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**SUPPLEMENTAL DOCUMENT**
Here we present additional qualitative results of our approach, abla-
tion studies of design variations of SelecSLS architecture, further
ablation studies of our proposed pose representation, and additional
details about Stage III of our system. Refer to the main manuscript,
the accompanying video, and the project website (http://gvv.mpi-
inf.mpg.de/projects/XNect/) for further details and results.

1 SELECSLS NET DESIGN EVALUATION
Figure 1 shows variants of the overall architecture of the proposed
SelecSLS Net that were considered. The architecture is parameterized
by the type of module (SelecSLS concatenation-skip CS vs addition-
skipAS), the stride of the module (s), the intermediate features in the
module (k), cross-module skip connectivity (previousmodule or first
module in the level), and number of outputs of the module (no (B)ase
case). With the aim to promote information flow in the network,
we also consider (W)ider no at transitions in spatial resolution. All
3 × 3 convolutions with more than 96 outputs use a group size of 2,
and those with more than 192 outputs use a group size of 4.

We experimentally determine the best network design by testing
the Stage I network with a SelecSLS Net core on 2D multi-person
pose estimation, i.e., only using the 2D branch, which plays an
integral role in the overall pipeline. Our conclusions transfer to the
full Stage I network, as further evidenced in Section 7.4 in the main
manuscript.

As mentioned in Section 6.2 in the main manuscript, and shown in
Table 1, for GPU-based deployment ResNet architectures provide a
better or comparable speed–accuracy tradeoff to various parameter-
efficient depthwise-convolution based designs. Thus, we compare
against ResNet-50 and ResNet-34 architectures as core networks
to establish the appropriate baselines. For ResNet, we keep the
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Table 1. Evaluation of possible baseline architecture choices for the core
network. The networks are trained on MPI [2014] and LSP [2010; 2011]
single person 2D pose datasets, and evaluated on LSP testset. The inference
speed ratios are with respect to ResNet-50 forward pass time for 320 × 320
pixel images on an NVIDIA K80 GPU, using [Jolibrain Caffe Fork 2018] with
optimized depthwise convolution implementation.

Core Network PCK FP Speed Ratio
MobileNetV2 1.0x [2018] 85 1.78
MobileNetV2 1.3x [2018] 86 1.51
Xception [2017] 81 0.67
InceptionV3 [2016] 88 0.96
ResNet-34 [2016] 89 1.27
ResNet-50 [2016] 89 1.00

network until the first residual module in level-5 and remove striding
from level-5. We evaluate on a held-out 1000 frame subset of the
MS-COCO validation set, and report the Average Precision (AP)
and Recall (AR), as well as inference time on different hardware
in Table 2. Using the AS module with Prev connectivity and no (B)
outputs for modules, the performance as well as the inference time
on an Nvidia K80 GPU is close to that of ResNet-34. Using CS instead
of addition-skip significantly improves the average precision from
47.0 to 47.6, and the average recall from 51.7 to 52.6. Switching
the number of module outputs to the wider no (W) scheme leads to
further improvement in AP and AR, at a slight increase in inference
time. Using First connectivity further improves performance, namely
to 48.6 AP and 53.3 AR, reaching close to ResNet-50 in AP (48.8) and
performing slightly better with regard to AR (53.2). Still our new
design has a 1.4-1.8× faster inference time across all devices. We
also evaluate the publicly available model of [Cao et al. 2017] on the
same validation subset. Their multi-stage network is 11 percentage
points better on AP and AR than our network, at the price of being
10 − 20× slower. The follow-up versions [Cao et al. 2019] are ≈ 2×
faster on the GPU and ≈ 5× slower on the CPU, and 4−5 percentage
points better on AP than the original ([Cao et al. 2017]), though
it still remains 5× slower than our network on a GPU, and ≈ 80×
slower than our network on a CPU.

Thus, of the different possible designs of the SelecSLS module, and
the inter-module skip connectivity choices, the best design for Selec-
SLS Net is the one with concatenation-skip modules, cross-module
skip connectivity to the first module in the level, and no (W) scheme
for module outputs. Refer to Section 7.4 in the main manuscript
for further comparisons of our architecture against ResNet-50 and
ResNet-34 baselines on single-person and multi-person 3D pose
benchmarks.
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Fig. 1. Variants of SelecSLS module design (a) and (b). Both share a common design comprised of interleaved 1 × 1 and 3 × 3 convolutions, with different
ways of handling cross-module skip connections internally: (a) as additive-skip connections, or (b) as concatenative-skip connections. The cross module skip
connections can themselves come either from the previous module (c) or from the first module which outputs features at a particular spatial resolution (d).
In addition to the different skip connectivity choices, our design is parameterized by module stride (s ), the number of intermediate features (k ), and the
number of module ouputs no . The table on the right shows the network levels, overall number of modules, number of intermediate features k , and the spatial
resolution of features of the network designs we evaluate in Section 1. The design choices evaluated are the type of module (additive skip AS vs concatenation
skip CS), the type of cross module skip connectivity (From previous module (Prev) or first module (First in the level), and the scheme for the number of outputs
of modules no ((B)ase or (W)ide).

Table 2. Evaluation of design decisions for first stage of our system. We
evaluate different core networks with the 2D pose branch on a subset of
validation frames of MS COCO dataset. Also reported are the forward pass
timings of the core network and the 2D pose branch on different GPUs (K80,
TitanX (Pascal)) as well as Xeon E5-1607 CPU on 512 × 320 pixel input. We
also evaluate the publicly available model of [Cao et al. 2017] on the same
subset of validation frames.

FP Time
Core Network K80 TitanX CPU AP AP0.5 AP0.75 AR AR0.5 AR0.75
ResNet-50 35.7ms 9.6ms 349ms 48.8 74.6 52.1 53.2 76.8 56.3
ResNet-34 25.7ms 5.7ms 269ms 46.4 72.7 47.3 51.3 75.2 52.8
Ours
Add-Skip Prev. (B) 24.5ms 6.5ms 167ms 47.0 73.4 49.7 51.7 75.6 54.5
Conc.-Skip Prev. (B) 24.3ms 6.3ms 172ms 47.6 73.3 50.7 52.6 76.1 55.6
Conc.-Skip Prev. (W) 25.0ms 6.7ms 184ms 48.3 74.4 51.1 52.9 76.5 55.7
Conc.-Skip First (W) 25.0ms 6.7ms 184ms 48.6 74.2 52.2 53.3 76.6 56.7

[Cao et al. 2017] 243ms 73.4ms 3660ms 58.0 79.5 62.9 62.1 81.2 66.5

Table 3. Results of SelecSLSNet on image classification on the ImageNet
dataset. The top-1 and top-5 accuracy on the Imagenet validation set is
shown, as well the maximum batch size of 224 × 224 pixel images that
can be run in inference mode on an Nvidia V100 16GB card, with FP16
compute. Also shown is the peak throughput obtained with each network,
and the batch size of peak throughput (in brackets). SelecSLSNet achieves
comparable performance to ResNet-50 [He et al. 2016], while being 1.3−1.4×
faster, and with a much smaller memory footprint.

Speed Maximum Accuracy
(Images / sec) Batch Size top-1 top-5

ResNet-50 2700 1200 (1024) 78.5 94.3
SelecSLSNet 3900 2000 (1800) 78.4 98.1

2 SELECSLSNET ON IMAGE CLASSIFICATION
To demonstrate the efficacy of our proposed architecture on tasks
beyond 2D and 3D body pose estimation, we train a variant of
SelecSLSNet on ImageNet [Russakovsky et al. 2015], a large scale
image classification dataset. The network architecture is shown in
Figure 2, and the results are shown in Table 3.

Fig. 2. For experiments on the image classification task on ImageNet [Rus-
sakovsky et al. 2015], we use the same core architecture design as Selec-
SLSNet for the multi-person task. Group convolutions are not used in the
core network for this task. Inplace of the ’2D Branch’ and ‘3D Branch’ de-
scribed in Fig. 2 in the main manuscript, we use a 5 layer network as the
classification head. As with the various 2D and 3D pose estimation tasks
described previously, the network matches the accuracy of ResNet-50 on
ImageNet as well, while being 1.3 − 1.4× faster.

3 ABLATION OF INPUT TO STAGE II
We evaluate variants of Stage II network taking different subsets
of outputs from Stage I as input. We compare the Stage II output,
without Stage III on MPI-INF-3DHP single person benchmark.On
the single person benchmark (Table 4), using only the 2D pose from
the 2D branch as input to Stage II, without having trained the 3D
branch for Stage I, results in a 3DPCK of 76.0. When using 2D pose
from a network with a 3D branch, trained additionally on MuCo-
3DHP dataset, we see a minor performance decrease to 75.5 3DPCK.
Though it comes with a performance improvement on challenging
pose classes such as ‘Sitting’ and ‘On The Floor’ which are under-
represrented in MSCOCO. Adding other components on top of
2D pose, such as the joint detection confidences Ck , and output
features from the 3D branch {lj ,k }

J
j=1 (as described in Section 4.1.2

in the main manuscript) leads to consistent improvement as more
components are subsequently used as input to Stage II. Using joint
detection confidences Ck with 2D pose increases the accuracy to
77.2 3DPCK, and incorporating 3D pose features {lj ,k }

J
j=1 increases
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Table 4. Evaluation of the impact of the different components from Stage I
that form the input to Stage II. The method is trained for multi-person pose
estimation and evaluated on the MPI-INF-3DHP [2017a] single person 3D
pose benchmark. The components evaluated are the 2D pose predictions
P 2D
k , the body joint confidences Ck , and the set of extracted 3D pose

encodings {lj ,k }
J
j=1. Metrics used are: 3D percentage of correct keypoints

(3DPCK, higher is better), area under the curve (AUC, higher is better) and
mean 3D joint position error (MJPE, lower is better). Also shown are the
results with channel-dense supervision of 3D pose encodings {lj ,k }

J
j=1, as

well as evaluation of Stage III output.

3DPCK
Stage II Stand On The Total
Input /Walk Sitt. Floor 3DPCK AUC
P2Dk (2D Branch Only) 86.4 76.3 44.9 76.0 42.1
P2Dk 79.8 78.4 58.5 75.5 41.3
P2Dk +Ck 85.9 79.4 58.7 77.2 42.2
P2Dk +Ck + {lj ,k }

J
j=1 88.4 85.8 70.7 82.8 45.3

Channel-Dense {lj ,k }
J
j=1 Supervision

P2Dk +Ck + {lj ,k }
J
j=1 87.0 83.6 61.5 80.1 43.3

the accuracy to 82.8 3DPCK, and both lead to improvements in AUC
and MPJPE as well as improvements for both simpler poses such as
upright ‘Standing/walking’ as well as more difficult poses such as
‘Sitting’ and ‘On the Floor’

This shows the limitations of 2D-3D ‘lifing’ approaches, and
demonstrates that incorporating additional information, such as
the joint detection confidences, and our proposed 3D pose encod-
ing that uses local kinematic context (channel-sparse supervision)
improve the pose performance, leads to significant improvements
in 3D pose accuracy.

4 SEQUENTIAL MOTION CAPTURE (STAGE III):
ADDITIONAL DETAILS

Absolute Height Calibration. As mentioned in the main document,
to allow more accurate camera relative localization, we can op-
tionally utilize the ground plane as reference geometry. First, we
determine the camera relative position of a person by shooting a
ray from the camera origin through the person’s foot detection
in 2D and computing its intersection with the ground plane. The
subject height, hk , is then the distance from the ground plane to the
intersection point of a virtual billboard placed at the determined
foot position and the view ray through the detected head position.
Because we want to capture dynamic motions such as jumping,
running, and partial (self-)occlusions, we cannot assume that the
ankle is visible and touches the ground at every frame. Instead, we
use this strategy only once when the person appears. As shown in
the accompanying video, such a height calibration strategy allows
reliable camera-relative localization of subjects in the scene even
when they are not in contact with the ground plane.

In practice, we compute intrinsic and extrinsic camera parameters
once prior to recording using checkerboard calibration. Other object-
free calibration approaches would be feasible alternatives [Yang and
Zhou 2018; Zanfir et al. 2018].

Inverse Kinematics Tracking Error Recovery: Since we use gradient
descent for optimizing the fitting energy, we can monitor the gradi-
ents of E3D and El im terms in E(θ1[t], · · · , θK [t]) to identify when
tracking has failed, either due to a failure to correctly match subjects
to tracks because of similar appearance and pose, or when the fitting
gets stuck in a local minimum. When the gradients associated with
these terms exceed a certain threshold for a subject for 30 frames,
the identity and pose track of the subject is re-initialized.

Fig. 3. Limitations: a)3D pose inaccuracy due to 2D pose limb confusion,
b),c) Person not detected due to neck occlusion and extreme occlusion,
d) Body orientation confusion due to occluded face e),f) Unreliable pose
estimates for poses drastically different from the training data.

5 MORE QUALITATIVE RESULTS
Limitations: Figure 3 shows visual examples of the limitations
of our approach, as discussed in Section 8 in the main manuscript.
Our system mispredicts when the underlying 2D pose prediction
mispredicts limb associations across subject. When the neck of
the subject is occluded, we treat the subject as not present, even
when the rest of the body is visible. This could be handled by using
multiple reference joints on the body, instead of just the neck. Also,
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Fig. 4. Live Interaction and Virtual Character Control: The temporally smooth joint angle predictions from Stage III can be readily employed for driving
virtual characters in real-time. The top shows our system driving virtual skeletons and characters in real-time with the captured motion. On the bottom, our
system is set up as a Kinect-like game controller, allowing subjects to interact with their virtual avatars live. Some images courtesy Boxing School Alexei
Frolov (https://youtu.be/dbuz9Q05bsM), and Music Express Magazine (https://youtu.be/kX6xMYlEwLA, https://youtu.be/lv-h4WNnw0g). Please refer to the
supplemental video for more results.

as our approach is a learning based approach, it mispredicts when
the presented pose is outside the training distribution.
Comparisons With Prior Work: Figure 5 shows visual com-

parisons of our approach to prior single-person and multi-person
approaches. Also refer to the accompanying video for further com-
parisons. Results of our real-time system are comparable or better
in quality than both, single-person and multi-person approaches,
many of which run at offline [Kanazawa et al. 2018, 2019; Mehta

et al. 2018; Moon et al. 2019] and interactive [Dabral et al. 2019;
Rogez et al. 2019] frame-rates. As shown in the video, the temporal
stability of our approach is comparable to real-time [Mehta et al.
2017b] and offline [Kanazawa et al. 2019] temporally consistent
single-person approaches. Our approach differs from much of re-
cent multi-person approaches in that ours is a bottom-up approach,
while others employ a top-down formulation [Dabral et al. 2019;
Moon et al. 2019; Rogez et al. 2017, 2019] inspired by work on object
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Fig. 5. Real-time 3D Pose approaches such as VNect [2017b] only work in single person scenarios, and not designed to be occlusion robust or to handle
other subjects in close proximity to the tracked subject. LCRNet++ [2019] is able to handle multi-person scenarios, but works at interactive frame rates,
and requires post processing to be able to fuse the multiple pose proposals generated per subject. The post-processing is not always successful at fusing all
proposals, leading to ghost predictions. The offline single-person approach HMMR [2019] uses 2D multi-person pose estimation as a pre-processing step and
is thus able to handle unoccluded subjects in multi-person scenes in a top-down way. However, the approach fails under occlusion, and the run-time scales
linearly with the number of subjects in the scene. The multi-person approach of [Mehta et al. 2018] jointly handles multiple subjects in the scene, however
shows failures in cases of inter-personal proximity. The multi-person approach of [Moon et al. 2019] works offline, and similar to LCRNet++ it often produces
spurious predictions due to the difficulty of filtering multiple proposals from top-down approaches. Here for our bottom-up approach (bottom), we show the
3D skeleton from Stage III reprojected on the image. Some images courtesy Music Express Magazine (https://youtu.be/kX6xMYlEwLA).

detection. Top-down approaches produce multiple predictions (pro-
posals) per subject in the scene, and require a post-processing step
to filter. Even when carefully tuned, this filtering step can either
suppress valid predictions (two subjects with similar poses in close
proximity) or fail to suppress invalid predictions (ghost predictions
where there is no subject in the scene).

Live Interaction and Character Control: Figure 4 shows addi-
tional examples of live character control with our real-time monocu-
lar motion capture approach. Also refer to the accompanying video
for more character control examples. Our system can act as a drop-
in replacement for typical depth sensing based game controllers,
allowing subjects to interact with their live avatars.
Diverse Pose and Scene Settings: Figure 6 shows the 3D cap-

ture results from our system (Stage III ) overlaid on input images
from diverse and challenging scenarios. See the accompanying video
for additional results. Our approach can handle a wide range of

poses, in a wide variety of scenes with different lighting conditions,
background, and person density.
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Fig. 6. Monocular 3D motion capture results from our full system (Stage III) on a wide variety of multi-person scenes, including Panoptic [2015] and
MuPoTS-3D [2018] datasets. Our approach handles challenging motions and poses, including interactions and cases of self-occlusion. Some images courtesy
KNG Music (https://youtu.be/_xCKmEhKQl4), 1MILLION TV (https://youtu.be/9HkVnFpmXAw), Indian dance world (https://youtu.be/PN6tRmj6xGU), 7
Minute Mornings (https://youtu.be/oVgG5ENXyVs), Crush Fitness (https://youtu.be/8qFwPKfllGI), Boxing School Alexei Frolov (https://youtu.be/dbuz9Q05bsM),
and Brave Entertainment (https://youtu.be/ZhuDSdmby8k). Please refer to the accompanying video for more results.
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