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Fig. 1. We propose a novel learning-based approach for the animation and reenactment of human actor videos. The top row shows some frames of the video
from which the source motion is extracted, and the bottom row shows the corresponding synthesized target person imagery reenacting the source motion.

We propose a method for generating video-realistic animations of real hu-
mans under user control. In contrast to conventional human character render-
ing, we do not require the availability of a production-quality photo-realistic
3D model of the human, but instead rely on a video sequence in conjunction
with a (medium-quality) controllable 3D template model of the person. With
that, our approach significantly reduces production cost compared to conven-
tional rendering approaches based on production-quality 3Dmodels, and can
also be used to realistically edit existing videos. Technically, this is achieved
by training a neural network that translates simple synthetic images of a
human character into realistic imagery. For training our networks, we first
track the 3D motion of the person in the video using the template model, and
subsequently generate a synthetically rendered version of the video. These
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images are then used to train a conditional generative adversarial network
that translates synthetic images of the 3D model into realistic imagery of
the human. We evaluate our method for the reenactment of another person
that is tracked in order to obtain the motion data, and show video results
generated from artist-designed skeleton motion. Our results outperform the
state-of-the-art in learning-based human image synthesis.
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1 INTRODUCTION
The creation of realistically rendered and controllable animations
of human characters is a crucial task in many computer graphics
applications. Virtual actors play a key role in games and visual ef-
fects, in telepresence, or in virtual and augmented reality. Today, the
plausible rendition of video-realistic characters—i.e., animations in-
distinguishable from a video of a human—under user control is also
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important in other domains, such as in simulation environments that
render training data of the human world for camera-based percep-
tion algorithms of autonomous systems and vehicles [Dosovitskiy
et al. 2017]. There, simulated characters can enact large corpora of
annotated real world scenes and actions, which would be hard to
actually capture in the real world. Also, training data for dangerous
situations, like a child running unexpectedly onto a street, cannot
be captured in reality, but such image data are crucial for training
of autonomous systems.
With established computer graphics modeling and rendering

tools, creating a photo-real virtual clone of a real human that is
indistinguishable from a video of the person is still a highly complex
and time consuming process. To achieve this goal, high quality
human shape and appearance models need to be hand-designed or
captured from real individuals with sophisticated scanners. Real
world motion and performance data needs to be artist-designed
or captured with dense camera arrays, and sophisticated global
illumination rendering methods are required to display animations
photo-realistically. In consequence, creation and rendering of a
video-realistic virtual human is highly time consuming.

We therefore propose a new efficient and lightweight approach to
capture and render video-realistic animations of real humans under
user control. At runtime it requires only a monocular color video
of a person as input (or any other motion source) that is then used
to control the animation of a reenacted video of a different actor.
In order to achieve this, we employ a learning-based approach that
renders realistic human images merely based on synthetic human
animations.
At the training stage, our method takes two short monocular

videos of a person as input, one in static posture, and one in general
motion. From the static posture video, a fully textured 3D surface
model of the actor with a rigged skeleton is reconstructed. This
character model is then used to capture the skeletal motion seen
in the motion video using (a modified version of) the monocular
human performance capture method of [Mehta et al. 2017b]. While
this captures the 3D pose and surface motion of the actor, there is
still a significant gap to the expected photo-realistic appearance of
the virtual character. Hence, we train a generative neural network
in an attempt to fill this gap. Specifically, based on the 3D character
model and the tracked motion data, we first render out different
image modalities of the animated character (color and depth images,
body part segmentations), which correspond to the image frames in
the motion video. Then, based on the so-created training data, we
train a conditional GAN to reconstruct photo-realistic imagery of
the motion video frames using our rendered images as conditioning
input.
During testing, we animate the virtual 3D character of the tar-

get subject with a user-defined motion sequence, which can stem
from an arbitrary source (e.g. motion capture (MoCap) data, artist-
designed animations, or videos of an actor), and then render the
color image, depth, and semantic masks for each frame of the output
video of the virtual character. Then, we pass the rendered condition-
ing images to the network and thus obtain photo-realistic video of
the same person performing the desired motion.

We emphasize that, compared to previous work that mapped face
model renderings to realistic face video (Deep Video Portraits [Kim

et al. 2018]), translating complete articulated character renderings to
video is a much more difficult problem due to more severe pose and
appearance changes and the so-resulting non-linearities and discon-
tinuities. Another difficulty is the inevitable imperfection in human
body tracking, which directly results in a misalignment between
the conditioning input and the ground truth image. Hence, estab-
lished image-to-image translation approaches like pix2pix [Isola
et al. 2017] and Deep Video Portraits are not directly applicable to full
human body performances. To alleviate these problems, we propose
a novel GAN architecture that is based on two main contributions:

(i) a part-based dense rendering of the model in RGB and depth
channel as conditioning images to better constrain the pose-
to-image translation problem and disambiguate highly artic-
ulated motions, and

(ii) an attentive discriminator network tailored to the charac-
ter translation task that enforces the network to pay more
attention to regions where the image quality is still low.

The proposed method allows us to reenact humans in video by using
driving motion data from arbitrary sources and to synthesize video-
realistic target videos. In our experiments, we show high quality
video reenactment and animation results on several challenging
sequences, and show clear improvements over most related previous
work.

2 RELATED WORK
We focus our discussion on the most related performance capture,
video-based rendering, and generative modeling approaches.

Video-based Characters and Free-viewpoint Video. Video-based
synthesis tries to close the gap between photo-realistic videos and
rendered controllable characters. First approaches were based on
reordering existing video clips [Schödl and Essa 2002; Schödl et al.
2000]. Recent techniques enable video-based characters [Casas et al.
2014; Li et al. 2017b; Volino et al. 2014; Xu et al. 2011] and free-
viewpoint video [Carranza et al. 2003; Collet et al. 2015a; Li et al.
2014; Zitnick et al. 2004] based on 3D proxies. Approaches for video-
based characters either use dynamically textured meshes and/or
image-based rendering techniques. Dynamic textures [Casas et al.
2014; Volino et al. 2014] can be computed by temporal registration
of multi-view footage in texture space. The result is fully control-
lable, but unfortunately the silhouettes of the person match the
coarse geometric proxy. The approach of Xu et al. [2011] synthe-
sizes plausible videos of a human actors with new body motions and
viewpoints. Synthesis is performed by finding a coherent sequence
of frames that matches the specified target motion and warping
these to the novel viewpoint. Li et al. [2017b] proposed an approach
for sparse photo-realistic animation based on a single RGBD sen-
sor. The approach uses model-guided texture synthesis based on
weighted low-rank matrix completion. Most approaches for video-
based characters require complex and controlled setups, have a high
runtime, or do not generalize to challenging motions. In contrast,
our approach is based on a single consumer-grade sensor, is efficient
and generalizes well.

Learned Image-to-image Translation. Many problems in computer
vision and graphics can be phrased as image-to-image mappings.
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Recently, many approaches employ convolutional neural networks
(CNNs) to learn the best mapping based on large training cor-
pora. Techniques can be categorized into (variational) auto-encoders
(VAEs) [Hinton and Salakhutdinov 2006; Kingma and Welling 2013],
autoregressive models (AMs) [Oord et al. 2016], and conditional gen-
erative adversarial networks (cGANs) [Goodfellow et al. 2014; Isola
et al. 2017; Mirza and Osindero 2014; Radford et al. 2016]. Encoder-
decoder architectures [Hinton and Salakhutdinov 2006] are often
used in combination with skip connections to enable feature prop-
agation on different scales. This is similar to U-Net [Ronneberger
et al. 2015]. CGANs [Isola et al. 2017; Mirza and Osindero 2014]
have obtained impressive results on a wide range of tasks. Recently,
high-resolution image generation has been demonstrated based on
cascaded refinement networks [Chen and Koltun 2017] and progres-
sively trained (conditional) GANs [Karras et al. 2018; Wang et al.
2018]. These approaches are trained in a supervised fashion based
on paired ground truth training corpora. One of the main challenges
is that paired corpora are often not available. Recent work on un-
paired training of conditional GANs [Choi et al. 2018; Liu et al. 2017;
Yi et al. 2017; Zhu et al. 2017] removes this requirement.

Generative Models for Humans. The graphics community has in-
vested significant effort into realistically modeling humans. Para-
metric models for individual body parts, such as faces [Blanz and
Vetter 1999; Li et al. 2017a], eyes [Bérard et al. 2014; Wood et al.
2016], teeth [Wu et al. 2016], hands [Romero et al. 2017], as well as
for the entire body [Anguelov et al. 2005; Loper et al. 2015] have
been proposed. Creating a complete photo-real clone of a human
based on such models is currently infeasible. Recently, generative
deep neural networks have been proposed to synthesize 2D imagery
of humans. Approaches that convert synthetic images into photo-
realistic imagery have been proposed for eyes [Shrivastava et al.
2017], hands [Mueller et al. 2017], and faces [Kim et al. 2018]. The
approach of Ganin et al. [2016] performs gaze manipulation based
on learned image-warping. In the context of entire human bodies,
Zhu et al. [2018] generate novel imagery of humans from different
view-points, but cannot control the pose. In addition, generative
models for novel pose synthesis [Balakrishnan et al. 2018; Ma et al.
2017; Siarohin et al. 2018] have been proposed. The input to such
networks are a source image, 2D joint detections, or a stick figure
skeleton, and the target pose. Balakrishnan et al. [2018] train their
network end-to-end on pairs of images that have been sampled from
action video footage. Similar to our method, they also use a target
body part-based representation as conditional input. However, their
body part images are computed by a spatial transformation in 2D,
while ours are obtained by rendering the 3D model animated by
the target pose. Therefore, our approach yields more plausible body
part images as the underlying geometry is correct. Ma et al. [2017]
combine pose-guided image formation with a refinement network
that is trained in an adversarial manner to obtain higher quality.
Siarohin et al. [2018] introduce deformable skip connections to bet-
ter deal with misalignments caused by pose differences. Lassner
et al. [2017] proposed a 2D generative model for clothing that is
conditioned on body shape and pose. Recently, a VAE for appear-
ance and pose generation [Esser et al. 2018] has been proposed
that enables training without requiring images of the same identity

with varying pose/appearance. In contrast to previous methods for
pose synthesis, our approach employs dense synthetic imagery for
conditioning and a novel adversarial loss that dynamically shifts its
attention to the regions with the highest photometric residual error.
This leads to higher quality results.

Human Performance Capture. The foundation for realistic video-
based characters is reliable and high-quality human performance
capture. The techniques used in professional production are based
on expensive photometric stereo [Vlasic et al. 2009] or multi-view
[Matusik et al. 2000; Starck and Hilton 2007; Waschbüsch et al. 2005]
reconstruction setups. At the heart of most approaches is a skeletal
motion prior [Gall et al. 2009; Liu et al. 2011; Vlasic et al. 2008], since
it allows to reduce the number of unknown pose parameters to a
minimum. A key for reliable tracking and automatic initialization of
performance capture methods is the incorporation of 2D [Pishchulin
et al. 2016; Wei et al. 2016] and 3D [Mehta et al. 2017a; Pavlakos et al.
2017; Zhou et al. 2016] joint detections of a pose estimation network
into the alignment objective. Hybrid methods [Elhayek et al. 2015;
Mehta et al. 2017b; Rosales and Sclaroff 2006] that rely on 2D as well
as 3D detections combine both of these constraints for higher quality.
High-quality reconstruction of human performances from two or
more cameras is enabled by model-based approaches [Cagniart
et al. 2010; De Aguiar et al. 2008; Wu et al. 2013]. Currently, the
approaches that obtain the highest accuracy are multi-view depth-
based systems, e.g., [Collet et al. 2015b; Dou et al. 2017, 2016; Wang
et al. 2016]. Driven by the demand of VR and AR applications, the
development of lightweight [Bogo et al. 2015, 2016; Helten et al.
2013; Yu et al. 2017; Zhang et al. 2014] solutions is an active area of
research and recently even monocular human performance capture
has been demonstrated [Xu et al. 2018].

3 METHOD
In this section we describe the technical details of our approach,
which is outlined in Fig. 2. The main idea is to train a neural net-
work that converts simple synthetic images of human body parts
to an image of a human character that exhibits natural image char-
acteristics such that the person appears (close to) photo-realistic.
The main motivation for our approach is as follows: Photo-realistic
rendering based on the conventional graphics pipeline requires
expensive high-quality 3D human character modeling and the sim-
ulation of complex global light transport. In contrast, it is relatively
simple and cheap to construct medium-quality synthetic human
imagery based on commodity 3D reconstructions and direct illumi-
nation models. In order to compensate for the lack of photo-realism
in such medium-quality images, we propose to train a generative
deep neural network to bridge this gap, such that the person looks
more realistic. In the following, we first describe the acquisition of
suitable training data, followed by an in-depth explanation of the
architecture of our Character-to-Image translation network.

3.1 Acquisition of the Training Corpus
In this section we describe how we acquire our training corpus.
Our training corpus consists of pairs of rendered conditioning in-
put images and the original image frames of a monocular training
video (cf. Fig. 2). The conditioning images that are used as input
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Fig. 2. Overview of our proposed approach for neural reenactment of human performances. Using a 3D character model of the target person, which is
reconstructed from static posture images, we obtain the training motion data from the monocular training video based on an extension of the method of
[Mehta et al. 2017b]. The motion data is then used to steer the 3D character model, from which we render color and depth body part images, which are fed
into our Character-to-Image translation network in order to produce video-realistic output frames. At test time, the source motion data is used to render the
conditional input (with the target 3D character model) in order to reenact the target human character. Note that the source motion can either come from a
tracked monocular video, or from any other motion source (e.g., user-defined motion, or MoCap data).

for the network comprise individual depth and color renderings of
six human body parts, i.e., head, torso, left arm, right arm, left leg
and right leg, and an empty background image. In the following we
describe how these images are obtained.

Data Acquisition. We capture our raw data using a Blackmagic
video camera. For each actor, we record a motion sequence of ap-
proximately 8 minutes (about 12k frames). Similar to most learning
based methods, our training data should resemble the distribution of
real-world observations. Therefore, for each subject, we collect the
training video such that it covers a typical range of general motions.

3D Character Model. Our method relies on a textured 3D tem-
plate mesh of the target subject, which we obtain by capturing
(around) 100 images of the target person in a static pose from dif-
ferent viewpoints, and then reconstructing a textured mesh using a
state-of-the-art photogrammetry software1. The images need to be
captured in such a way that a complete 3D reconstruction can be
obtained, which is achieved by using a hand-held camera and walk-
ing around the subject. Afterwards, the template is rigged with a
parameterized human skeleton model. More details on the template
reconstruction can be found in [Xu et al. 2018].

Conditioning Input Images. In order to obtain the conditioning
input images, we track the skeleton motion of the person in the
training video using the skeletal pose tracking method of [Mehta
et al. 2017b]. We extended this approach by a dense silhouette align-
ment constraint and a sparse feature alignment term based on a set
of detected facial landmarks [Saragih et al. 2011]. Both additional
terms lead to a better overlap of the model to the real-world data,
thus simplifying the image-to-image translation task and leading to
higher quality results. The output of the method is a sequence of

1Agisoft Photoscan, http://www.agisoft.com/

deformed meshes, all of them sharing the same topology (cf. Train-
ing/Source Motion Data in Fig. 2). We apply temporal smoothing
to the trajectories of all vertices based on a Gaussian filter (with a
standard deviation of 1 frame).
We then generate three different types of conditioning images

by rendering synthetic imagery of the mesh sequence using the 3D
character model, Specifically, we render (i) the textured mesh to
obtain the color image I, (ii) the depth imageD, and (iii) the binary
semantic body part masks {Mp | p ∈ {1, ..., 6}}. To render the
binary semantic body part masks, we manually labeled the 6 body
parts head, torso, left arm, right arm, left leg, right leg on the template
mesh, and then generated a binary mask for each individual body
part. Based on these masks, we extract the part-based color images
{Ip = I ⊙ Mp | p ∈ {1, ..., 6}} and the part-based depth images
{Dp = D ⊙ Mp | p ∈ {1, ..., 6}}, where ⊙ denotes the Hadamard
product. Finally, we generate the conditioning input images by
concatenating the 6 part-wise color images {Ip } and depth images
{Dp }, as well as the empty background image B, along the channel
axis (cf. Conditioning Input in Fig. 2), resulting in the input X. More
details are described in the supplementary material.

3.2 Character-to-Image Translation
In this section we describe our Character-to-Image translation net-
work (Fig. 3) in detail.

Motion transfer. In order to synthesize a video of the target person
mimicking the motion of the source person, we transfer the per-
frame skeletal pose parameters Psrc (comprising the global location,
global orientation and individual joint angles) from the source Ssrc
to the target Strgt, where S∗ denotes the skeleton model (compris-
ing the skeleton topology and the bone lengths) [Xu et al. 2018].
Afterwards, we animate the virtual character of the target person
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Fig. 3. An illustration of the architecture of our Character-to-Image translation network. Both the encoder and the decoder of the generator have 8 layers with
skip-connections between the same resolution levels. We use the gradient-reversal operation to reverse the sign of the gradients flowing into the generator
and the gradient-block operation to stop backpropagation from the downsampled error map to avoid a cheating path.

with the transferred poses and finally render the target character to
generate the conditioning images. We point out that we do not di-
rectly apply the source’s skeletal pose parametersPsrc to the target’s
skeleton Strgt due to two issues: on the one hand, this would require
that both skeletons have exactly the same structure, which may be
overly restrictive in practical applications. On the other hand, and
more importantly, differences in the rigging of the skeleton would
lead to incorrect poses. To address these issues, we estimate the
optimal pose P∗ of the target person for each frame by solving the
following inverse kinematics (IK) problem, which encourages that
(corresponding) keypoints on both skeletons, including the joints
and facial landmarks, match in 3D: s

P∗ = argmin
P

∑
k ∈K

����Jk (Ssrc,Psrc
)
− Jk

(
Φ(Strgt,Ssrc),P

) ����2
2 (1)

HereK denotes the number of keypoints on the skeleton, Jk (S∗,P∗)

is a function that computes the 3D position of the k-th keypoint
given a skeleton S∗ and a pose P∗, and the function Φ(Strgt,Ssrc)
returns the skeleton Strgt after each individual bone length of Strgt
has been rescaled to match Ssrc. To ensure that Strgt is globally at
a similar position as in the training corpus, we further translate
Strgt by a constant offset calculated with the root position of the
skeleton in the test sequence and training sequence. Note that this
IK step enables motion transfer between skeletons with different
structures, and thus allows us to use motion data from arbitrary
sources, such as artist designed motions or MoCap data, to drive
our target character.

Network Architecture. Our Character-to-Image translation net-
work (Fig. 3) consists of two competing networks, a conditional
generator network G and an attentive discriminator network D
based on the attention map Λ.
The purpose of the generator network G (cf. Generator Network

in Fig. 3) is to translate the input X, which comprises synthetic color
and depth renderings of 6 human body parts and the background
image, as described in Sec. 3.1, to a photo-realistic image G(X) of

the full character. Our generator network internally consists of an
encoder (cf. Encoder in Fig. 3) to compress the input into a low-
dimensional representation, and a decoder (cf. Decoder in Fig. 3) to
synthesize the photo-realistic image conditioned on the input char-
acter renderings. Each encoder layer comprises a 4 × 4 convolution
with stride 2, batch normalization and a leaky Rectified Linear Unit
(ReLU) activation. The decoder reverses the downsampling due to
the encoding process with a symmetric 4×4 deconvolution operator
with stride 2, which is fed into batch normalization, dropout and
ReLU layers. In order to ensure that the final output of the network,
i.e., the generated image (cf. Predicted Output Image in Fig. 3), is
normalized, we apply a hyperbolic tangent activation at the last
layer. In addition, skip connections [Ronneberger et al. 2015] and a
cascaded refinement strategy [Chen and Koltun 2017] are used in
the generator network to propagate high-frequency details through
the generator network. Both the input and output images are repre-
sented in a normalized color space, i.e., [−1,−1,−1] and [1, 1, 1] for
black and white respectively.
The input to our attentive discriminator network D is the con-

ditioning input X, and either the predicted output image G(X) or
the ground-truth image Y (cf. Fig. 3). The employed discriminator is
motivated by the PatchGAN classifier [Isola et al. 2017], which we
extend to incorporate an attention map to reweigh the classification
loss. For more details, please refer to Fig. 3.

Objective Function. In order to achieve high-fidelity character-to-
image translation, we base the objective on the expected value of
our attentive conditional GAN loss L and on the ℓ1-norm loss Lℓ1 :

min
G

max
D
EX,Y

[
L(G,D) + λLℓ1 (G)

]
. (2)

The ℓ1-distance of the synthesized image G(X) from the ground-
truth image Y is introduced so that the synthesized output is suffi-
ciently sharp while remaining close to the ground truth:

Lℓ1 (G) = ∥Y − G(X)∥1 . (3)
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Attentive Discriminator. One of the technical novelties of our ap-
proach is an attentive discriminator to guide the translation process.
As the attention map is used to reweight the discriminator loss,
it is downsampled to the resolution of the discriminator loss map.
Similar to the vanilla PatchGAN classifier [Isola et al. 2017], the
discriminator D predicts aWD ×HD map, in our case 30 × 30, where
each value represents the probability of the receptive patch for being
real, i.e., value 1means that the discriminator decides that the patch
is real, and the value 0 means it is fake. However, in contrast to the
PatchGAN approach that treats all patches equally, we introduce
the attention map Λ, which has the same spatial resolution as the
output of D, i.e.,WD × HD . Its purpose is to shift the focus of areas
that D relies on depending on some measure of importance, which
will be discussed below. For the GAN loss, the discriminator D is
trained to classify between real and fake images given the synthetic
character input X, while the generator G tries to fool the discrim-
inator network by sampling images from the distribution of real
examples:

L(G,D) =
∑(

Λ

∥Λ∥
⊙
(
logD(X,Y) + log

(
1−D(X,G(X)

) ) )
. (4)

Here, log is element-wise, by ∥Λ∥ we denote a scalar normalization
factor that sums over all entries of Λ, and the outer sum

∑
(·) sums

over allWD × HD elements due to the matrix-valued discriminator.
We have found that a good option for choosing the attention map

Λ is to use the model’s per-pixel ℓ1-norm loss after downsampling
it to the resolutionWD × HD . The idea behind this is to help G
and D focus on parts where G still produces low quality results.
For instance, G quickly learns to generate background (since, up
to shadows or interactions, it is almost fixed throughout training
and can be captured easily through skip-connections.), which leads
to a very small ℓ1-norm loss, and thus fools D. However, there is
no explicit mechanism to stop learning G in these regions, as D
still tries to classify real from fake. These “useless” learning signals
distract the gradients that are fed to G and even affect the learning
of other important parts of the image. In this case, the ℓ1-norm loss
is a good guidance for GAN training.

Training. In order to train the proposed character-to-image trans-
lation network, we use approximately 12,000 training pairs, each
of which consists of the original monocular video frame Y as well
as the stack of conditioning images X, as described in Sec. 3.1. For
training, we set a hyper-parameter of λ=100 for the loss function
(Eq. 2), and use the Adam optimizer (lr = 0.0002, β1 = 0.5, β2 = 0.99)
from which we run for a total of 70,000 steps with a batch size of 10.
The number of layers in the generator was empirically determined.
We implemented our model in TensorFlow [Abadi et al. 2015].

4 EXPERIMENTS
In order to evaluate our approach, we captured training sequences of
5 subjects performing various motions. Our training corpus consists
of approximately 12,000 frames per person. We further recorded 5
separate source video sequences for motion retargeting. We perform
pose tracking usingMehta et al. [2017b] to obtain the driving skeletal
motion. Training takes about 12h for each subject on a resolution
of 256 × 256 pixels using a single NVIDIA Tesla V100. Template

rendering takes less than 1ms/frame. A forward pass of our network
takes about 68ms per frame.

The results presented in the following have been generated with
a resolution of 256 × 256 pixels. Please note, that our approach is
also able to generate higher resolution results of 512 × 512 pixels.
Fig. 12 shows a few such examples, which took 24h to train. This
further improves the sharpness of the results. Our dataset and code
will be made publicly available.

In the following, we evaluate our method qualitatively and quan-
titatively. We provide a comparison to two state-of-the-art human
image synthesis methods trained on our dataset. We also perform
an ablation study to analyze the importance of each component of
our proposed approach.

4.1 Qualitative Results
Figs. 4 and 5 show example reenactment results. We can see that
our method synthesizes faithful imagery of human performances, in
which the target characters precisely reenact the motion performed
by the source subject. Our final results add a significant level of
realism compared to the rendered character mesh from which the
conditioning input is computed. Our method generalizes to different
types ofmotions, such aswaving, boxing, kicking, rotating andmany
gymnastic activities. Note that our method generates sharp images
with a large amount of fine-scale texture detail. The facial features
and the textures on the clothing are both well-preserved. Also note
that our results accurately resemble the illumination condition in
the real scene. Even the shading due to wrinkles on the garments
and the shadows cast by the person onto the ground and wall are
consistently synthesized.
Since a forward pass of our character-to-image translation net-

work requires only 68ms, it can also be used to generate new unseen
poses based on interactive user control. Fig. 11 shows a few exam-
ples of a live editing session, where a user interactively controls the
skeleton pose parameters of a real-world character using handle-
based inverse kinematics. Please refer to the accompanying video
for the complete video result.
Next, we compare our approach to the state-of-the-art human

body image synthesis methods of Ma et al. [2018] and Esser et al.
[2018], which we also trained on our dataset. For a fair comparison,
we trained one person-specific network per subject for both the
method of Ma et al. [2018] and of Esser et al. [2018], as done in
our approach. Note that their methods take 2D joint detections as
conditioning input. However, using the 2D joint detection of the
source subject could make their methods produce inaccurate results,
since during training the networks only see the skeleton of the
target subject, which may have a different spatial extent than the
source skeleton. Hence, to obtain a fair comparison, we use our
transferred motion applied to the target subject (see Sec. 3.2) to
generate the 2D joint positions. A qualitative comparison is shown
in Fig. 6. We can see that the results of Ma et al. [2018] and Esser
et al. [2018] exhibit more artifacts than the outputs produced by our
approach. In particular, both Ma et al. [2018] and Esser et al. [2018]
have difficulties in faithfully reproducing strongly articulated areas,
such as the arms, as well highly textured regions, such as the face.
In contrast, our method results in shaper reconstructions, preserves
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Fig. 4. Qualitative reenactment results. The images in the first row (“Driving motion”) are the input to our approach and define the motion, from which the
conditioning images are generated. The images in the middle row (”Rendered Mesh") show the 3D mesh of the target person driven by the source motion. The
images in the bottom row (“Output”) are synthesized by our approach. Our method is able to faithfully transfer the input motion onto the target character for
a wide range of human body performances. For full results we refer to the supplementary video.

more details in highly textured regions such as the face, and leads to
fewer missing parts in strongly articulated areas, such as the arms.

4.2 User Study
In order to evaluate the user perception of the motion reenactment
videos synthesized by our approach, we have conducted a user study
that compares our results with the results obtained by Ma et al.
[2018] and Esser et al. [2018]. To this end, we present pairs of short
video clips, approximately of length between 4 and 25 seconds, to a
total of 25 users, recruited mainly from Asia and Europe. We used a
total of 14 sequence pairs, where for each pair exactly one sequence
was produced by our method, whereas the other sequence in the
pair was produced either by Ma et al. [2018] or by Esser et al. [2018],
each of them being used 7 times. The users were asked to select for
each pair the sequence which appears more realistic. In total, in 84%
of the 25·14 = 350 ratings our method was preferred, whereas in
16% of the ratings one of the other methods was preferred.

4.3 Ablation Study
Next, we evaluate our design choices and study the importance of
each component of our proposed approach. The reported errors
are always computed on the foreground only, which we determine
based on background subtraction.

Conditioning Input: First, we analyze the effect of different con-
ditioning inputs. To this end, we compare the use of the following
input modalities:

1) rendered skeleton (skeleton),
2) rendered RGB mesh and semantic masks (RGB+mask),

3) per-body-part rendered mesh RGB only (RGB parts)
4) rendered mesh RGBD and semantic masks (RGBD+mask),
5) per-body part rendered mesh RGBD (RGBD parts, ours).

In Figs. 8 and 7 we show the quantitative and qualitative results,
respectively, where it is revealed that using the rendered RGB mesh
in conjunction with semantic masks (RGB+mask, red dashed-dotted
line) is superior compared to using only a sparse skeleton for condi-
tioning (skeleton, solid blue line). Moreover, explicitly applying the
semantic masks to the rendered images (RGB parts, dashed yellow
line), i.e. breaking the image into its semantic parts, significantly im-
proves the results. The results with depth information RGBD+mask
(pink dotted line) and RGBD parts (black line) are consistently bet-
ter than the RGB-only results. As can be also seen in Fig. 7 the
depth information improves the image synthesis results in general.
Moreover, in frames where body-part occlusions exist the depth in-
formation helps to reduce the artifacts. We also find that using only
the part-based rendered mesh (RGB parts, dashed yellow line) in
the conditioning input, without additional rendered depth images,
is inferior to our final approach. We observe that the additional
depth information (ours, solid black line) improves the quality of
the synthesized imagery, since the network is better able to resolve
which body parts are in front of each other. Hence, to achieve better
robustness for the more difficult occlusion cases, we decided to use
the depth channel in all other experiments. Tab. 1 also confirms the
observations made above quantitatively in terms of both L2 error
and SSIM comparison to ground truth. Note that there is a large
improvement from the RGBD+mask to Ours (RGBD parts), which
shows that the part-based representation plays a critical role in the
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Fig. 5. Qualitative results for the reenactment of human characters. The images in the “Driving motion” row are used to track the motion, from which the
conditioning images are generated. The images in the “Output” row are synthesized by our approach. Our method is able to faithfully transfer the input
motions onto the target character for a wide range of human body performances. For full results we refer to the supplementary video.

improvement. The intuition behind this is that the separation of
body parts can enforce the network to distinguish body parts in
different ordinal layers, which helps to improve the results in the
presence of occlusion. Comparing to semantic masks, the separation
functionality of our part-based representation is more explicit. Com-
paring RGB parts with Ours (RGBD parts), we can see that, while
the influence of the depth input to the visual quality in the example
in the last row of Fig. 7 is relatively subtle, the depth information
helps in general as indicated by the comparisons in both L2 error
and SSIM metrics (see Table. 1). This shows that the part-based
representation plays a critical role in the improvement. The intu-
ition behind this is that the separation of body parts can enforce
the network to distinguish body parts in different ordinal layers,
which helps to improve the results in the presence of occlusion. The
separation functionality of our part-based representation is more
explicit than semantic masks. This is supported by our experimental
results both quantitatively and qualitatively.

Attentive Discriminator: Moreover, we study the effect of using
the proposed attention map mechanism in our attentive discrimina-
tor. In Fig. 9, it can be seen that using the attention GAN (solid black

Table 1. Quantitative evaluation. We calculate the L2 error and SSIM for the
region of the person in the foreground in each image and report the mean
value for the whole sequence. Our full approach obtains the best scores.

L2 error SSIM
skeleton 17.64387 0.60176
RGB+mask 16.82444 0.63102
RGB part 16.12499 0.64023
RGBD+mask 16.25977 0.64199
Ours 15.67433 0.65328

line) yields better results than a network trained without the atten-
tive discriminator (dotted pink line). We show these improvements
visually in Fig. 10. We also confirm this observation quantitatively
in terms of L2 and SSIM errors, see Tab. 2.

5 LIMITATIONS
Despite the fact that we have presented compelling full body reen-
actment results for a wide range of motion settings, many challenges
and open problems remain, which we hope will be addressed in the
future. Synthesizing severely articulated motions is very challeng-
ing for all kinds of learned generative models, including ours, due
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Fig. 6. Qualitative re-targeting comparison of our approach to the state-of-the-art human image synthesis methods of Ma et al. [2018] and Esser et al. [2018].
The encircled areas show regions of the body where the other methods clearly fail (missing parts of arms, wrongly shaped body parts etc.) in comparison to
our approach. For the full results we refer to the supplementary video.
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Fig. 7. Qualitative validation of different conditioning inputs.

Fig. 8. Quantitative validation of different conditioning inputs. We show
the proportion of frames on the vertical axis that have an error mean for
the region of the person in the foreground smaller than the threshold on
the horizontal axis. Our full approach consistently obtains the best results.

Table 2. Quantitative evaluation of attentive discriminator. We calculate
the L2 error and SSIM for the region of the person in the foreground in each
image and report the mean value for the whole sequence. Our full approach
obtains the best scores.

L2 error SSIM
No attention 16.39865 0.64320
Ours 15.67433 0.65328

to multiple reasons: (i) articulated motions are highly non-linear, (ii)
self-occlusions in human performances introduce discontinuities,

Fig. 9. Quantitative validation of attention map mechanism. We show the
proportion of frames on the vertical axis that have an error mean for the
region of the person in the foreground smaller than the threshold on the
horizontal axis. Consistently better results are obtained with our attention
map.

(iii) monocular tracking imperfections degrade the quality of the
training corpus, and (iv) challenging poses are often underrepre-
sented in the training data. Fig. 13 shows several typical failure cases
of our method. Artifacts arise in particular at the end-effectors, e.g.,
hands or feet, since they undergo strong changes in spatial position
and rotation. One potential solution could be to split the network
into different branches for each body part, possibly into further
sub-branches depending on the pose or view-point, while jointly
learning a differentiable composition strategy.
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Fig. 10. Qualitative validation of attention map mechanism in our attentive
discriminator. The comparison shows that our attentionmap based synthesis
leads to a clear quality improvement (particularly visible in regions encircled
in red), as seen by comparison to the ground truth.

Interactions with objects are challenging to synthesize for our
as well as related techniques. This would require to jointly capture
body pose as well as object position and shape at high accuracy,
which is currently an unsolved problem.

Occasional local high-frequency artifacts are due to the specific
choice of the used GAN architecture. Completely removing such
local patterns, which are often observed in outputs of GANS, remains
an open challenge.
Even though our results exhibit high quality, a temporally co-

herent synthesis of human performances that is free of temporal
aliasing is highly challenging. This is also due to the non-linearities
of articulated motion, which is particularly noticeable for fine-scale
texture details.
We have conducted experiments on incorporating temporal in-

formation by concatenating several adjacent frames as input to
the network. However, the results are not significantly better than
with our proposed method. We still believe that a more sophisti-
cated integration of temporal information might further improve
the results.

Fig. 11. Interactive editing results. Since a forward pass of our network only
takes about 68ms, our approach allows for interactive user-controlled pose
editing in video.

Fig. 12. Our approach can also synthesize high resolution images (512× 512
pixels). This further improves the sharpness of the results but comes at the
cost of an increased training time of the network.

For example, a space-time adversarial consistency loss, which
operates on a small time slice, could help to alleviate local temporal
flickering.
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(a) (b) (c)
Fig. 13. Failure cases due to tracking error (a), rarely seen poses in the
training corpus (b) and strong occlusion (c).

Another possible solution are recurrent network architectures,
such as RNNs or LSTMs.

Currently, our networks are trained in a person-specific manner
based on a long training sequence. Generalizing our approach, such
that it works for arbitrary people given only a single reference
image as input is an extremely challenging, but also very interesting
direction for future work.

6 CONCLUSION
In this paper we have proposed a method for generating video-
realistic animations of real humans under user control, without
the need for a high-quality photorealistic 3D model of the human.
Our approach is based on a part-based conditional generative ad-
versarial network with a novel attention mechanism. The key idea
is to translate computer graphics renderings of a medium-quality
rigged model, which can be readily animated, into realistic imagery.
The required person-specific training corpus can be obtained based
on monocular performance capture. In our experiments, we have
considered the reenactment of other people, where we have demon-
strated that our approach outperforms the state-of-the-art in image-
based synthesis of humans.

We believe this is a first important step towards the efficient ren-
dition of video-realistic characters under user control. Having these
capabilities is of high importance for computer games, visual effects,
telepresence, and virtual and augmented reality. Another important
application area is the synthesis of large fully annotated training
corpora for the training of camera-based perception algorithms.
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