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Here we provide more elaborate derivations of the equations discussed in
the main paper in sections 5.1 and 5.2. For better readability, we repeat the
discussion in the paper of these two sections, but substantiate the equations
now with the exact form of the functions and matrices. In the following, we cite
the reference Bregler et al.[1] of the main paper at a few places. Please find
this reference from the main paper. We will publish this document as a publicly
available technical report after the acceptance of the main paper.

1 Surface parameterization with respect to pose

We use the popular linear blend skinning approach to deform the mesh to a
skeletal pose. Given the position of vertex i to be qti at time t, this vertex’s new
position qt+1

i at time t+ 1 has the following form:

(
qt+1
i

1

)
=

m∑
j=1

wjCJj

(
qti
1

)
, (1)

where Cjj represents the rigid motion of joint (or bone) Jj . Each vertex i is
assigned a set of skinning weights wj that determine how much influence bone
(or joint) j has on the deformation of vertex i.

Following Bregler et al.[1], we represent the articulated pose to be estimated

by a set of twists θk ξ̂k. The state of a kinematic chain is determined by a global
twist ξ̂ and the joint angles Θ = (θ1, · · · , θm). Assuming the state of the kine-
matic skeleton of the previous time-step to be known, the unknowns for pose
estimation are the rigid motion of the root node and changes in joint angles
which we denote as

φ = (∆ξ̂,∆θ1, · · · , ∆θm) (2)

Let qti be the position of vertex i at t. By using exponential maps to represent
each joint’s rigid motion and by linearizing the rigid body transforms, the pose
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of the vertex i at t+ 1 can be expressed with the skinning equation as(
qt+1
i

1

)
=

m∑
j=1

wje
∆ξ̂

∏
k∈T (j)

eξ̂k·∆θk
(
qti
1

)

≈
(
qti
1

)
+

∆ξ̂ +

m∑
j=1

wj
∑

k∈T (j)

ξ̂k ·∆θk

(qti
1

)
,

(3)

where T (j) determines the indices of joints preceding the joint k in the kinematic
chain. In another way, Eq. (3) can be rewritten as:

(
∆qti

0

)
=

(
qt+1

1

)
−
(
qti
1

)
≈

∆ξ̂ +

m∑
j=1

wj
∑

k∈T (j)

ξ̂k · θk

(qt
1

)

=

[
I4×3, −q̂ti , WT (1)ξ̂1

(
qti
1

)
, WT (2)ξ̂2

(
qti
1

)
, . . . , WT (m)ξ̂m

(
qti
1

)]
· φ = Mq(i) · φ,

(4)

where WT (j) =
∑
k∈T (j) wk and is the total sum of the skinning weights which

are influenced by the joint j (i.e. corresponding to joints appearing after the
joint j in the kinematic chain), and Mq(i) is the matrix determining how the
pose-change φ influences the change of vertex position. Thus, the change in each
vertex position is expressed as a linear function of φ.

A similar equation can be derived for the vertex normal nt+1
i at time t+ 1

∆nt+1
i = (∆ω̂ +

m∑
j=1

wj
∑

k∈T (j)

ω̂k · θk) · nti

=
[
0, −n̂ti, WT (1)ω̂1n

t
i, WT (2)ω̂2n

t
i, . . . , WT (m)ω̂mn

t
i

]
· φ = Mn(i) · φ,

(5)

where ω̂ is the rotation part of twist ξ̂, and Mn(i) is a matrix that determines
how the pose-change φ results in a change in normal orientation.

2 Shading constraint for pose estimation

Our shading constraint requires the rendered images of the optimal pose accord-
ing to our lighting model to be as-close-as-possible to the image data captured.
The shading constraint for a single camera c is defined as

Esc =
∑
i

(ρig(qt+1
i ) · S(nt+1

i )− It+1
c (xt+1

i , yt+1
i ))2, (6)

where (xt+1
i , yt+1

i ) is the projection of the surface vertex qt+1
i , and g(qt+1

i ) and
S(nt+1

i ) are the vectors of SH coefficients gk and Sk (See the image formation
model in the Eq. (2) of the paper for description of these symbols). Next we



ECCV 2012 3

linearize the SH term S(nt+1
i ) and the image intensity term It+1

c . The SH term is
expressed in a first-order Taylor-series expansion, and using the terms of Eq. (5).

S(nt+1
i ) ≈ S(nti) +

∂S(nti)

∂nti
∆nti = S(nti) +

∂S(nti)

∂nti
Mn(i) · φ, (7)

where
∂S(nt

i)
∂nt

i
is derivative of scaled SH function with respect to normal changes

∆nti, which are expressed in terms of pose changes φ. See the appendix ?? for

the detailed form of S(nti) and
∂S(nt

i)
∂nt

i
.

Inspired by the formulation of optical flow, we linearize It+1(xt+1
i , yt+1

i ) as:

It+1(xt+1
i , yt+1

i ) = It+1(xti + ui, y
t
i + vi) ≈ It+1(xti, y

t
i) +∇xIt+1ui +∇yIt+1vi.

(8)
Next, we derive the linear approximation for the flow (ui, vi) in an image from

the motion parameters φ. As camera calibration is available in our system, we
use the full perspective camera model instead of scaled orthographic projection
as used by Bregler et al.[1]. The full perspective camera model has the following
form: (

xti
yti

)
=

(
s1
Zt+1

i

0 0 s3

0 s2
Zt+1

i

0 s4

)
· eξ̂c ·

(
qt+1
i

1

)
, (9)

where s1, s2, s3, s4 are the acquired camera intrinsic parameters, Zt+1
i is the

depth of qt+1
i for the current camera, and eξ̂c acts as the extrinsic matrix of

the camera’s pose. Then, the image motion from time t to time t + 1 can be
linearized as:(

ui
vi

)
=

(
s1
Zt+1

i

0 0 s3

0 s2
Zt+1

i

0 s4

)
· eξ̂c ·

(
qt+1
i

1

)
−

(
s1
Zt

i
0 0 s3

0 s2
Zt

i
0 s4

)
· eξ̂c ·

(
qti
1

)

=

(
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Zt
i−∆Zt

i
0 0 s3

0 s2
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i−∆Zt
i

0 s4

)
· eξ̂c ·

(
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i

1

)
−

(
s1
Zt

i
0 0 s3
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Zt

i
0 s4

)
· eξ̂c ·

(
qti
1

)

≈

(
s1
Zt

i
0 0 s3

0 s2
Zt

i
0 s4

)
· eξ̂c ·

((
qt+1
i

1

)
−
(
qti
1

))
+

 s1∆Z
t
i

Zt
i
2 0 0 0

0
s2∆Z

t
i

Zt
i
2 0 0

 · eξ̂c · (qt+1
i

1

)

≈
( s1
Zt

i
0 0 s3

0 s2
Zt 0 s4

)
· eξ̂c ·

(
∆qti

0

)
+

 s1∆Z
t
i

Zt
i
2 0 0 0

0
s2∆Z

t
i

Zt
i
2 0 0

 · eξ̂c · ((qti
1

)
+

(
∆qti

0
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≈

(
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0 0 s3
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Zt

i
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)
· eξ̂c ·

(
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0

)
+

( s1
Zt

i
2 0 0 0

0 s2

Zt
i

2 0 0

)
· eξ̂c ·

(
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1

)
·∆Zti ,

(10)

where Zti is the depth of qti for the current camera. The linearization is based on
the assumption that the rigid motion ∆qti as well as the relative depth change
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∆Zi/Z
t
i are small enough. Besides, the depth change ∆Zti can be further ex-

pressed through the motion parameters:

∆Zti = −
[
eξ̂c
(
∆qti

0

)]
z

= −
[
eξ̂c ·Mq(i) · φ

]
z

= −

rT1 t1
rT2 t2
rT3 t3

 ·Mq(i) · φ


z

= −
[
rT3 t3

]
·Mq(i) · φ,

(11)

where rT3 is the 3rd row of the rotation matrix of the camera pose. As the 4th
row of Mq(i) is zeros, t3 can be omitted in the above equation. So the flow
(ui, vi) can ultimately be expressed as a linear function of the pose change φ as
following:(

ui
vi

)
≈

(
s1
Zt

i
0 0 s3

0 s2
Zt

i
0 s4

)
· eξ̂c ·

(
∆qti

0

)
+

(
s1
Zt

i
2 0 0 0

0 s2
Zt

i
2 0 0

)
· eξ̂c ·

(
qti
1

)
·∆Zti

≈

{(
s1
Zt

i
0 0 s3

0 s2
Zt

i
0 s4

)
eξ̂c −

(
s1
Zt

i
2 0 0 0

0 s2
Zt

i
2 0 0

)
eξ̂c
[
qti
1

]
·
[
rT3 0

]}
·Mq(i) · φ,

(12)

Thus, the flow (ui, vi) is ultimately be expressed as a linear function of pose-
change parameters φ.

The shading constraint in Eq. (6) can be further improved by considering
the color similarity between the rendered color and the image color. This color
similarity is computed as the Euclidean distance in HSV space and appears as
a weighting factor αi in our shading constraint. This helps us avoid optimizing
the model where the template material does not yet match to its projection in
the image. Combining terms from multiple cameras, our non-linear multi-view
shading energy function is then given as

E =
1

N

∑
c

∑
i

{αci (ρig(qt+1
i ) · S(nt+1

i )− It+1
c (xt+1

i , yt+1
i ))}2, (13)

where N is the total number of constraints for error normalization (i.e, the
number of pixels in all cameras getting the projection from the mesh), and αci is
the color similarity for pixel i in camera c. Using the previously described recipe
of linearization, this can be expressed in terms of pose parameters φ as a linear
system:

H · φ = b. (14)

Here, the kth rows of matrix H and vector b have the following form:

Hk = αciρig(qt+1
i ) · ∂S(nti)

∂nti
Mn(i)− αci

[
s1
Zt

i
It+1
x , s2

Zt
i
It+1
y , 0, s3I

t+1
x + s4I

t+1
y

]
eξ̂cMq(i)

+αci

[
s1
Zt

i
2 It+1
x , s1

Zt
i
2 It+1
y , 0, 0

]
eξ̂c
[
qti
1

]
·
[
rT3 0

]
·Mq(i),

bk = αciI
t+1(xti, y

t
i)− αciρig(qt+1

i ) · S(nti).

(15)


