
Adiabatic Quantum Graph Matching with Permutation Matrix Constraints
— Supplementary Material —

Marcel Seelbach Benkner1 Vladislav Golyanik2 Christian Theobalt2 Michael Moeller1

1University of Siegen 2Max Planck Institute for Informatics, SIC

This supplementary material provides details on the
derivations of the Quantum Graph Matching (QGM) ap-
proach as well as more experimental results. The proofs
of Lemma (4.1) and Prop. (4.1) of the main matter can be
found in Sec. 1. Sec. 2 complements the description of our
experiments with the quantum computers, accessible via
IBM Quantum Experience. Next, we show additional re-
sults of QGM for point cloud alignment in Sec. 3 and nearly
isometric non-rigid shape registration in Sec. 4, followed by
a discussion of the minor embedding and negative results in
Secs. 5 and 6, respectively. Note that D-Wave provides one
minute of QPU time on their annealers for research pur-
poses per month. We obtain three minutes in total during
the current project and use 80% of this time for our exper-
iments. One minute of time on the quantum annealer can
suffice to run hundreds of problems.

1. Proofs for Section 4
In order to ensure that we can incorporate a constraint of

the form Ax = b as a penalty, the corresponding penalty
parameter λ has to be chosen such that

min
x∈{0,1}n,Ax=b

xTWx < min
x∈{0,1}n,Ax 6=b

xTWx+λ‖Ax−b‖2.

(1)
A naive estimate for a sufficiently large λ is obtained by

using

min
x∈{0,1}n,Ax=b

xTWx ≤
∑
i,j

max{0,Wi,j} (2)

and

min
x∈{0,1}n,Ax6=b

xTWx+ λ‖Ax− b‖2

≥ min
x∈{0,1}n,Ax6=b

xTWx+ λ min
x∈{0,1}n,Ax6=b

‖Ax− b‖2

≥ min
x∈{0,1}n

xTWx+ λ min
s∈{−1,1}n,Ax6=b

‖Ax− b‖2︸ ︷︷ ︸
=:d

≥ −
∑
i,j

max{0,−Wi,j}+ λd.

(3)

Thus a sufficient upper bound for λ is given by

λ >
1

d

∑
i,j

(max{0,−Wi,j}+max{0,Wi,j})

=
1

d

∑
i,j

|Wi,j |.

The influence of the linear term cTx can be calculated in the
same way. Alternatively c can be added to the diagonal of
W , since x2i = xi for xi ∈ {0, 1}. The fact that d = 2 can
be proven by the following reasoning. Consider that there is
a violation for the rows so that one row does not sum up to
one and

∑
k belongs to a row(Ax− b)2k = 1. Since the sum over

all rows of a matrix is the same as the sum over all columns,
one constraint for the columns is violated as well. Since the
same argument can be made if we switch rows and columns
d has to be 2.

1.1. Proof of Proposition (4.1)

Better estimates can be obtained by exploiting more
about the specific structure of the constraint. We aim to
formulate the optimization problem as an unconstrained op-
timization problem with row-wise penalty parameters:

min
x∈{0,1}n2

xTWx+ cTx+

2n∑
i=1

λi((Ax)i − bi)2. (4)

One can solve the following optimization problems

DJj = max
k∈Jj

(
∑
i

|(Wk,i +Wi,k)|+ |Wk,k|+ |ck|) (5)

for every row or column Jj .

The following bound for λj can be used to obtain an un-

constrained optimization problem as in (4):

λj = max
k∈Jj

(
∑
i

|(Wk,i +Wi,k)|+ |Wk,k|+ |ck|) (6)

+
1

2
(max

k

∑
i

|(Wk,i +Wi,k)|+ |Wk,k|+ |ck|) (7)

= DJj
+

1

2
D{1,...,n2} (8)

Proof. Let x be an arbitrary element in {0, 1}n2

. We want
to show that for the above choice of λj

∃p ∈ vec(Pn) : p
TWp+ cTp (9)

≤ xTWx+ cTx+

2n∑
i=1

λi((Ax)i − bi)2 (10)

For the matrix X , which fulfills x = vec(X), we can
construct sets with the property:

(i, j) ∈ I ⇒ Xi,j = 1 ∧ ∀k ∈ {1, ..., n} \ {j}(i, k) /∈ I
∧ ∀k ∈ {1, ..., n} \ {j}(k, j) /∈ I,

(11)
We name one of these sets that has the maximal possible

number of elements Imax. The permutation matrix P with
p = vec(P) that we want to construct can be any permu-
tation with ones placed at the positions in Imax. We can get
from X to P by first erasing all ones that are not in the
positions Imax and then adding n− |Imax| ones.

Consider the set of matrices (X(k))0≤k≤H with:

X(0) = X

X(H) = P

||X(k) −X(k−1)|| = 1

(12)

These matrices can be constructed if we start from P and
erase successively all ones that are not in Imax. After that
we can insert ones that have an index in common with an
element in Imax. This set we call B.

Inserting or erasing a one at the j-th column yields max-
imally to an energy difference of

DCj = max
k∈Cj

(
∑
i

|(Wk,i +Wi,k)|+ |Wk,k|+ |ck|), (13)

where Cj describe the indizes that belong to the j-th collumn
and analogously Rj describe the indizes that belong to the
j-th row. We define f as:

f(Y) = yTWy + cTy (14)

with y = vec(Y). To prove (10) we use the principle of a

telescope sum:

f(P)− f(X)

=

H−1∑
k=0

f(X(k+1))− f(X(k)) ≤
H−1∑
k=0

∣∣∣f(X(k+1))− f(X(k))
∣∣∣

=
∑

{k∈{0,...,H−1}|pos (X(k+1)−X(k))∈B}

∣∣∣f(X(k+1))− f(X(k))
∣∣∣

+
∑

{k∈{0,...,H−1}|pos (X(k+1)−X(k))/∈B}

∣∣∣f(X(k+1))− f(X(k))
∣∣∣

(15)
For the second sum we want to use:∣∣∣f(X(k+1))− f(X(k))

∣∣∣ ≤ D{1,...,n2} (16)

In the first sum we can make use of the specific column or
row and use DJj . This yields the following ansatz for λRj ,
which is the λk that belongs to the j-th row:

λRj
= αDRj

+ βD{1,...,n2}. (17)

To obtain the constant β we have to calculate the right side
of the inequality:

β ≥ max
{x∈{0,1}n2 |Ax6=b}

|n− Imax|∑
j |Axj − bj |

. (18)

If we have a row, where no element of Imax is present, there
can be other ones placed there that share a column with a
position in Imax. If there is no one in that column, then
|Axj − bj | 6= 0 for the corresponding j. If there are ones
then

∑
j |Axj − bj | also increases, since the ones are in

places, where they share a column with a position in Imax.
This yields to the inequality:

β ≥ max
{x∈{0,1}n2 |Ax6=b}

|n− Imax|
2 · |n− Imax|

=
1

2
. (19)

To get an estimate for α we now consider a row that con-
tains an element of Imax. In the case, that there is only a
single one we do not have to delete other ones. Every addi-
tional one increases |Axj − bj | also by one. Therefore:

α ≥ max
j,x∈{0,1}n2 |(Ax)j 6=bj Jj∩vec(Imax)6=∅

|vec(B \ Imax) ∩ Jj |∣∣∣(Ax)j − bj∣∣∣ = 1.

(20)

1.2. Proofs of Lemma (4.1) and Proposition (4.2)

1.2.1 Proof of Lemma (4.1)

Proof. We express the set of permutation matrices in terms
of the coefficients xi,j :

2

Pn = {X ∈ Rn×n|∀i, j ∈ {1, ..., n}xi,j ∈ {0, 1}

∀j ∈ {1, ..., n}
n∑

i=1

xi,j =

n∑
i=1

xj,i = 1}

=
{

1−
∑n

i=2 x1,i 1−
∑n

i=2 x2,i . . . 1−
∑n

i=2 xn,i

x2,1 x2,2 ... x2,n

...
...

. . .
...

xn,1 xn,2 ... xn,n

∈ Rn×n|∀i ∈ {2, ..., n}, j ∈ {1, ..., n} xi,j ∈ {0, 1}

∀j ∈ {1, ..., n}
n∑

i=1

xj,i = 1 ∧
n∑

i=2

xi,j ≤ 1
}

=
{

1−
∑n

i=2 x1,i 1−
∑n

i=2 x2,i . . . 1−
∑n

i=2 xn,i

1−
∑n

i=2 x2,i x2,2 ... x2,n

...
...

. . .
...

1−
∑n

i=2 xn,i xn,2 ... xn,n

∈ Rn×n|∀i ∈ {2, ..., n}, j ∈ {1, ..., n} xi,j ∈ {0, 1}

∀j ∈ {1, ..., n}
n∑

i=1

xj,i = 1 ∧
n∑

i=2

xi,j ≤ 1
}

=
{

1− (n− 1) +
∑n

i,j=2 xi,j 1−
∑n

i=2 x2,i . . . 1−
∑n

i=2 xn,i

1−
∑n

i=2 x2,i x2,2 ... x2,n

...
...

. . .
...

1−
∑n

i=2 xn,i xn,2 ... xn,n

∈ Rn×n|∀i ∈ {2, ..., n}, j ∈ {2, ..., n} xi,j ∈ {0, 1}
n∑

i,j=2

xi,j ∈ {n− 2, n− 1} ∀j ∈ {1, ..., n}

n∑
i=2

xj,i ≤ 1 ∧
n∑

i=2

xi,j ≤ 1
}

=
{

2− n+
∑n

i,j=2 xi,j 1−
∑n

i=2 x2,i . . . 1−
∑n

i=2 xn,i

1−
∑n

i=2 x2,i x2,2 ... x2,n

...
...

. . .
...

1−
∑n

i=2 xn,i xn,2 ... xn,n

∈ Rn×n|∀i ∈ {2, ..., n}, j ∈ {2, ..., n} xi,j ∈ {0, 1}
n∑

i,j=2

xi,j ∈ {n− 2, n− 1} ∀j ∈ {2, ..., n}
n∑

i=2

xj,i ≤ 1 ∧
n∑

i=2

xi,j ≤ 1
}

=
{

2− n+
∑n

i,j=2 xi,j 1−
∑n

i=2 x2,i . . . 1−
∑n

i=2 xn,i

1−
∑n

i=2 x2,i x2,2 ... x2,n

...
...

. . .
...

1−
∑n

i=2 xn,i xn,2 ... xn,n

∈ Rn×n|∀i ∈ {2, ..., n}, j ∈ {2, ..., n} xi,j ∈ {0, 1}
n∑

i,j=2

xi,j ∈ {n− 2, n− 1} ∀j, i, k ∈ {2, ..., n} i 6= k

xj,ixj,k = 0 ∧ xi,jxk,j = 0
}

1.2.2 Proof of Proposition (4.2)

We want to find sufficient lower bounds for λj1 and λ2 in

min
x∈{0,1}(n−1)2

xTW̃x+ c̃Tx+

2(n−1)∑
j=1

λj
1

∑
k∈Jj

xk

∑
k∈Jj

xk − 1

+ λ2

(n−1)2∑
i=1

xi − (n− 1)

(n−1)2∑
i=1

xi − (n− 2)

 ,

(21)

so that it coincides with the constrained optimization prob-
lem. We make the following ansatz for the λ2 parameter:

λ2 =
1

2
D{1,...,(n−1)2} (22)

Since the function(n−1)2∑
i=1

xi − (n− 1)

(n−1)2∑
i=1

xi − (n− 2)

 (23)

increases faster than 2 ·H ,when H is the number of entries
that need to be switched in order to have n − 1- or n − 2-
many entries equal to 1.

This choice for λ2 allows us to only investigate the case,
where we have n − 1 or n ones placed anywhere. Similar
to the prior proof we ask, what the worst ratio between ones
we have to insert anywhere and ones we have to insert or
delete in a particular column is. It can be easily seen that
in the worst case scenario all ones are in one column or
row. Therefore the ratio is one half. This shows that we can
choose:

λj1 =
1

2
DJj

+
1

2
D{1,...,(n−1)2} (24)

2. Experiments on IBM Burlington
Several of our experiments are conducted on the IBM

five qubits in Burlington [1], which is accessible per cloud.
In contrast to D-Wave quantum annealers, the circuit-model
is used for the design of this quantum computer. From a
purely theoretical perspective there is some equivalence [3]
between adiabatic quantum computing and quantum com-
puting with the circuit model, though due to the techni-
cal challenges, significant differences remain in practice.
One way to execute a time-dependent Hamiltonian H(t)
(6) on the IBM machine is to approximate it with L con-
stant Hamiltonians. The Hamiltonians, which are constant
in time, can be decomposed and expressed with quantum
gates via trotterization [7].

3

More specifically, choosing the value of the parameter L
in the piecewise constant approximation of the Hamiltonian
is crucial as we loose the (pseudo-)adiabacity for small L,
but – as each gate has a certain chance of introducing an
error and a long execution time of the circuit makes errors
due to decoherence more probable – large L are also prone
to fail.

Because of the above-mentioned reasons, we are able to
perform the adiabatic evolution for only two qubits on the 5
qubit processor until now. Fortunately, using the trick from
Sec. 4.3, we can optimise over the 2 × 2 permutation ma-
trices. In our experiment, we performed 50 time steps. We
choose the evolution time 0.1 and use Suzuki expansion of
order 2, similar to Kraus et al. [5]. The matrix W and the
vector c were generated randomly for every of the 20 itera-
tions. Every circuit was executed 8192 times, which is the
maximal amount. An exemplary result of an execution is
summarized in the histogram in Fig. 1. Although we ob-
tain slightly different distributions each time, the highest
peak always coincides with the second column of the op-
timal permutation, which is |01〉 here.

0
10
20
30
40
50
60
70
80

M
e

a
s
u

re
m

e
n

t
p

ro
b

a
b

ili
ty

 (
%

)

00 01 10 11
Computational basis states

Figure 1: QGM execution histogram over 8192 runs using
trotterization on a five qubit processor from IBM Quantum
Experience. The states |00〉 and |11〉 are suppressed, be-
cause of the proposed regularization terms, i.e., since these
states violate that the sum of all elements in a column of a
permutation matrix equals to 1.

The recent publication [4] about adiabatic quantum com-
puting on machines from IBM Quantum Experience pro-
poses catalyst Hamiltonian, which could improve the results
in future and make it possible to succeed in higher dimen-
sions.

3. Point Cloud Matching Example
To illustrate another application of the studied match-

ing problems, we consider the registration of two 3D point
clouds by finding correspondences of four pre-selected
points in each scene as illustrated in Fig. 2. While this pre-
selection is, of course, a very challenging part of the overall
solution, our main goal is to illustrate the solution of a (low
dimensional) matching problem via quantum computing –
possibly as the solution to a subproblem in an iterative reg-
istration algorithm.

To set up the matching problem, we select four arbitrary
points in one scene and use the ground truth transformation

between the two frames to identify the corresponding points
in the other scene. We then set up a matching problem
with costs as in (17) by simply using Euclidean distances
between the points.

The histogram of energies obtained by all three quan-
tum graph matching formulations over 500 anneals is shown
in Fig. 3. The top row illustrates the overall histogram
with strong peaks at low energies. As these peaks corre-
spond to permutation matrices, we can conclude that all
penalty terms were successful in strongly promoting per-
mutations, with the inserted formulation yielding the best
results. Zooming into the leftmost peak (illustrated in the
bottom row of Fig. 3), however, reveals that none of the
three formulations was successful in consistently predicting
the global optimum among the permutation matrices. Con-
sidering the probabilities of less than 1% for the row-wise
and baseline, and about 5.5% for the inserted formulations
to predict the ground truth solution, one must conclude that
all algorithms do not provide significantly better solutions
than random guessing (which has a success probability of
4.17% for n = 4).

In summary, this experiment underlines the great diffi-
culty current quantum hardware still has with problem in-
stances of n = 4, i.e., looking for the values of the best
16 qubits that are constrained to representing a permutation
matrix. The performance of our three QUBO formulations
on this problem can be seen in Fig. 3.

4. Near-Isometric Matching

Fig. 4 shows an example of a matching problem between
two shapes that are only approximately related by an isom-
etry, i.e., matching a wolf to a cat in this particular instance.
Still modelling the problem as an isometric deformation us-
ing costs determined by (17) yields an instance, where the
true matching still is the global optimum of the quadratic
assignment problem, but where wrong permutations have
considerably more similar energies than in the point cloud
and isometric shape matching examples.

The success probabilities for the inserted, the baseline
and the row-wise QGM variants are 3.8%, 4% and 9.2%,
respectively. As we can see in Fig. 5, the energy landscape
has a wide range and the energy values corresponding to
permutations are closer to each other compared to the case
when the isometry assumption is strictly fulfilled. If one
looks at the histograms with only permutations, only the
row-wise QGM shows some trend towards the permutation
with the lowest energy. Although its success probability is
more than twice as good as random guessing, such a fac-
tor to random guessing would still not be sufficient to scale
such an algorithm to large n.

4

Scene 1 Scene 2

Figure 2: Illustrating the correct matching between four selected keypoints in two frames of the 7-Scenes ’Redkitchen’
dataset, as provided at https://3dmatch.cs.princeton.edu/

5. Embedding to the Chimera Graph

The embeddings to the Chimera graph for different di-
mensions with the row-wise formulation can be seen in
Fig. 6. While the number of logical qubits grows quadrati-
cally with n, the number of physical qubits required to em-
bed those to the Chimera graph grows as n4. For n = 2,
the length of the longest chain is two physical qubits. For
n = 3 and n = 4, the chain length does not exceed four and
six, respectively.

6. Discussion of Negative Results

Since physical quantum computing is an emerging tech-
nology, reporting and discussing negative results on the
early stage is of high relevance for the community. Insights
of this section can help in choosing a promising direction
for improvements and future research.

As discussed in section 5.2 we claim that the failure to
provide the ground state with more probability than random
guessing is due to the experimental errors in the coupling
parameters. To back this up we provide the smallest and
largest values of couplings and biases of the regularization
and data term in table 1.

The couplings and the biases are scaled, so that they fit
the feasible region of the annealer. Qreg, qreg do yield con-
stant energies for all permutations and therefore Qprob, qprob
contains the information, which permutation is optimal.
The sum are the real, physical couplings

Q = Qreg +Qprob

Table 1: Illustrating the range of values arising from the
penalty to constrain each formulation to permutation ma-
trices (Qreg * and qreg *) and from the actual problem costs
(Qprob * and qprob *). As we can see the constraints contribute
more to the quadratic coupling matrix by a factor of around
6 for the inserted, 13 for the row-wise, and almost 55 for the
baseline.

Row-wise Inserted Baseline
Qmax -0.887 -0.987 -0.973
Qmin -1.037 -1.295 -1.009
qmax -1.937 -8.884 -116.772
qmin -2.277 -9.753 -120.772
Qreg max 0.962 1.121 0.983
Qreg min -0.962 -0.705 -0.991
qreg max 4.017 10.885 118.772
qreg min 0.140 7.753 118.772

and biases
q = qreg + qprob.

One can see that most of the accessible range of the cou-
pling parameters has to make sure that the output is a per-
mutation.

There exists already ways to deal with these problems,
which we want to try out in further experiments. One possi-
bility would be to use extended J-range parameter [2]. The
easiest way for this would be to use the virtual graph em-
bedding instead of the default one (EmbeddingComposite).
First attempts in this direction show that using the virtual
graph embedding requires a lot of computation time. For

5

https://3dmatch.cs.princeton.edu/

− 2400 − 2200 − 2000

0

10

20

30

40

50

N
u
m

b
e

r
o
f
O

c
c
u
rr

e
n

c
e
s

− 500 − 450 − 400

0

10

20

30

40

50

60

− 650 − 600 − 550 − 500 − 450

0

10

20

30

40

50

60

70

InsertedRow-wiseBaseline

Energy of the states obtained from the quantum annealer

0 1 2 3 4

0

10

20

30

40

50

1 2 3 4 5

0

10

20

30

40

50

60

0 2 4

0

10

20

30

40

50

60

N
u
m

b
e

r
o
f
O

c
c
u
rr

e
n

c
e
s

Energy of the permutations

Baseline Row-wise Inserted

Figure 3: The histograms show the states obtained for the
point matching problem in Fig. 2. The top row shows the
overall histogram obtained over 500 anneals while the bot-
tom row is a (rescaled) zoom into the leftmost peaks of the
upper row, which corresponds to actual permutation matri-
ces.

Figure 4: Illustrating a matching problem in which the
shapes to be matched are only approximately related by an
isometry.

one instance, where we got an error warning we had to in-
vest 12% of our access time.

As reported in the main paper we first used a long an-
nealing path with a break and at some point switched to
using 20µs. Although a longer annealing time can often be
used to enhance the success probability, if we additionally
look a the time it takes to perform the experiment until we

− 1700 − 1600 − 1500 − 1400 − 1300

0

10

20

30

40

50

N
u
m

b
e

r
o
f
O

c
c
u
rr

e
n

c
e
s

− 350 − 325 − 300 − 275

0

10

20

30

40

50

− 350 − 300

0

10

20

30

40

50

60

Energy of the states obtained from the quantum annealer

Baseline Row-wise Inserted

1 2 3

0

10

20

30

40

50

N
u
m

b
e

r
 o

f
O

c
c
u
r
r
e
n

c
e
s

1 2 3

0

10

20

30

40

50

1 2 3

0

10

20

30

40

50

60

Energy of the permutations

Baseline Row-wise Inserted

Figure 5: The histograms show the states obtained for the
point matching problem in Fig. 4. The top row shows the
overall histogram obtained over 500 anneals while the bot-
tom row is a (rescaled) zoom into the leftmost peaks of the
upper row, which corresponds to actual permutation matri-
ces.

one gets the optimum with for example 99% certainty then
according to [6] 20µs seems to be the better choice, if less
than 512 qubits are used.

7. Beyond Quantum Computing

In addition to the numerical experiments using quantum
computing, we also briefly tested the effect of our three re-
formulations on methods that are inspired by physical sys-
tems. In Fig. 7, we compare the success probability of
our three formulations for simulated annealing using ran-
dom instances of graph matching problems. As we can see,
the row-wise and - even more so - the inserted formulations
yield results clearly superior to the baseline method, indi-
cating that our analysis might be of use beyond quantum
computing. Due to the NP-hard nature of the underlying
problem, it is to be expected that the overall success proba-
bility still decreases exponentially with increasing n (for a
fixed number of simulated annealing runs).

6

Figure 6: QGM minor embeddings to the chimera graph, for n = 2 (left), n = 3 (middle) and n = 4 (right). The number
of logical qubits grows quadratically with n, and the number of physical qubits required to embed the logical qubits to the
Chimera graph grows as n4 on the current generation of D-Wave annealers. The white and blue circles denote measured
values zero and one, respectively, and the lines between the qubits denote couplers. Grey lines connect the physical qubits
with the same resulting values. A subset of those build chains and represent a single logical qubit. Blue lines connect different
measured values.

432 5

n

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
c
e
s
s
 p

ro
b
a
b
il
it

y

Inserted

Baseline

Row-wise

Figure 7: Percentage of the 5000 runs that found the op-
timum with simulated annealing averaged over 10 random
problem instances.

References
[1] IBM Q experience. https://quantum-computing.

ibm.com/ http://www.research.ibm.com/
quantum. Accessed: 2020 January and February. 3

[2] Performance tuning for d-wave quantum processors.
https://www.dwavesys.com/sites/default/
files/2_Wed_Am_PerfTips.pdf. Accessed: 2020
July. 5

[3] D. Aharonov et al. Adiabatic quantum computation is
equivalent to standard quantum computation. SIAM review,
50(4):755–787, 2008. 3

[4] C. Cao, J. Xue, N. Shannon, and R. Joynt. Speedup of the
quantum adiabatic algorithm using delocalization catalysis.

arXiv preprint arXiv:2007.11212, 2020. 4
[5] M. Hebenstreit, D. Alsina, J. I. Latorre, and B. Kraus. Com-

pressed quantum computation using a remote five-qubit quan-
tum computer. Phys. Rev. A, 95:052339, May 2017. 4

[6] A. D. King and C. C. McGeoch. Algorithm engineering for a
quantum annealing platform. arXiv preprint arXiv:1410.2628,
2014. 6

[7] M. A. Nielsen and I. Chuang. Quantum computation and
quantum information, 2002. 3

7

https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
 http://www.research.ibm.com/quantum
 http://www.research.ibm.com/quantum
https://www.dwavesys.com/sites/default/files/2_Wed_Am_PerfTips.pdf
https://www.dwavesys.com/sites/default/files/2_Wed_Am_PerfTips.pdf

