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1 Additional Comparison to Valgaerts et al.

In these experiments, we show that our new scene flow method is
an essential improvement over the method of [Valgaerts et al. 2010]
for our specific purpose of facial performance capture.

Fig. 1 shows the comparison of our structure-aware smoothness
term with the TV regularizer used in [Valgaerts et al. 2010] for the
target frame of Fig.6 in the paper. The top results are obtained
using TV regularized scene flow and the bottom results using scene
flow with our proposed anisotropic regularizer. The two zoom-ins
clearly show that anisotropic regularized scene flow produces more
realistic tracked features, while TV regularized scene flow induces
drift artifacts, such as double folding and degenerate triangles, in
particular in the mouth and eye brow region.

Fig. 3 shows a comparison for the target frame depicted in Fig. 2.
In the middle and the right column we show tracking results for
the same coarse template mesh. The top results are again obtained
using TV regularized scene flow and the bottom results using scene
flow with our proposed anisotropic regularizer. As for the results
in Fig. 1, anisotropic regularized scene flow produces more realis-
tic tracked features, while TV regularized scene flow induces drift
artifacts. The better performance of our structure-aware regular-
ization strategy comes from its very selective smoothing behavior,
which results in an overall smoother scene structure and scene flow,
while still respecting semantically meaningful facial features. It
is important to note that our regularization improves both the esti-
mated stereo reconstruction and the estimated scene flow, and thus
works on two complementary fronts: An improved stereo recon-
struction results in a better assignment of the scene flow vectors in
the tracking step, while the improved scene flow estimation leads
to a more reliable deformation of the mesh geometry. An example
of this is shown in the left column of Fig. 3, where we depict the
stereo reconstruction obtained by the scene flow algorithm. We see
that our result is smoother than the one produced by TV regular-
ization, while we are still able to preserve sharp facial features. If
we try to obtain a comparable level of smoothness with TV regular-
ization, the scene structure and scene flow will suffer from for TV
regularization well-known staircasing artifacts, such that important
features will be lost. This is clearly visible in Fig. 2.

It also has to be noted that possible artifacts induced by a poorer
scene flow estimation could be partly mitigated by choosing a
higher weight for the Laplacian regularization of the geometry in
the tracking pipeline. We have experienced, however, that increas-
ing the amount of Laplacian regularization will lead to much less
expressive facial motion and this is in most cases undesirable.

Figure 1: Novel structure-aware smoothness terms. Top row: re-
sults obtained using [Valgaerts et al. 2010]. Bottom row: results
obtained using our method. Left column: the tracked coarse mesh
geometry. Middle and right column: triangle-overlaid zoom-in into
the regions highlighted on the left. Note the better tracking of ex-
pressive features such as mouth and eyebrows using our method.

Figure 2: Novel structure-aware smoothness terms. Left: the
right target frame. Middle: the 3D reconstruction estimated by
our scene flow method. Right: the 3D reconstruction estimated by
[Valgaerts et al. 2010]. For a comparable level of smoothness, TV
regularization will produce well-known staircasing artifacts (nose,
lips, eyebrows).



Figure 3: Novel structure-aware smoothness terms. Top row: re-
sults obtained using [Valgaerts et al. 2010]. Bottom row: results
obtained using our method. Left: the 3D reconstruction estimated
by the scene flow. Middle: the tracked coarse mesh for the same
frame. Right: triangle-overlaid zoom-in into the regions high-
lighted in the middle. Note the artifacts in the mouth and eye region
and the slight deformation of the nose for TV regularization.

2 Additional Results for Motion Refinement

Fig. 4 plots the normalized cross correlation (NCC) between the re-
projected image and the corresponding input image for 25 frames
of a similar sequence as the one shown in Fig.7 in Sec. 5.3 in the
paper. For tracking with motion refinement (blue curve), we see
that the NCC is consistently higher than without (red curve). From
our experience, motion refinement is important for the realistic cap-
ture of expressive facial motion, such as the example of Fig.7 in the
paper. For such cases, we found that one refinement step per time
instance formed a good compromise between accuracy and compu-
tational complexity. This strategy is illustrated in the blue curve by
an increase in NNC between each pair of consecutive frames. For
less expressive motion such as speech, we found no large improve-
ments in the estimated geometry. For such cases, motion refinement
could be applied less frequently or even considered optional.
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Figure 4: Motion refinement. Graph of the NCC for a tracking
result with (blue) and without (red) motion refinement.

3 Additional Comparison to Wu et al.

In these experiments, we show that our new shape refine-
ment method is an essential improvement over the method of
[Wu et al. 2011] for the purpose of facial performance capture.

Because we can make use of fast sparse linear solvers, e.g.
Cholesky decomposition, and because all vertices are optimized si-
multaneously in each iteration step, we achieve a general speed-up
over patch-based non-linear optimization. This is depicted in Fig. 5,
where the graph shows that our novel iterative minimization strat-
egy reduces computation time by an order of magnitude compared
to the non-linear patch-based optimization of [Wu et al. 2011] for
the same sequence with constant parameters. The figure also shows
that the proposed shape optimization strategy converges to a lower
energy, and thus a better optimal shape, for most frames.

4 Additional Results and Validation

Here, we show additional results to the ones already shown in the
main paper. Fig. 6 extends Fig. 11 from the paper by presenting
reconstructions for two additional facial poses. Figs. 8 and 9 illus-
trate the acquisition of stereo sequences with a GoPro. Moreover,
they extend Fig. 13 from the paper by showing additional recon-
structions. Finally, Fig. 10 depicts a visual comparison between the
result of our method and a laser scan for a similar pose.

5 Limitations

The shading-based refinement step can lead to artifacts on the
boundaries caused by shadows. This is visible in the outdoor cap-
ture results of Fig. 9 around the nose and chin of the actor. In the
video we demonstrate how we can reduce these artifacts, but this
comes at the expense of less detail.

In Fig. 11 we show a failure case of the tracking pipeline in the
presence of strong and fast moving shadow boundaries. The top
row shows an actor leaving a building and moving from the shadow
into the sunlight. The middle row shows the estimated scene flow
for the top frames, where a red color indicates strong motion. Al-
though there is hardly any motion of the face, the moving shadow
boundary is erroneously interpreted as physical surface motion. As
a result, the tracked mesh deforms in an unrealistic way, as depicted
in the bottom row.
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Figure 5: Fast Iterative Minimization. Left: run time per frame for a sequence refinement with constant parameters. Right: shading energy
per frame. Red: our optimization, blue: optimization of [Wu et al. 2011].



Figure 6: Results for a pair of Canon cameras. From top to bottom: the left input image, the corresponding reconstructed mesh, the mesh
overlaid with a checkerboard pattern to demonstrate geometric coherence, the mesh colored using projective texturing. All results are taken
from a single capture over more than 300 frames and are in full-vertex correspondence. They are shown in chronological order, starting from
the template mesh at the far left.



Figure 7: Two enlarged results for the pair of Canon cameras that show the reconstructed surface detail.

Figure 8: Indoor results for a pair of GoPro HD helmet cameras. Top row from left to right: set-up of a person being recorded in an
uncontrolled indoor environment, the starting frame and the template mesh, a captured result after approximately 100 frames. Bottom row
from left to right: the set-up of a person recording himself (note the relatively small image region occupied by the face), the template mesh
and a captured result after approximately 100 frames.



Figure 9: Outdoor results for a pair of GoPro HD helmet cameras. Top row: a person recording himself in an uncontrolled environment
with bright sunlight. Captured results after approximately 100 and 200 frames. Bottom row: a person recording himself under changing
illumination. Captured results after approximately 50 and 150 frames.



Figure 10: Our reconstruction on a static face (top left) comes close to a laser scan of a similar face pose (top right, no hole filling done).
The bottom row shows the meshes colored by normal orientation.



Figure 11: Limitations of the tracking pipeline in the presence of strong moving shadows.


