advantage for high, 
narrow peaks:5

• Major progress in recent experimental realization: D-Wave 2000Q has 2048 
superconducting flux qubits

• Free access over cloud with D-Wave leap.6

• Computer Vision applications are researched.7,8

Quantum Annealing

• For              the results are worse than random guessing, despite numerical simulations 
confirming the validity of the algorithm.

• Hypothesis: Regularization term is too big compared to the rest
• Experimental errors in the couplings make the energy differences between the 

permutations insignificant.

Ablative Study for n=4

• Given two sets of points on a body. How can we find the correspondences?

• For isometric transformations                                                 the (geodesic) 

distances          do not change:

• The non-negative term:

with                  is zero for the correct permutation matrix. 

• This motivates equation (1).

• The optimization problem (1) is NP-hard

Conversion from (1) to (2)

Quantum Computing
• The idea of quantum computing is to use quantum-mechanical systems to gain a 

computational advantage.

• Most prominent, general applications of quantum computing include:

• Simulation of many-body physics1,2

• Shor's algorithm for integer factorization3

• Grover's algorithm for search in an unsorted database4

• Quantum Annealing can be used to solve:

with an               matrix     and an      dimensional vector    .

       

         

       

    

 
 
 
 

           
                                                                      

• The minimizers of the constrained and the unconstrained problem coincide provided that:

where      denotes the indices that belong to a column or a row enumerated by the rows  
of      and 

• Similar propositions are proven for the other methods
• Lower bounds for the regularization parameter are important, since dominant 

regularization terms enhance errors

Lower Bounds for the Penalty Parameters

   
 

  

  

  

  

  

 
 
 
 
 
  
 
  
 
 
 
 
  
 
 
 
 
 

   
 

  

  

  

  

  

   
 

  

  

  

  

  

  

                          

                        

                         
 

  

  

  

  

  

 
 
 
 
 
  
 
  
 
 
 
 
  
 
 
 
 
 

                
 

  

  

  

  

  

        
 

  

  

  

  

  

  

                                                       

                        

All outputs: Only Permutations:

Website (Code is available):

http://gvv.mpi-inf.mpg.de/projects/QGM/
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Experiments on D-Wave 2000Q

Real Data (e.g. Near-Isometric Shape Matching):
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