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Figure 1: Comparison of different types of eigenfunctions of the Laplace-Beltrami operator of the input mesh (leftmost). Top

Row: the manifold harmonics have global support. Bottom Row: the proposed compressed manifold modes (CMMs) have
local support and are confined to specific local features like protrusions and ridges. Here, 8 of the CMMs were found for the
8 protrusions at the corners (1 to 8, only 2 shown here), 6 concentrate at each of the dents (2 shown here), and 12 CMMs
automatically form at the valleys between the protrusions.

Abstract

This paper introduces compressed eigenfunctions of the Laplace-Beltrami operator on 3D manifold surfaces. They

constitute a novel functional basis, called the compressed manifold basis, where each function has local support.

We derive an algorithm, based on the alternating direction method of multipliers (ADMM), to compute this basis

on a given triangulated mesh. We show that compressed manifold modes identify key shape features, yielding an

intuitive understanding of the basis for a human observer, where a shape can be processed as a collection of parts.

We evaluate compressed manifold modes for potential applications in in shape matching and mesh abstraction.

Our results show that this basis has distinct advantages over existing alternatives, indicating high potential for a

wide range of use-cases in mesh processing.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Hierarchy and geometric transformations

1. Introduction

The eigenfunctions of the Laplace-Beltrami operator of a 3D
surface define a basis, known as the manifold harmonic basis
(MHB). This basis can be understood as a generalization of
the Fourier spectrum for functions defined on a general man-
ifold surface. The Laplace-Beltrami operator captures all the
intrinsic properties of the shape and is invariant to extrin-

sic shape transformations such as isometric deformations.
As such, its eigenfunctions constitute a compact and elegant
basis for spectral shape processing that is independent of the
actual shape representation and parameterization. In fact, the
MHB is unique and characteristic of the geometric and topo-
logical properties of the shape. Several successful applica-
tions have been proposed that took advantage of these de-
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sirable properties, for spectral geometry filtering, compres-
sion, and surface editing [VL08,BKP∗10,LZ10]. The MHB
provides an efficient and robust formulation for estimat-
ing shape correspondences, e.g. within the functional maps
framework [OBCS∗12]. Similar to the Fourier spectrum, the
manifold harmonics (MHs) have global spatial support; i.e.
each function acts on all the vertices of the mesh. This means
that the functions are not easily interpretable, they act on
all parts of the mesh. For example, the shape of a hand can
be understood as the palm and five fingers, which is not di-
rectly represented within the MHB basis. The global sup-
port of MHs also renders them very sensitive to topologi-
cal noise due to large holes and occlusions that often appear
in scanned meshes. This reduces the utility of the MHB for
practical shape matching problems in the real world.

In this paper, we aim to produce an intrinsic shape ba-
sis that tackles these defects. The proposed basis inherits
the beneficial property of orthogonality and shape-awareness
from the MHB. Yet, our new basis functions have local sup-
port, where the locality can be easily controlled. We call this
basis the compressed manifold basis (CMB) and the individ-
ual basis functions compressed manifold modes (CMM). In
summary, our contributions are:

1. We extend the theory of compressed eigenfunctions of
differential operators, that was recently presented in the
context of computational physics [OLCO13], to the set-
ting of general manifold surfaces in computer graphics.

2. We show how to adapt the alternating direction method of
multipliers to compute the compressed manifold basis on
a triangle mesh, for a given discretization of the Laplace-
Beltrami operator.

We show that the compressed manifold modes automat-
ically identify key shape features of the underlying mesh.
They automatically group confined local regions like protru-
sions and ridges into separate basis functions, Fig. 1. Due to
their unique spatial locality, they are robust to significant ge-
ometric and topological noise, such as what happens due to
partial scans. Thus, the CMB can be considered as a tool for
robust shape analysis and matching. At the same time, CMB
is an orthogonal basis and can reconstruct any function de-
fined on the shape, up to an arbitrary degree of precision.
We qualitatively evaluate the CMB towards developing po-
tential applications in shape matching, shape approximation
and feature detection. A reference implementation of the al-
gorithm as well as all scripts to reproduce the results in this
paper are available at
https://github.com/tneumann/cmm

2. Background and Related Work

Before introducing the new compressed manifold basis
(CMB), let us first give some background on the manifold
harmonic basis (MHB) and on their applications in various
areas in computer graphics. We will also review recent re-
sults on obtaining compactly supported eigenfunctions.

Manifold Harmonic Basis The Laplace-Beltrami opera-
tor ∆ on a 2D manifold surface embedded in 3D space in-
duces a set of eigenfunctions φk which satisfy the classical
equations

−∆φk = λkφk , k ∈ N , λk ∈ R , (1)

where λk are the eigenvalues of the operator. The eigenfunc-
tions form a basis that is called the manifold harmonic basis
(MHB) [VL08]. In most practical applications, only a set of
K ∈ N eigenfunctions corresponding to the smallest eigen-
values is required.

Applications Due to their compactness, encoding effi-
ciency, isometric invariance, and computational efficiency,
manifold harmonics can be found in countless applica-
tions in computer graphics [LZ10]. Vallet and Lévy [VL08]
present several mesh filtering applications and introduced an
algorithm that is able to compute the MHB on very large
meshes. The recently proposed functional map framework
[OBCS∗12] uses maps between functions on shapes, for ex-
ample to transfer segmentations or to estimate correspon-
dences between deformed shapes. Various point signatures
based on Laplace-Beltrami eigenfunctions are successfully
used in shape matching [Rus07,SOG09]. Other applications
include mesh parametrization [MTAD08], shape segmenta-
tion [dGGV08] and compression of meshes [KG00]. The
MHs can even help in accurate facial tracking [BWP13].

Sparsity-inducing norms in graphics The main mathe-
matical tool used in this paper is sparsity-inducing regular-
ization. This concept has been very popular in compressed
sensing and machine learning as well as in image- and
signal-processing. Recently, applications in computer graph-
ics appeared. For example, Deng et al. [DBD∗13] show lo-
cal modification of constrained architectural meshes using
sparse regularization methods. Neumann et al. [NVW∗13]
propose a variant of sparse PCA to automatically extract lo-
cal deformation components from a dataset of meshes, e.g.
mesh sequences captured from human facial performances.
Pokrass et al. [PBB∗13] show that sparse regularization can
also help to improve correspondence-estimation between de-
formed shapes. Rustamov [Rus11] proposes a multiresolu-
tion kernel which is centered locally around a specific point
on the mesh, also using the sparsity-inducing ℓ1 norm. Due
to a similar sparsity inducing objective, these multi reso-
lution kernels look similar to some of the first compressed
modes presented here. However, they look very different
for higher number of compressed basis functions K. An-
other important difference is that the multi-resolution ker-
nels [Rus11] are defined with respect to some given central
point in the mesh and do not form a basis.

Compressed Modes Ozoliņš, Lai, and Osher [OLCO13]
propose to find compressed eigenfunctions of a general dif-
ferential operator. To this end, they add a sparsity induc-
ing ℓ1-norm into a variational formulation of a problem of
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(a) Input (b) Unweighted (c) Weighted

Figure 2: Our method correctly handles the area-weighted
Laplacian for computing compressed eigenfunctions. This
is shown for a low-resolution (top row, 512 triangles)
and a high-resolution (bottom row, 32000 triangles) mesh.
(b) Without area-weighted Laplacian, eigenfunctions are
resolution-dependent. (c) Our algorithm gives resolution-
independent eigenfunctions.

type (1) . Given a parameter µ ∈ R
+ that controls the spar-

sity, they arrive at

min
φk

K

∑
k=1
〈φk , ∆φk〉+µ |φk|1 , s.t.

〈

φk , φ j

〉

= δk j , (2)

where δk j is the Kronecker delta, here used to enforce or-
thogonality of the eigenfunctions. Interestingly, those com-
pressed eigenfunctions were proven to have compact sup-

port [BCO14]: They are non-zero only in a confined region
of the domain. The size of the compact support can be con-
trolled by µ: a large value for µ will result in smaller support
regions. Until now, compressed eigenfunctions have been
predominantly employed on 1D and 2D domains for applica-
tions in physics and partial differential equations [OLCO13].
Our approach extends this work and provides compressed
Laplace-Beltrami eigenfunctions on three-dimensional mesh
surfaces and for 3D shape processing.

3. Computing Compressed Manifold Modes

As a preliminary, we begin by clarifying how we discretize
both the Laplace-Beltrami operator ∆ and the eigenvalue
equation (1) , as well as the minimization problem (2) . With
those building blocks in place, we then derive an algorithm
that is able to compute compressed manifold modes by solv-
ing (2) .

3.1. Discretization

In this paper, we concentrate on triangle meshes. A very pop-
ular discretization of the Laplacian ∆ for a triangle mesh
with N vertices may be realized as a sparse matrix L ∈
R

N×N with the cotangent weights [MDSB02]. Along with
the cotangent weights in L, which only respect angles be-
tween edges, we also use the lumped mass matrix D con-
taining the vertex areas along its diagonal. Notice that our

discretization corresponds to the finite element formulation
of the Laplace-Beltrami operator [LZ10], which leads to a
generalized eigenvalue problem as explained in the follow-
ing.

With the Laplace-Beltrami operator defined, we discretize
the eigenfunctions. The manifold harmonic basis (MHB) is
defined by [VL08]

−LΦk = λDΦk , (3)

This can be solved using an off-the-shelf sparse iterative
eigensolver or by using the efficient band-by-band compu-
tation method presented in [VL08]. Given a mesh with N

vertices, we assemble the first K eigenvectors into a matrix
Φ ∈ R

N×K , where each column Φk is one eigenvector.

For computing the compressed manifold basis, we extend
the variational formulation (2) from [OLCO13] to be appli-
cable to triangle meshes. Here, we especially have to con-
sider the area-matrix D. Without D, the eigenbasis is not in-
dependent of the mesh resolution, as demonstrated in Fig. 2.
Our discretization of (2) thus reads

min
Φ

Tr(Φ⊤
LΦ)+µ‖Φ‖1 , s.t. Φ⊤

DΦ = I . (4)

The next section explains an efficient algorithm that solves
this minimization problem.

3.2. Reformulation using ADMM

In this section, we reformulate the optimization problem (4)
so that it can be solved efficiently using the alternat-
ing direction method of multipliers (ADMM). ADMM is
a mathematical framework for convex optimization, inter-
ested readers are referred to the comprehensive article by
Boyd et al. [BPC∗11]. ADMM can solve problems that in-
volve two functions and constraints,

f (x)+g(z) , s.t. Ax+ Bz = c . (5)

Our optimization problem (4) can be reformulated in the
above form (5) . To this end, we replace the orthogonality
constraint using an indicator function

ι(Φ) =

{

0 if Φ⊤ DΦ = I

∞ otherwise .
(6)

This lets us transform the optimization objective (4) into a
sum of three functions Tr(Φ⊤ LΦ)+ µ‖Φ‖1 + ι(Φ). Since
extensions of ADMM for more than two functions are still
being heavily researched and not necessarily guaranteed
to converge [CHYY13], we adopt a splitting strategy in-
troduced recently [WHML13]. The idea is to use one of
the three functions as the “main function” f in (5) , and
group the remaining functions into g, cf. (5) . For computing
CMMs, we found that choosing ι as the main function works
best. We then arrive at the following reformulation of (4)

min
Φ,S,E

ι(Φ)+Tr(E
⊤

L E)+λ‖S‖1 ,

s.t. Φ = S , Φ = E .
(7)
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Notice how the two separate coupling constraints force the
variable Φ to be equal to S and E. If those constraints are
fulfilled exactly then we arrive again at (4) . The equivalence
to the standard formulation of ADMM (5) can be seen by
first substituting x = Φ and f = ι. Variable z and function g

are then block-separable with

g

([

E
S

])

=

[

Tr(E⊤ L E)
λ‖S‖1

]

. (8)

Finally, the constraint matrices from (5) may be written as

A =

[

I

I

]

, B =

[

−I 0
0 −I

]

, c = 0 . (9)

3.3. Numerical Algorithm

Rephrasing of our original minimization problem (4) into
(7) enables us to apply the ADMM method [BPC∗11, Sec-
tion 3.1.1]. To this end, we introduce the dual variable U ∈
R

2N×K which consists of two blocks U = [UE ; US], corre-
sponding to two auxiliary variables E and S. Given an initial
guess for Φ, we set E = S = Φ and U = 0. The algorithm
then comes down to iterating the following steps

Φ ← argmin
Φ

ι(Φ)+
ρ

2
‖

[

Φ
Φ

]

−

[

E
S

]

+

[

UE

US

]

‖2
2 (10)

E ← argmin
E

Tr(E
⊤

L E)+
ρ

2
‖Φ− E+ UE‖

2
2 (11)

S ← argmin
S

λ‖S‖1 +
ρ

2
‖Φ− S+ US‖

2
2 (12)

U ← U+

[

Φ
Φ

]

−

[

E
S

]

. (13)

The variable ρ is called the penalty parameter. Usually, up-
dates (11) and (12) are done in a single step involving g(z)
in (5) , but due to the independent blocks in (8) they can be
separated.

We now explain how the individual update steps, which
are small optimization problems themselves, can be per-
formed efficiently. The objective of the minimization (10)
can be transformed into ι(Φ) + ρ

2‖Φ −
1
2 (S + E)‖2

2 −

2Tr(S+ E)+ 1
2‖S+ E‖2

2. Ignoring terms that don’t change
the minimum allows reduction of (10) to

Φ← argmin
Φ
‖Φ− Y‖2

2 s.t. Φ⊤
D Φ = I , (14)

with Y = 1
2 (S− US + E− UE). Since D contains the ver-

tex area weights, it is a positive diagonal matrix and trivial
to invert. We can then substitute Φ = D−1/2Ψ to yield

Φ← D
−1/2

(

argmin
Ψ , Ψ⊤Ψ= I

‖D
−1/2Ψ− Y‖2

2

)

. (15)

Based on the SVD factorization of (D1/2 Y)⊤(D1/2 Y) =
VWV⊤, a closed-form solution is found as

Φ← D
−1/2

(

YVW
−1/2

V
⊤
)

. (16)

(a) Φ20 with [OLCO13]

0 1000

iteration

10−3

10−1

101

‖
r‖

2 [OLCO13]

ours

(b) primal residual

Figure 3: Convergence of our method (green) vs the direct
extension of [OLCO13] to 3D meshes (red). Some of the
eigenfunctions computed by [OLCO13] show oscillations as
visible in (a), which do not appear with our method (compare
with our result in Fig. 1). (b) Plotting the primal residual
across the iterations shows that [OLCO13] obtains infeasible
solutions while our method converges.

A proof of the last step appears in various sources, e.g.
in [LO14]. Thus, step (10) requires an SVD of a K×K ma-
trix - the number of vertices N is irrelevant (usually K≪ N).

To solve the minimization problem (11) , we set its deriva-
tive to zero, which gives a closed form solution

(

ρI− L− L
⊤
)

E = ρ(Φ+ UE) , (17)

so we have to solve K very sparse linear systems in each iter-
ation. By prefactorizing (ρI− L− L⊤), e.g. using Cholesky
factorization, this step can be significantly accelerated. Up-
dating the factorization is only necessary when ρ changes.

Finally, the third step of updating S in (12) is separable
for each entry Si j . It has a simple closed-form solution that
may be expressed concisely using the proximal operator (de-
noted prox) of the ℓ1 norm [BJMO12],

Si j← prox µ

ρ ‖·‖1
(v) = sgn(v) max

(

|v|−
µ

ρ
, 0

)

, (18)

where we substitute v = Φi j +(US)i j for brevity.

3.4. Convergence

ADMM is guaranteed to converge for a convex f and g.
However, the minimization task in (4) contains the non-

convex constraint of orthogonality of the eigenvectors, so
convergence to a global minimum cannot be guaranteed.
Nevertheless, the proposed method finds local minima which
are suitable for practical applications.

To monitor convergence we use the primal residual ‖r‖2
and the dual residual ‖s‖2, cf. [BPC∗11]. When those val-
ues fall below a numerical threshold, our method stops. To
automatically set the parameter ρ, our method adopts the ad-
justment strategy discussed in [BPC∗11, Section 3.4.1]. This
means that the only parameters for our method are µ which
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(a) µ = 0 (b) µ = 1
100 ·N (c) µ = 1 ·N (d) µ = 10 ·N

Figure 4: The parameter µ controls the locality of the CMMs.
A large µ will give small local support. N is the number of
vertices in the mesh.

Varimax

(a) K = 26

CMB

(b) K = 26

Vaximax

(c) K = 4

CMB

(d) K = 4

Figure 5: (a) Varimax manifold harmonics show residual os-
cillations on the whole shape as indicated by the black iso-
lines. (b) In contrast, the proposed CMMs are truly sparse
and zero almost on the whole shape. This effect is amplified
when only K = 4 instead of K = 26 basis functions are com-
puted: in this case, (c) the Varimax harmonics show global
support while in (d) the proposed CMMs are still sparse.

sets the sparsity and controls the locality, and K which is
the number of CMMs to compute. We also compare the con-
vergence of our method with our reimplementation of the
algorithm in [OLCO13] for 3D meshes. We set D = I, be-
cause [OLCO13] cannot handle arbitrary D, and run the al-
gorithm on the mesh from Fig. 1. In this example only our
algorithm is able to find a feasible solution, as can be seen
in Fig. 3. We believe that this behavior is caused mainly by
our splitting strategy that groups the two convex functions
together and selects the non-convex ι as “main function” f .

4. Experiments and Results

Comparison to Varimax Varimax (or Orthomax) finds a
unitary transformation of the eigenspace that aims to localize
the basis, through maximizing the second order moments.
An example application in computer graphics can be found
in [SBCBG11]. Applying the Varimax method on the MHB
indeed localizes the functions, but global oscillations remain
on the mesh: The eigenfunctions are often not exactly zero
and are thus not sparse (compare Fig. 5a to Fig. 5b). Also,
for small K the locality of Varimax diminishes completely
(Fig. 5c) while the CMMs are always local (Fig. 5d).

Influence of Varying Sparsity The locality of the CMMs
can be controlled by varying the parameter µ, which is not

(a) initialization (b) iteration 50 (c) iteration 200

Figure 6: For low K, our method may converge to different
local minima depending on the initialization. Here, each row
shows computation of a basis with one compressed mode
(K = 1). (a) random or user-given initialization, (b) com-
pressed mode after 50 and (c) after 200 iterations.

possible with Varimax. This is demonstrated in Fig. 4: large
µ will result in smaller local support. To additionally make
the parameter µ invariant to the number of vertices N we
usually multiply it by N.

Initialization Our method can be initialized with a random
Φ. We typically observe that the algorithm converges to the
same set of basis functions, although their ordering might be
different. For example, we always found CMMs for the five
fingers and the palm if we compute six CMMs on a hand.
Similarly, the set of eigenfunctions in Fig. 1 were always the
same, but their ordering was different because some CMMs
have eigenvalues that are close to each other. When K is very
small, e.g. K = 1, we observe that different initializations
lead to different local minima, see Fig. 6. Instead of giving
random initialization, we can also give a user-drawn scrib-
ble as initialization, which might be useful for certain appli-
cations. Other initialization strategies are also possible, for
example in Fig. 8 we used Varimax, because we wanted to
have reproducible results even though K is quite low.

Shape Approximation Since both MHs and CMMs form
a basis, it is possible to use them for encoding the actual
mesh coordinates. This process was described for MHs in
[VL08]. Specifically, we have the transformation to "fre-

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



T. Neumann & K. Varanasi & C. Theobalt & M. Magnor & M. Wacker / Compressed Manifold Modes for Mesh Processing

(a) Input Mesh (b) MH reconstr. (c) CMM reconstr.

Figure 7: Reconstruction of vertex positions from a small
number of K = 6 (b) manifold harmonics and (c) our pro-
posed compressed manifold modes. See text for details.

(a) K = 3 (b) K = 7 (c) K = 3 (d) K = 7

Figure 8: Soft segmentation using CMMs for two meshes
and different number of CMMs K. Protrusions and geodesic
extremities are segmented, grey areas are not covered by any
of the first CMMs.

quency space" by x̂ = DΦ⊤ x, and its inverse transforma-
tion by x = Φ x̂. Here, x are the x, y and z coordinates of
the vertices. For K ≪ N, applying the transform followed
by its inverse gives an approximation of the mesh. Compar-
ing those approximations can help better understanding the
properties of the CMB compared to the MHB. MHs show
better compression guarantees and retain the rough shape
of the whole mesh (Fig. 7b). When K is increased, the MH
approximation will move all the vertices towards the input
mesh. In contrast, the CMM approximation is more abstract
and almost looks like a skeleton of the mesh (Fig. 7c). Each
time K is increased, a local change is done to the approxi-
mated mesh by changing only the vertices of a local feature,
for example by placing the finger tip. Another instructive
example is given in Fig. 8. Here, two things can be clearly
seen: First, the CMMs automatically form at high-curvature
regions and topological protrusions of the mesh. To comply
with the sparsity regularization, the first K CMMs ignore flat
regions or regions connecting the geodesic extremities.

Time and Space Complexity for Reconstruction In Ta-
ble 1 we quantitatively evaluate the CMB in comparison to
the MHB for different number of components K and for dif-

mesh basis K µ error size time

hand MHB 10 5 9.34 68KB 0.03s
(868) CMB 10 - 14.39 43KB 3s

MHB 30 5 4.00 203KB 0.08s
CMB 30 - 3.97 156KB 29s

fertility MHB 10 5 45.02 390KB 0.18s
(4994) CMB 10 - 17.54 216KB 44s

MHB 40 5 7.92 1.5MB 0.39s
CMB 40 - 6.93 933KB 560s

bunny MHB 10 1.25 36.89 2.7MB 1.4s
(34834) CMB 10 - 121.28 1.7MB 419s

MHB 40 1.25 20.49 10.6MB 3.5s
CMB 40 - 20.68 8.2MB 1357s

Table 1: Quantitative comparison of the proposed com-
pressed manifold basis (CMB) to the manifold harmonic ba-
sis (MHB). The number of vertices N is given in brackets
below the mesh name. See text for further details.
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(a) reconstruction error
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(f
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∞

horse

hand
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(b) coverage

Figure 9: Reconstruction error of a constant function on the
mesh for varying K on three different meshes. (a) shows that
with increasing K the function can be better reproduced and
(b) measures ℓ∞ norm of that error, a value below 1 means
that all vertices are covered by at least one CMM.

ferent meshes. The reconstruction error of the vertex coordi-
nates (ℓ2 norm of the difference between reconstruction and
ground truth) approaches that of the MHB when the number
of basis functions K goes up. It is also interesting to compare
the required memory size for the MHB, stored as a dense
array (64bit double), and to the CMB Φ stored as a sparse
matrix in CSR format. The CMB is smaller since Φ contains
many zeros. The runtimes in Table 1 were measured on a
Linux system with Intel i7 3.4GHz CPU and 16GB RAM.
We compare our unoptimized Python/NumPy implementa-
tion for computing the CMB versus the highly optimized
ARPACK eigensolver to compute the MHB.

Full Support CMMs are sparse and local, thus it cannot be
guaranteed that all the vertices are covered by at least one
CMM. In Fig. 9 we empirically show that with an increasing
number of compressed modes K, more and more vertices
are covered. To this end, we compute the CMM basis on
the mesh (with varying K) and reproduce the constant func-
tion f = 1 on the mesh. The closest least-squares reconstruc-

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



T. Neumann & K. Varanasi & C. Theobalt & M. Magnor & M. Wacker / Compressed Manifold Modes for Mesh Processing

(a) no noise

(b) 50% gaussian noise on vertex positions

Figure 10: Insensitivity to noise. (a) 3 out of K = 6 CMMs
and (b) 3 CMMs after adding gaussian noise to the vertex
positions of the mesh. Up to sign flip, the CMM basis func-
tions align well between the original and the noisy mesh.

tion of f can be quickly computed by R( f ,Φ) = ΦDΦ⊤ f .
We then measure the reconstruction error using the ℓ2 norm,
‖ f −R( f ,Φ)‖2, which as expected decreases as the number
of modes K increases, Fig. 9a. To check if all the vertices
are covered, we measure the maximum error, in other words
the ℓ∞ norm of the error, ‖ f −R( f ,Φ)‖∞. If this is 1, then
this means that there is some vertex on the mesh that is not
covered. As can be seen in 9b the vertices are completely
covered already for relatively small K. Note that this also de-
pends on µ: a CMB with small local support requires more
basis functions to cover every vertex on the mesh.

Insensitivity to noise Since the MH basis is based on the in-
trinsic Laplace operator, it is robust to various kinds of noise.
We now empirically show that the CMM basis functions
share this property with the MH basis. In Fig. 10, we added
gaussian noise with σ = 50% of the average edge length -
the CMMs align up to sign flip. In another experiment, we
randomly removed vertices as well as their neighboring tri-
angles to observe how the CMB reacts to changes in topol-
ogy. In Fig. 11 one can see that up to ordering and sign flip,
the CMMs align well. In both experiments, we observed that
the ordering aligns much more robust when a good initial-
ization is used. Therefore we used Varimax for initialization
here. We will discuss insensitivity to partial meshes and to
isometric deformations in the following section.

5. Applications in Shape Matching

Typically, shape matching first involves robust feature de-
tection and matching, and then a geometry aware regulariza-
tion that extends this correspondence to the entire shape. For
practical shape correspondence, both these stages have to be
robust to geometric and topological surface noise that oc-

(a) original mesh with K = 5 CMMs

(b) K = 5 CMMs computed after adding 200 small holes

Figure 11: Up to ordering and sign flip, the CMMs align
even after adding topological noise in form of small holes.
Notice that one basis function is located on the backside of
the mesh, 3rd image in (a) and 5th image in (b).

curs inevitably in real world scanning systems. Occlusions
and partial scans make this problem even more challenging.

Ovsjanikov et al. [OBCS∗12] use the manifold harmonic
basis to propose the elegant framework of functional maps.
Often, the manifold harmonic basis between two shapes do
not exactly correspond to each other. The functional map
still gives a full correspondence of the two shapes even in
this case, but only if the sparse input correspondences (point
or region features) that are required to construct the map
are correct. On the other hand, if the shapes are related by
an isometry, the manifold harmonics align well. Then, the
functional map yields a diagonal correspondence matrix (or
at least diagonal after permutation). Pokrass et al. [PBB∗13]
use this idea for regularizing the functional map to be sparse
and close to a diagonal. However, this is limited to situations
where the manifold harmonics can be aligned between the
shapes. One important case where this assumption fails is
with large holes and severe topological noise due to partial
scans. We show an example in Fig. 12 where the mesh of a
hand is badly corrupted by holes. “Dense” harmonics of the
MHB are severely damaged by these holes and no longer
align with the original mesh. However, up to a sign flip
and ordering, CMMs align robustly with those of the orig-
inal mesh. At the same time, the CMMs align very well in
the case of purely isometric deformations, which is demon-
strated in Fig. 13. Notice that in both examples, the same
set of CMMs is recovered even though completely different
random initializations were used for the different meshes.

Because of their spatial locality and robustness, com-
pressed manifold modes can be used as shape features in the
first stage of shape matching. But since the CMB provides an
orthogonal basis that is invariant to isometric deformations,
they can also be used in the second stage of shape-aware
regularization. In this paper, we tested this second aspect by
using the CMB to replace the MHB in the functional map
framework. In the discrete setting the functional correspon-
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Φ2 Φ3 Φ4 Φ5 Φ6 Φ2 Φ3 Φ4 Φ5 Φ6

(a) 5 MH’s computed separately on the hand (left) and the partial hand (right)

Φ1 Φ2 Φ3 Φ4 Φ5 Φ1 Φ2 Φ3 Φ4 Φ5

(b) 5 of the proposed CMMs computed separately on the hand (left) and the partial hand (right)

Figure 12: Basis functions of a hand mesh (left side) and a partial shape of the hand emulating typical scanning artifacts (right
side). (a) The MHB basis functions do not correspond very well between partial meshes. (b) For every CMB on the full hand,
left, we can find a CMM on the partial hand, right. One exception is the ring finger which is completely missing on the right
side. Thus, up to sign flip and ordering, the CMMs align very well.

dence between two shapes, S1, resp. S2, can be given as a
simple K ×K matrix C. If both shapes are equipped with
the basis then we have matrices Φ(S1) and correspondingly
Φ(S2). Those can be seen as K-dimensional point clouds (in
eigenspace), and the matrix C aligns those point clouds by
Φ(S2) = Φ(S1) C⊤. Thus, Φ(S1) C⊤ is a rotated basis such
that the basis vectors (columns) overlap with those in Φ(S2).
A necessary condition for C to be an area-preserving vertex-
to-vertex map is that it must be orthogonal [OBCS∗12, The-
orem 5.1]. To illustrate CMMs in a shape matching scenario,
we take two shapes with ground-truth correspondence dif-
fering by isometric deformations. Those given correspon-
dences are then used to find the optimal orthogonal C for
different number of basis functions K. We then measure how
much error (in geodesic distance) the resulting map between
the basis functions introduces, depending on the number of
eigenfunctions K. This is exactly the same experiment as
performed in [OBCS∗12, Fig. 3], which we apply to the new
CMB. Here, we use the unweighted Laplacian for both. We
find that, despite the CMB not being as information-dense
as the MHB, it achieves similar geodesic error with a fairly
low number of basis functions K. Around 35 compressed
modes are good enough to meet the accuracy of dense har-
monics, Fig. 14. More interesting is the phenomenon that
the correspondence matrix C is much sparser for the CMB,
compare Fig. 14b to Fig. 14c. Notice that at no point during
the estimation of C we enforced this sparsity. A direct im-
plication of this is that the matrix C for the CMB is closer to

a permutation. For visualization, we choose the permutation
that yields a diagonalized correspondence matrix, similar to
Pokrass et al [PBB∗13]. This is a trivial step and we show
the final diagonalized correspondence matrix. For matching
partial shapes, this effect is even more apparent, see Fig. 14,
middle and bottom row. The respective correspondence ma-
trix C with CMB is again much closer to a permutation ma-
trix, whereas that of the MHB shows more confusion and is
much denser. We think this is a strong indicator that CMMs
can be extremely useful for shape matching that is robust
against large holes or even for partial shape matching.

6. Discussion and Future Work

It is possible to use CMMs as skinning weights for mesh
editing applications. But it is desirable to produce skinning
weights that are positive and that sum up to one for all the
vertices on the shape [JBK∗12]. In contrast to bounded bi-
harmonic weights [JBPS11], CMMs cannot meet those re-
quirements and do not fulfill exact interpolation constraints.
But while bounded biharmonic weights also achieve some
level of sparsity, they require the user to provide a set of
point constraints or a skeleton rig. This is not needed for
CMMs. The CMB automatically provides meaningful “ar-
eas” that can be used to restrain certain edits. CMMs can
regularize sparse input positional constraints for applica-
tions such as posing a shape and key-framing an animation,
or tracking a deformable object in video. Additionally, the
CMB can be used for projecting certain deformation ener-
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Figure 13: Compressed manifold modes are insensitive to isometric deformations, up to ordering and sign flip. Each row shows
K = 10 CMMs on a different mesh from the SCAPE database [ASK∗05].

gies, thereby reducing their dimensionality and thus compu-
tationally simplifying and regularizing the deformation pro-
cess. These ideas as well as the connection with bounded bi-
harmonic weights [JBPS11] for skinning deformation would
be worth exploring in the future.

The Laplace-Beltrami eigenfunctions are related to the
heat kernel operator for heat diffusion on the mesh sur-
face. This heat kernel has several applications, particularly
in shape matching [SOG09]. Investigating the effect of spar-
sity and ℓ1 minimization in the heat diffusion framework was
partly done in [Rus11]. CMMs can help in further investiga-
tions in the future. Local support was proven for compressed
modes in the plane [BCO14], we showed empirically that
this also seems to be the case on manifolds. Proving the-
oretically that the obtained functions are connected on the
manifold is a related question open for future research.

A final point we would like to discuss is the non-convexity
of our objective function in (2) which leads to a certain de-
pendence on the initialization. [LLO14] recently proposed a
convex relaxation of (2) . However, this approach involves
optimizing over an N×N matrix, which means that it is in-
feasible for meshes with large number of vertices N. So this
is still an avenue for future work.

7. Conclusion

In this paper, we introduced compressed manifold
modes (CMMs) on mesh surfaces, a novel orthogonal
basis for general manifold surfaces in 3D. The compressed
basis functions have local support around key shape features
that are automatically detected. Our paper presented a
complete mathematical derivation of a numerical algorithm
that extracts this basis from a given 3D mesh was presented.
We empirically demonstrated desirable properties of the
CMMs, such as full support and robustness to noise and

partial scans. We qualitatively evaluated the CMMs for
potential applications such as shape matching and shape
approximation. Our results indicate high potential for a
wider range of applications in the future.
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Figure 14: Given two meshes and ground truth vertex-to-vertex correspondence, column (a), we compute the functional rep-
resentation of this map between the two shapes. Column (b) shows the functional map between the MHB. In column (c), the
functional map between the CMMs clearly shows much more sparsity. In (d) we plot the mapping error of the maps between
MHB and CMB. With increasing number of basis functions K the error of the CMB approaches that of the MHB. Notice how
the effect of sparsity in the correspondence matrix is retained even in cases of partial correspondences between meshes with
huge holes, middle and bottom row.
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Bounded biharmonic weights for real-time deformation. ACM

Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011), 78:1–78:8. 8, 9

[KG00] KARNI Z., GOTSMAN C.: Spectral compression of mesh
geometry. In Proc. SIGGRAPH (2000). 2

[LLO14] LAI R., LU J., OSHER S.: Density matrix minimization
with ℓ1 regularization. ArXiv e-prints (Mar. 2014). 9

[LO14] LAI R., OSHER S.: A splitting method for orthogonality
constrained problems. J. Sci. Comput. 58, 2 (2014). 4

[LZ10] LEVY B., ZHANG R. H.: Spectral geometry processing.
In ACM SIGGRAPH Course Notes (2010). 2, 3

[MDSB02] MEYER M., DESBRUN M., SCHRÖDER P., BARR

A. H.: Discrete differential-geometry operators for triangulated
2-manifolds. In Visualization and Mathematics III. 2002. 3

[MTAD08] MULLEN P., TONG Y., ALLIEZ P., DESBRUN M.:
Spectral conformal parameterization. Comp. Graph. Forum

(Symp. Geom. Proc.) 27, 5 (2008). 2

[NVW∗13] NEUMANN T., VARANASI K., WENGER S.,
WACKER M., MAGNOR M., THEOBALT C.: Sparse local-
ized deformation components. ACM Trans. Graph. (Proc.

SIGGRAPH Asia) 32, 6 (Nov. 2013). 2

[OBCS∗12] OVSJANIKOV M., BEN-CHEN M., SOLOMON J.,
BUTSCHER A., GUIBAS L.: Functional maps: A flexible rep-
resentation of maps between shapes. ACM Trans. Graph. (Proc.

SIGGRAPH) 31, 4 (July 2012). 2, 7, 8
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