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Figure 1: Panoramas are widely available online, and more and more video content of these places is shared online. With these
data, our video-collection+context interface visualizes the dynamic changes within a collection. The right-hand side shows our
spatio-temporal index as a heat map (/eft), inlayed video foci (center), and fast search with spatial mouse scrubbing (right).

ABSTRACT

Video collections of places show contrasts and changes in our
world, but current interfaces to video collections make it hard
for users to explore these changes. Recent state-of-the-art in-
terfaces attempt to solve this problem for ‘outside—in’ col-
lections, but cannot connect ‘inside—out’ collections of the
same place which do not visually overlap. We extend the fo-
cus+context paradigm to create a video-collections+context
interface by embedding videos into a panorama. We build
a spatio-temporal index and tools for fast exploration of the
space and time of the video collection. We demonstrate the
flexibility of our representation with interfaces for desktop
and mobile flat displays, and for a spherical display with joy-
pad and tablet controllers. We study with users the effect of
our video-collection+context system to spatio-temporal local-
ization tasks, and find significant improvements to accuracy
and completion time in visual search tasks compared to ex-
isting systems. We measure the usability of our interface
with System Usability Scale (SUS) and task-specific ques-
tionnaires, and find our system scores higher.
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INTRODUCTION

The abundance of mobile devices with cameras has resulted
in an ever increasing number of videos of places around the
world. With geotagging, it is very easy to assemble a video
collection containing many videos of the same location span-
ning a period of time. Such a collection can capture both
the moment-to-moment dynamics of a location, the comings
and goings, and its temporal evolution across days, months,
seasons, or years. However, exploring these dynamic changes
within places is difficult for users as existing interfaces do not
explicitly connect the spatio-temporal content and display it
within a unifying context. For example, a virtual tourist wish-
ing to explore the dynamic events taking place over time in a
famous square can only see videos in isolation, and has no
easy tools to search within the space or time of the place.

Current mapping applications such as Google Maps link
videos geographically and provide ways to find videos taken
from the same place. However, they do not explicitly relate
the changes over space and time into a single view for easy
comparison, and users must watch videos in turn. State-of-
the-art research systems for video collection browsing, such
as Unstructured Video-based Rendering [2] and Videoscapes
[31], try to find visual links within videos that all observe the
same content either at the same time or across different times.
However, often the contents of a geotagged video collection
captured from the same place will not visually match because
the videos all look out from approximately the same spot —
we define these contents as ‘inside—out’. For instance, two
videos of a touristic vista might take in side-by-side views but
never intersect. Further, for many interesting places, it is im-
possible to ‘go around’ and we can only ‘look around’, such
as atop the Eiffel Tower. This forbids the application of ex-
isting vision-based matching systems which rely on cameras
in different positions which converge to a common scene —
we define these contents as ‘outside—in’ because the cam-
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eras surround the subject. As such, currently it is difficult to
structure, relate, and explore ‘inside—out’ video collections.

To solve this problem, we introduce Vidicontexts, a system
that embeds videos into the common context of a panoramic
frame of reference. Vidicontexts extends the focus+context
paradigm and enables the simultaneous visualization of indi-
vidual videos as multiple foci, and through the context allows
the exploration of how videos are spatially and temporally
related even though there might be no direct visual match
between them. This alleviates the difficulty of spatially and
temporally exploring ‘inside—out’ video collections.

To this end, we align geotagged video from mobile devices
to a panoramic context using orientation sensor data (if avail-
able) and time stamps. Omnidirectional panoramas exist for
many places from online street mapping platforms, and re-
cent work enables accurate pairing of geolocated images and
panoramas [16]. Further, panorama stitching is a common
easy-to-use application for mobile devices. These sources
provide readily available contexts for our video collections.

We explore the application of our interface on different dis-
play/input devices: a flat desktop display with a mouse in
both perspective and equirectangular projections, a tablet dis-
play with perspective projection driven by orientation sen-
sors, and a spherical display with joypad or tablet controls.
In a supplemental video, we demonstrate our system and the
possible spatio-temporal interactions on various datasets and
display types. We verify Vidicontexts utility with user studies
that measure the accuracy and time taken of spatio-temporal
video location tasks against existing systems. We also inves-
tigate the usability of Vidicontexts with two questionnaires,
and find it compares favorably to two existing systems.

Our contributions are:

1. A system for exploring and manipulating video collections
of places within panoramic contexts.

2. A demonstration of the flexibility of our representation
with interfaces for different display devices.

3. A study that quantifies the performance benefit of our tools
and assesses desirability and usability when compared to
existing systems.

RELATED WORK

Panoramic Imaging

Panoramas make an attractive context as they provide wide or
omni-directional views of an environment in a single image.
There are many established methods to construct panoramas,
including using special camera hardware or by stitching in-
dividual photographs [3, 5, 30] or videos [1]. Panoramas for
hundreds of thousands of places are available through map-
ping portals such as Google Street View or photography plat-
forms like Panoramio.

Omnidirectional panoramas can be rendered in a variety of
ways. Recent work [20] has explored the influence of vary-
ing projections on how users are able to locate scene objects.
Their work concludes that clear and understandable visualiza-
tion of the panorama is more important than accurate spatial
mapping to enable users to exploit the 360° content.

Spatio-temporal Media Exploration

Exploring large collections of unstructured images depicting
the same location can be sometimes difficult or cuambersome.
The research community has tried to solve this problem by
developing spatio-temporal photo visualization applications.
Photo Tourism [29, 28] is one example, as the program aims
to arrange and display a set of images in a 3D space so that
spatially-confined locations can be interactively navigated.
Similarly, the PhotoScope work of Wu et al. [32] extends the
standard photo browsing paradigm by visualizing spatial cov-
erage of construction site photos on a 2D map, and by index-
ing them with a combination of spatial coverage, time, and
content specifications.

RealityFlythrough [19] uses videos combined with GPS and
orientation data as its input. Videos are situated in a 3D rep-
resentation of the world, allowing the user to navigate freely
while continually transitioning to the most appropriate video
for the current view. The system provides the user with some
sense of how the videos relate to one another spatially, but no
further context is provided and only one video is ever played
back at the same time.

Unstructured video-based rendering [2] combines contempo-
raneous video streams of the same scene or performance,
and provides an intuitive 3D-aware interface to these videos.
It requires an image-based 3D reconstruction of the scene
from photographs beforehand. Tompkin et al. [31] intro-
duce Videoscapes to explore sparse unstructured video col-
lections. They build a graph of videos by visual similar-
ity, exploiting this graph to generate 3D reconstructions at
nodes, and then provide various different interfaces to ex-
plore this graph with seamless transitions. These works use
‘outside—in’ assumptions as mentioned earlier, and usually
only show the spatio-temporal changes when transitioning
between two videos at a time. Furthermore, they require sub-
stantial additional data, such as photos to reconstruct a geo-
metric background model or a graph of hundreds of videos. In
contrast to our ‘inside—out’ approach, without an enveloping
context they would fail to show videos taken from the same
place but with non-overlapping views of the scene.

Dale et al. [7] introduce a system for browsing multiple
videos with a common theme, such as the result of a search
query on a video sharing website or videos of an event cov-
ered by multiple cameras. This browsing companion en-
hances a primary video by showing thumbnails of other tem-
porally synchronized video clips.

Spatially-enabled exploration of single videos in isolation has
also been researched. Hermans et al. [12] visualize a single
tripod video as a single augmented panoramic video. Dy-
namic foreground and background objects are segmented and
decoupled to re-time motions in the original video footage.
Pongnumkul et al. [26] introduce a map-based storyboard
system that presents a single tour video with different coher-
ent shots at different locations pinned to a map.

Focus+context and Video+context Applications.
Focus+context systems show a subset of information in full
detail within a wider context of surrounding lower-density de-
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Figure 2: The Vidicontexts interface. Different months of the fall season — rainy October, cloudy skies at twilight in November,
snow in December — and dynamic objects are added to the summer scene context.

tail [6]. CamBlend by Norris et al. [23] extends focus+context
interfaces to apply to panoramic video collaboration tools.
A smaller focus window is moved around within a larger
panoramic video to identify objects to viewers of the scene.

Neumann et al. [22] introduced ‘live’ augmented virtual en-
vironments, where video from static surveillance cameras is
projected onto geometric models from LIDAR data of a city.
Follow up work attempts live painting of the bare geometry
environment with texture from video from a mobile observer
[13]. de Haan et al. [8] overlay static security video feeds
onto geometric models for virtual first-person viewing. Kim
et al. [15] propose methods for augmenting aerial visualiza-
tions of Earth with dynamic video information. However,
the natures of the data (aerial looking down vs. our many
inside—out overlapping videos) dictate different and novel
interaction tools. Moreover, the interactions in their work are
speculative, while we demonstrate significant improvements
in studies. These methods were extended to provide auto-
matic camera control for tracking dynamic objects in virtual
environments that have been augmented using multiple sparse
static video feeds [27]. De Camp et al. [9] map an indoor en-
vironment spatially top down, where each room is covered by
one omnidirectional camera feed.

Pece et al. [24] present a teleconferencing system with smart-
phone cameras to create a surround representation of meeting
places. Live videos from smartphones is inserted into a static
panorama using marker- and image-based tracking. However,
this result is not used to develop a system for exploring the
space and time of a video collection.

Similar to our work, Pirk et al. [25] enhance panoramas with
embedded videos to create a new interactive medium. Videos
are captured from tripods at the same time as the panorama is
captured. Our paper creates and evaluates an interface for
spatio-temporal visualization and interaction within video-

collection+contexts, using heterogeneous hand-held videos
captured at different times than the panorama, whereas their
paper focuses on seamlessly blending videos into a panorama
using hand-segmented dynamic objects.

VIDICONTEXTS SYSTEM

Vidicontexts' (Fig. 2) takes as input a panoramic image and
a collection of videos with time stamps, GPS data, and orien-
tation sensor data. We first track and align all videos within
the panorama, which yields a sequence of homographies for
each video. Next, we build a spatio-temporal video index
for exploration. Finally, we provide an interface to explore
the collection of videos within their panoramic context. In
general, any task that requires spatial or temporal reasoning
would benefit from our system. A user might browse a col-
lection of videos to locate object in space/time, follow videos,
infer temporal changes, highlight captured regions, filter and
isolate video instances that belong to a particular time span
or spatial bounds; broadly, relate videos within a collection.
Sport, museum, cultural sites, social events, surveillance, and
tourist videos could be browsed and analysed.

Capture and Context

Our panoramic contexts can come from online repositories
such as Google Street View, panoramic cameras, and DSLR
stitches, or from user-assisted tools included in many mobile
devices. Although any suitable source could be used, to create
the material for the demonstrations in this paper we use Mi-
crosoft Photosynth on smartphones and Microsoft Research’s
ICE for stitching photos from a DSLR. Next, we captured
several example video collections ourselves from roughly the
same location as the panoramas, returning to the same lo-
cations over time. We used Samsung Galaxy II and HTC
OneX smartphones to capture both video, GPS location, and
orientation data (from integrated accelerometer, gyroscope,

Uhttp://gvv.mpi-inf.mpg.de/projects/Vidicontexts/
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(a) Spherical projection (b) Localization with sensor data

(c) Feature-based alignment

(d) Panorama composition

Figure 3: (a) Videos a projected into a spherical coordinate system and (b) localized using orientation sensor data. Within this
localization, SIFT features are extracted and robustly matched to estimate an alignment (c) for compositing (d).

and magnetometer sensors via the Android API). This cam-
era orientation estimate provides an initial registration to the
panoramic context. For online panoramas, pairing geotagged
videos to geotagged panoramas can be difficult when GPS
data is inaccurate. We assume existing work picks the closest
geographical panorama from an online repository [16].

Video Alignment

Orientation data provides only approximate video alignment
to the context. Accurate spatial localization is made difficult
by a) hand-held video capture with jitter; b) time changes be-
tween context and videos, causing lighting changes, static and
dynamic object changes, and broad scene appearance changes
from seasonal variation; and c¢) the computational cost of
alignment traded-off against the need to handle collections of
videos. Despite variations in capture pose, we assume that the
spherical panorama is a good proxy geometry for the scene,
and we align the video frames to the spherical panorama us-
ing sensor- and feature-based image alignment (Fig. 3).

Spherical Projection:

We transform perspective videos into spherical projection
with focal length metadata and pitch and roll orientation data
from our smartphones [3]. If the focal length, pitch, and roll
estimates are accurate, and if there is no parallax, then the
spherically transformed video frames would be related to the
equirectangular panorama by a translational model; however,
due to errors in these estimates, we allow more freedom in
the alignment transformation by using a homography model.

Feature Extraction:

We extract SIFT features [18] from the spherically-warped
video frames and from the panorama. As feature extraction is
a frame-independent task, we parallelize it.

Sensor-data based Localization:

We localize video frames approximately within the panorama
using orientation data. Given this, we only match panorama
features to video features within a bounding box 20% larger
than the approximate localization. This reduces matching
time and false matches significantly. For videos with no meta-
data or sensor readings, we perform an initial robust feature-
based match between the panorama and the video to discover
approximately the focal length, pitch, and roll angles.

Homography Estimation:

With 4 or more matches between frames and panorama, we
can estimate a homography between each video frame and the
panorama using the gold standard algorithm [11]. For further

refinement, we use the estimated homography to find inliers
from the initial set of matches and re-estimate the homogra-
phy using inliers only [10]. This refinement step is repeated
for three iterations in our experiments. As we have a strong
expectation for a translation transformation, we perform con-
servative homography outlier rejection and remove homogra-
phies that are not projective or that have a large skew factor.

Estimation of Missing Homographies:

With outlier rejection, it is possible that no good homography
is found for short sequences of frames. We approximate these
missing homographies: with a neighboring valid homography
as a starting point, we accumulate sensor orientation changes
until we find a valid homography end point, and then integrate
the resulting error over the length of the missing sequence.

Temporal Filtering:

Since frame homographies are estimated independently, some
temporal jitter remains due to small but independent align-
ment errors. We bilaterally filter the frame corner positions
over 30 frames in time to reduce temporal jitter. We modu-
late the contribution of each filter window position (temporal
weight) by the image-space Euclidean distance from the cen-
ter window position (range weight).

The solution we provide to the alignment problem in our sys-
tem is not the final word as this is a hard problem in its own.
Please see our supplemental material for implementation de-
tails of our alignment approach.

Spatio-temporal Index

With video alignment, we can construct a spatio-temporal in-
dex of where and when each video intersects the context. We
iterate through each video and intersect its per-frame bounds
against a grid of cells which cover the panorama. The choice
of grid resolution depends on the size of the dataset and mem-
ory constraints. We set the cell resolution of this index to be
~ 100 x 50 cells, which gives a moderate 40 pixel spatial pre-
cision across the panoramic context. Each grid cell stores the
spans of frames per video which intersect it.

The spatio-temporal index can be visualized in many ways
depending on the application. We choose to render the index
with a gradient such as a heat map (Fig. 4). With this, users
can see which regions of the context held the most ‘atten-
tion” among the videos, and our spatio-temporal interaction
tools then allow these videos to be found quickly. Select-
ing individual videos shows a per-video index which defines
the spatial extent of the video. Heat maps for specific index



Figure 4: The spatio-temporal index displayed as a heat map
to show attention over the context. This index allows quick
spatio-temporal search and filtering of the video collection.
This is computed globally (top) and per-video (bottom).

queries can be generated, e.g., video attention for a historic
time span. Other visualizations would be possible, such as
altering the saturation of the panoramic context locally for
when it is important not to overlay further graphics onto the
scene, or by displaying the path of the video by rendering a
line joining the center-most grid cells along the path. Arrows
on the line can show the progression of time, and color with
a gradient can show where the video lingers.

Interface and Interaction

The Vidicontexts interface (Fig. 2) presents the context in ei-
ther look-around perspective projection or as a full equirect-
angular map projection with an infinitely-rotating canvas.
The user is free to pan, zoom, and smoothly switch be-
tween perspectives. Videos can be visually followed, or
the context can be locked to follow individual videos. We
also provide standard video playback controls. Our vidthieo-
collection+context interface becomes more interesting as we
provide tools for spatio-temporal interactions.

Temporally-driven Interactions

Each video has its own local timeline which appears when
the video is selected. Unlike a normal video player, adjusting
the timeline affects both the dynamic content within the video
and the spatial position of the video in the context, and this
provides a quick way to check the spatial extent of a video.
This enables new applications: by adjusting the timelines of
different videos and by setting A—B loop markers, the user
can compose a novel arrangement of the videos within the
context to highlight spatio-temporal changes.

As we have timestamps for each video, we also show a global
timeline which displays the temporal extent of the video col-
lection. Adjusting the ends of the timeline filters the video
collection, for instance, to isolate videos from a particular day
or month. The global timeline slider synchronously adjusts
the playback of all videos in the collection, and allows the vi-
sualization of events which share the same time but otherwise
have no visual overlap (Fig. 5). Such relations are difficult to
explore when the videos are seen out of context. If multi-
ple panoramas captured from the same position are available

. . Drag )
Global timeline: ——— . — i

Figure 5: The global timeline allows control over all videos at
once and enforces temporal ordering. Here, two contempora-
neously captured videos which never intersect are displayed
synchronously and in context, allowing easy identification of
the movements of a man (red).

and timestamped, then the global slider also switches between
them. This shows temporal changes in the context: for in-
stance, in the seasons or in the built environment.

Spatially-driven Interactions

Temporal scrubbing has a spatial equivalent: By dragging the
mouse over the panoramic context, the user can spatially drag
individual videos or all videos at once, providing a fast way
to localize many videos at once. As videos aren’t guaranteed
to visit all locations in space, they scrub to their nearest posi-
tion. The extents of each video individually and of all videos
combined can be shown by visualizing the spatio-temporal
index (Fig. 4), and this helps guide spatial exploration.

We also provide area-based spatio-temporal filtering (Fig. 6).
By dragging a box over the context to describe a region of
interest, the user queries the spatio-temporal index for se-
quences of frames which intersect the region. This is a very
fast way to ‘collage’ an area of the context with video.

EVALUATION

As this paper describes a time-varying interactive system, we
refer the reader to our supplemental video for our interface
demonstration. Thus, this section describes performance and
timings for the preprocessing and viewer, then describes our
quantitative and qualitative interface evaluation to gauge both
the improvement over existing interfaces for tasks and the de-
sirability and usability of our interface. For all results shown
in both the paper and the supplemental video, we captured
our own datasets to jointly capture orientation data.

Performance timings

We process videos independently and, as feature extraction
is frame independent, our technique is embarrassingly par-
allel. Video alignment was computed on an Intel Xeon 8
core 2.40GHz PC; see Table 1 for computation times. All
panoramas are 4000x2000 pixels, and all video frames are



Figure 6: The spatio-temporal index makes searching simple.
The user draws a bounding box over the region of interest, and
our interface lays out all intersecting videos. The dynamic
objects such as the red bus bring the scene to life.

Dataset # Videos # Frames Alignment Index
College grounds 15 30,426  6hr 10min  40sec
Castle vista 9 17,460 3hr 33min 25sec
New courtyard 11 21,518 4hr 26min  30sec
Neo-classical quad 20 26,635 6hr 16min 55sec
Indoor hallway 6 4,152 36min 16sec

Table 1: Computation times for alignment and spatio-
temporal indexing (100x50 cells) for our datasets.

1920%x 1080 pixels. Our alignment code is written in MAT-
LAB and C++, though GPU-accelerated matching algorithms
may speed this up. The computation time for the spatio-
temporal indices is also included in this table, and this per-
formance scales linearly with the total number of cells.

The computational performance of our interface is defined by
the number of videos visible. The rendering cost is minimal
as we need only apply a homography to a pre-warped video
and its feathered matte; however, the video decompression
cost is large. Our implementation supports approximately 3
1080p HD videos at framerate at once. To cope with more
videos, we store a reduced resolution version at a quarter
scale, and only switch to full resolution if the user zooms
in. While modern CPUs contain hardware to decompress 5+
videos at once, it is difficult to use this as our video format
must support fast and exact seeking.

User Study

Design

Vidicontexts facilitates spatio-temporal exploration and com-
parison within video collections. While this is straightfor-
ward to understand and demonstrate, measuring whether our
system provides significant benefits over existing video col-
lection interfaces is non-trivial. Therefore, to evaluate Vidi-
contexts, we conduct a user study with two tasks that re-

quire participants to infer spatial and temporal information
from a video collection. We compare Vidicontexts with
iMovie, which offers a chronological browsing window and
a resizeable timeline for fast preview, and against iMovie
with the panoramic context image available for reference
(iMovie+pano henceforth). Please see the supplemental doc-
ument for further explanation of these two interfaces.

Tasks chosen to measure performance should represent gen-
eral actions performed regularly by users. Common actions
while exploring a place include looking for objects/actions
in space and in time, following dynamic events within the
place, and identifying when changes happen within specific
times or areas of the place. As such, we select two tasks that
involve counting and tracking events, in our case the comings
and goings of people, within several videos. These tasks offer
two reliable metrics which a) mimic common tasks performed
when browsing a video collection, and b) can be extended to
multiple system interfaces for comparison. In addition, we
exclude possible tasks which would be trivial with one in-
terface over another (e.g., in our interface, to find all videos
which intersect part of the panorama). The resulting tasks are
exemplars for real interactions which allow us to assess differ-
ent systems and validate spatial and temporal understanding.

We wish to assess the accuracy with which participants can
correctly obtain a spatial and temporal understanding of a
collection of videos. Hence, in both tasks, we measured the
completion time and accuracy expressed as errors in the peo-
ple counts. Following the experiment, participants completed
the standard System Usability Scale (SUS) questionnaire [4],
which gathers subjective assessments of usability, as well as
an additional questionnaire on the task experience (Tab. 3).

Tasks and Datasets

The people counting task requires participants to browse 20
videos from the neo-classical quad dataset (Fig. 4, 6) and
identify the number of different people who sit on a set of
benches. Videos differ in length and cover a large area of
the environment. As different videos could depict the same
person, or show a person sitting near the areas of interest, a
participant could potentially make 20 erroneous counts. The
maximum number of errors was manually counted.

The people tracking task asks participants to review 6 videos
from the new courtyard dataset (Fig. 5) and track the number
of different people who cross between two buildings. Here,
the videos never fully track a person and do not overlap, so
multiple synchronous videos must be analyzed to obtain the
correct result. Videos differ in length, but they all cover a sim-
ilar area of the environment. A participant could potentially
make 12 erroneous counts (again manually counted).

Data Collection and Participants Selection

30 participants from the staff and student population at our
university performed both tasks using one system each for
a between-subjects design for the system independent con-
dition, and a within-subjects design for the task. While we
did not filter the study population for handedness and eye-
sight, we ensure gender balance was respected. Additionally,
the participants were randomly assigned one of the three sys-



Condition People Counting People Tracking

Error Time Error Time

iMovie vs. +pano  0.958 0.916 0.968 0.898
iMovie vs. Ours 0.040 0.017 0.049 0.014
+pano vs. Ours 0.107 0.023 0.012  0.005

Table 2: Significance (p-values) for each task and condition
combination for both error and time to complete. Green val-
ues are statistically significant (& = 0.05).

tems, within which the order of the two tasks was alternated
to minimize the influence of learning effects. All subjects
were introduced to their assigned system and to the tasks, and
there was no mention of the overarching goal of the study.
All participants were familiar with editing in general, and all
received training with their system.

Procedure

Each participant performed two different tasks using the same
system, with no time limit. Participants could use all features
of each system, e.g., in iMovie and iMovie+pano, the built-in
video scrubbing and thumbnail expansion. Each participant
was given a detailed description of the system’s interface and
features, and as much time as they liked to familiarize before
the task. Each task was conducted in series, with a briefing
beforehand to explain the task. Following both tasks, the par-
ticipant completed two questionnaires.

Hypotheses

We expect accuracy to vary with the sophistication of the
spatio-temporal representation, and so we expect Vidicon-
texts to be more accurate. In turn, we expect iMovie+pano to
be more accurate than iMovie alone. For completion time, we
expect performance to vary according to the spatio-temporal
controls available, and so we expect our system to require the
least time. We expect all three conditions to score above av-
erage (75%) on the SUS. Finally, we expect Vidicontexts to
obtain the highest score for the task-related questionnaire as
we believe this is directly related to task performance.

Results

We provide a summary of our results here and in Figure 7,
where box and whisker plots are reported for the completion
time, the number of errors committed, and the significance
for each task and condition combination; in the supplemental
material we provide a full analysis description. We computed
Analysis of Variance (ANOVA) using SPSS with the system
used as the single factor and completion time/counting error
as the dependent variable, with post-hoc Games-Howell tests
for pairwise significance tests (@ = 0.05). Table 2 shows the
significances of all compared systems. There was no signif-
icant difference between the iMovie and the iMovie+pano
cases across all our experiments. When comparing iMovie
against Vidicontexts, we see significant error reductions and
significant time benefits for both counting and tracking tasks.
One anomalous result is that our system is not significantly
less eroneous than iMovie+pano in the counting case, though
there are large differences between mean and std. dev. values.

Task-related question iMovie +pano Ours

Easy to complete tasks 23 2.6 4
Understood video orientation in space 3.5 3.9 4.7
Understood relative video position 3 3.8 4.4
Understood space-time video overlap 2.8 3.8 43
Understood temporal order of videos 1.5 2.1 34
Environment representation confused 32 35 1.7
System has enough functions for tasks 3 25 44
#videos made remembering things hard 3.9 4.2 2.6
Overall mean 2.375 2.62 3.86

Table 3: System mean scores for the task-related question-
naire. The response scale varies between 1 and 5. The scale
for negative questions was reversed for mean computation.

From the SUS questionnaire, only Vidicontexts scored above
the average (SUS = 77.5), followed by the iMovie+pano
(SUS = 62.75) and iMovie (SUS = 59.5) conditions. From
this, our system can be classified as a Rank B system [17],
whereas both iMovie and iMovie+panorama mode are Rank
C systems. From the task-related questionnaire, Vidicontexts
performed better than both iMovie and iMovie+pano condi-
tions, scoring a significantly higher mean score of M = 3.86.
Table 3 presents the mean score for each system and question.

DISCUSSION

User Study

For iMovie and iMovie+pano, user task strategy was to first
expand the video thumbnails timeline to obtain an idea of
where each video pointed, and then either to use the normal
playback tools or to scrub through the videos as thumbnails.
For the people tracking task, users played parts of the col-
lection several times before answering. One user in both the
iMovie and iMovie+pano conditions struggled to accomplish
the task at all, and generally participants from these two con-
ditions struggled more than participants from our condition.
For Vidicontexts, most participants used the local video time-
lines to accelerate video localization in the panorama. The
global timeline was frequently used by the participants in the
tracking task, but rarely used for the counting task. No users
struggled to complete the tasks with Vidicontexts.

In both tasks, Vidicontexts provided greater accuracy, and
this agrees with our initial hypothesis. Our spatio-temporal
representation combines necessary information to reduce task
complexity over iMovie, and this is confirmed by significant
error and time reductions. For instance, in the iMovie count-
ing task, users need to spatially locate the video before count-
ing people as only particular regions are of interest. In Vidi-
contexts, the user need only count people as the video is al-
ready spatially located. This reduction in complexity allows
the user to perform only the task essential action.

Analysing the user task strategy confirms this explanation: In
the counting task, for iMovie and iMovie+pano, users first ex-
panded the video thumbnails timeline to spatially locate each
video in turn, and then either used normal playback tools or
scrubbed through the videos as thumbnails to count people.
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considered statistically similar.

For Vidicontexts, participants could exploit the spatial align-
ment and only needed to search in time. Here, most used the
local video timeline tool.

The people tracking task requires temporal and spatial align-
ment, and this increased cognitive load presented a challenge
to users. In both iMovie conditions, users had to replay parts
of the collection several times before answering. One user in
both iMovie conditions struggled to accomplish the task at all,
and generally participants from these two conditions strug-
gled more than participants from our condition. For Vidicon-
texts, the global timeline maintains temporal alignment, and
so this was frequently used by the participants in this task.
No users struggled to complete the tasks with our system: the
context representation combines necessary information and
reduces task complexity.

Users were quick to familiarize with the new Vidicontexts
system as video information is presented in a similar way to
real life environments. This can help explain why users re-
sponse to our system was also positive in terms of usability
and desirability, as suggested by the much higher question-
naire scores for our interface than for the iMovie conditions.
The individual questions reveal that participants considered
our system the best tool to convey spatial and temporal in-
formation within the video collection, that they perceived our
representation as less confusing, and that they thought our
tools were more useful for exploration tasks. Additionally,
participants agreed that, for tens of videos, our system im-
proved recall; though we must not extrapolate this result to
larger numbers of videos.

Finally, we observed a general trend in the preferred
panorama projection. To complete the tasks, 80% of the pop-
ulation assigned to our system used equirectangular projec-
tion. This finding, in accordance with recent work by Mul-
loni et al. [20], shows that participants thought the 360°-at-
once projection conferred more spatio-temporal information
than the geometrically-correct perspective projection. We as-
sume that users did not want to be constrained to a limited
field-of-view for localization tasks.

Display applications

The video-collection+context representation fits display and
interaction devices beyond desktop environments, such as
tablets, spherical displays, and head-mounted displays such
as Oculus Rift. These devices map the panorama to both vir-
tual and real spatially-located spheres. Mobile devices natu-
rally respect the geometry of ‘inside—out’ video collections,
with a display that can respond to rotation and head move-
ments (similar to [14]). With spherical displays, our context
is displayed on a physical sphere in tandem with comple-
mentary joypad or tablet controller interfaces (Fig. 8, bottom
row). Further, using contexts to join video collections has ap-
plications in augmented reality, especially when coupled with
wearable computing devices such as Google Glass. Please see
our supplemental material for detailed descriptions, and our
supplemental video for demonstrations. Different displays
provide different real and virtual geometries, and this might
impact how users relate to and perform with the panoramic
context. We leave this broad study for future work.

Use cases

Vidicontexts has many applications, including virtual
tourism, surveillance, and shared browsing of an event. For
example, sifting through footage and looking at patterns of
behaviors over time within a place for a surveillance review;
or, comparing and contrasting past events in a square, such as
protesters contrasted against performers and musicians.

One particularly interesting example builds upon Naimark’s
Time Binoculars idea [21]: similar to the coin-operated
binoculars common at vistas, a viewfinder allows users to
“look around an actual site and see aligned augmentations of
what they see, such as different times of day or different sea-
sons, or historical views, or full-out Hollywood-style reen-
actments”. Vidicontexts removes the need for fixed apparatus
for these examples, and instead we imagine a smartphone or
tablet app which guides users to spatial hotspots via GPS,
from which they can use their mobile device as a viewfinder
to explore the ‘augmentations’, or record new footage to add
to the collection. For instance, a heritage site could create
content especially for these experiences, such as re-enacted



Figure 8: Additional displays and interactions. Left: Spherical display with a joypad controlling a cursor. Center: A tablet acting
as a proxy controller, where the spherical display mirrors the context of the tablet. Right: Tablet display in situ, showing a protest
that no longer exist in the real environment.

druidic rituals at Stonehenge; or a city could collate videos
into a walking tour, say, London in 2012, re-viewing royal
wedding, diamond jubilee, and Olympic events.

Limitations

While panoramas are available for many locations in the
world, and simple tools on smartphones make panorama cap-
ture easy, Vidicontexts still requires a panorama as we regis-
ter each video individually to the panorama. With only sensor
orientation data, videos could still be coarsely aligned within
an empty context, though existing videos rarely have embed-
ded orientation data. Future work could explore stitching
videos to each other to build a context. Further, even with
a panorama, Vidicontexts will fail if large changes have oc-
curred in the environment between the panorama and videos.
For instance, many historical videos may only partially match
the environment as building development is likely to have oc-
curred. Here, we would have to rely on inter-video homogra-
phy estimation for times in the video which do not match the
panorama, anchored between times which do match. With no
visual similarity at all, again we could only rely on captured
orientation data.

In this work, we show panoramic contexts and, with in-situ
browsing, we show real world contexts; however, other poten-
tial contexts exist. One alternative is 3D geometry from laser
scans, but these are not readily available. Another alternative
is 3D geometry reconstructed from images online. However,
often these techniques are brittle with small baselines and are
generally less applicable. In contrast, panoramas are widely
available and easy to capture, and so our panoramic approach
is applicable to more varied places.

Many errors can affect the quality of video alignment to the
context, including failures and artifacts in panorama stitching,
incorrect or badly synchronized sensor data and camera meta-
data, large deviations from the proxy geometry assumption,
large dynamic objects, and large static changes. The problem
of temporally consistent video alignment is difficult even for
state-of-the-art vision systems, and improving this is impor-
tant future work. However, we posit that this improvement
would cause a relatively small functional improvement in our
interface, and instead we try to show that a useful and wanted
system is still possible under these conditions. Further, while
orientation sensor data can be bad, it does provide a fall-

back for cases where visual alignment will have difficulty,
and modern smartphones produce fittings from sensor data
that are acceptable for many video-collection+context appli-
cations (we show one such case in our supplemental video).

With dynamic object segmentation masks, we could build
a second spatio-temporal index for manipulating dynamic
content directly in a similar way — scrubbing, filtering, and
searching — and this would increase the functionality of our
interface. Dynamic objects from different videos could be
composited into the same context, and index look-ups would
create synopses where space-time is compressed to be only
those instances and positions where dynamics occur. As seg-
mentation is a hard vision problem, existing work performs
this manually for small numbers of short videos [25], but this
approach is infeasible for video collections.

Providing context with panoramas is a special case of the
larger problem of aligning videos to a 3D virtual world. As
such, we impose strict limitations on the source data and so
bypass many problems that come with more difficult data.
Our examples and experiment do not use real data from com-
munity video websites, and many challenges remain to pro-
vide context for these varied collections. Our work demon-
strates the promise of video-collection+context techniques in
general, and produces a system with immediate benefits over
existing video collection exploration software for limited sub-
sets of videos. Overall, we feel that our approach is suffi-
ciently practical for the described use cases in online mapping
and tourism to be applicable immediately.

CONCLUSION

Vidicontexts is a system for interacting with an ‘inside—out’
video collection within a panoramic context. We capture
panoramas and videos with handheld smartphones, and vi-
sually embed the videos into the panorama. With a spatio-
temporal index of the scene, we create novel interface tools
to quickly search and filter the video collection. We extend
our system for tablet devices with physical rotation and zoom,
in situ with real world contexts, and to spherical displays. We
conduct a task-based study to compare with existing systems:
we find that Vidicontexts provides significant benefits to ac-
curacy and time taken in localization tasks, that it is preferred
both by SUS and for our tasks, and that it would be used fre-
quently and recommended to friends/colleagues if deployed.
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