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Abstract GrabCut is a segmentation technique for 2D still color images, which is mainly based on

an iterative energy minimization. The energy function of the GrabCut optimization algorithm is

based mainly on a probabilistic model for pixel color distribution. Therefore, GrabCut may intro-

duce unacceptable results in the cases of low contrast between foreground and background colors.

In this manner, this paper presents a modified GrabCut technique for the segmentation of human

faces from images of full humans. The modified technique introduces a new face location model for

the energy minimization function of the GrabCut, in addition to the existing color one. This

location model considers the distance distribution of the pixels from the silhouette boundary of a

fitted head, of a 3D morphable model, to the image. The experimental results of the modified

GrabCut have demonstrated better segmentation robustness and accuracy compared to the original

GrabCut for human face segmentation.
� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

Several applications in computer vision such as object recogni-
tion, scene analysis, automatic traffic control systems and med-

ical imaging require image segmentation as a pre-processing
step. Image segmentation is simply the process of separating
an image into foreground and background parts. Many

techniques have been developed for the efficient extraction
of a foreground object in a complex environment whose
background cannot be trivially subtracted. Usually segmenta-
tion uses information encapsulated in the digital image to com-
pute the best segmentation. This might be color information

that is used to create histograms, or information about the pix-
els that indicate edges, boundaries or texture information [1].

The GrabCut technique developed by Rother et al. [2] is
considered as one of the state-of-the-art unsupervised

semi-automatic methodologies for image segmentation. It is
a powerful extension of the graph cut technique [3] for segmen-
tation of color images. GrabCut has been applied to different

segmentation problems such as human body segmentation
[4–6], video segmentation [7] and semantic segmentation [8].
Hu [4] developed an automatic extraction of human body from

color images; however the process goes through many steps
and iterations. His technique dynamically updates a tri-map
contour using the iterated GrabCut technique. The tri-map is

initialized from the results of detected faces from a scanning
detector to the whole target image. The research is constrained
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to human poses with frontal side faces. Hernandez et al. [5]
proposed a full-automatic Spatio-Temporal GrabCut human
segmentation methodology in video sequences. The process

benefits from the combination of tracking and segmentation.
GrabCut algorithm is initialized using a set of seeds defined
by face detection and a skin color model. Gulshan et al. [6]

utilize the local color model based GrabCut to automatically
segment humans from cluttered images. They use trained
linear classifiers to learn segmentation masks from sparsely

coded local HOG descriptors. They obtain crude segmentation
of the human which is then can be refined using GrabCut local
color model.

Corrigan et al. [7] extended GrabCut for video object seg-

mentation. They extended the Gaussian Mixture Model
(GMM) of GrabCut algorithm so that the color space is com-
plemented with the derivative in time of pixel intensities in

order to include temporal information in the segmentation
optimization process. This led the segmentation process to be
more robust. Göring et al. [8] integrate GrabCut into a semantic

segmentation framework by labeling objects in a given image.
The specific problem of human face segmentation [9–13] is

an essential pre-processing step needed in many applications,

such as face identification, face tracking, video surveillance
and security control systems. The effectiveness and robustness
of these applications depend mainly on the correctness of the
segmentation. The various factors associated with face

segmentation are Intensity, Pose, Structural components,
Image rotation, Facial expression, Poor quality, Occlusion
and Illumination [11].

Different approaches [9,10,13] have been presented to solve
the problem of face segmentation. These techniques intro-
duced face position detection methods as an initialization step

for the face segmentation process, especially for the images of
full humans. The face detection methods introduced by [9,13]
are based on a skin color model, which exhibit good behavior

only in controlled environments and generates bad results in
the cases of low contrast between the face and the background.
The method of [9] enabled the detection and segmentation of
multiple faces in a single image. However, it had a restriction

to the faces with rotation larger than 45 vertical or horizontal
degrees, and their results are considerably influenced in the
cases of high or low illumination.

Lee et al. [10] applied the GrabCut technique for the
problem of face segmentation. They tackled the problem of
automatic segmentation of both human face and hair regions

in images. Their probabilistic model for face position detection
depends mainly on an offline training process that uses a set of
manually labeled ground truth face images to train the
parameters of the location, face and hair color GMM’s

(Gaussian Mixture Models) of the GrabCut. Their segmenta-
tion algorithm is fully automatic without any need of human
intervention.

This paper focuses mainly on the problem of face segmen-
tation from images of entire humans. It presents a similar
framework to Lee et al. [10], through which it presents a new

probabilistic model for face position detection as part of the
GrabCut segmentation [2]. This face position detection model
is applied through a semi-automatic way, however it avoids the

computational overhead of the offline training process used in
[10]. The proposed technique also aims at providing a more
robust and accurate solution for face segmentation in difficult
environments. Such environments are like those of low color
contrast between background and foreground [9,13], and those
of faces with restricted face orientation angles [9].

The fundamental contribution of this paper is modifying

the energy function of the GrabCut optimization model.
Modification includes adding a new shape prior term in addi-
tion to the original color model. This location term considers

the pixels’ distance to the boundary of the localized human
face in the image. The proposed technique eliminates the need
to user intervention after segmentation, and provides more

robust and accurate segmentation than the results of the
original GrabCut [2].

The remainder of this paper is organized as follows;
Section 2 illustrates more details about the original technique of

the GrabCut. The main contribution of the paper is described
in Section 3. Results and discussions are presented in Section 4
with visually qualitative and quantitative evaluations.

2. Background

Image segmentation is simply the process of separating an

image into foreground and background parts. Graph cut tech-
nique [3] was considered as an effective way for segmentation
of monochrome images, which is based on the Min-Cut/

Max-Flow algorithm [14]. GrabCut [2] extended the graph
cut algorithm to segment color images. It uses GMMs to learn
color distributions of the foreground and background by

giving each pixel a probability to belong to a cluster of other
pixels. The user intervention in the GrabCut is allowed by
specifying only the background pixels by drawing a rectangle
around the desired foreground object. The GrabCut technique

can be explained as follows: Given a color image I, let us
consider the array z= (z1, . . . , zn, . . . , zN) of N pixels where
zi = (Ri, Gi, Bi), i 2 [1, . . . , N] in the RGB space. The segmen-

tation is defined as an array a = (a1, aN), ai 2 {0,1}, assigning
a label to each pixel of the image, indicating if it belongs to the
background or the foreground. A tri-map T is defined by the

user, in a semi-automatic way, which consists of three regions:
TB, TF and TU, each one containing initial background,
foreground, and uncertain pixels, respectively. Pixels belonging

to TB and TF are considered as background and foreground
respectively, whereas those belonging to TU are labeled by
the algorithm.

A full covariance GMM of K components is defined for

background pixels (ai = 0), and another one for foreground
pixels (aj = 1), parameterized as follows:

h ¼ fpða; kÞ; lða; kÞ; Rða; kÞ; a�f0; 1g; k ¼ 1 � � � kg ð1Þ

where p represents the weights, l represents the means of the
GMM’s and R the covariance matrices of the model. We also
consider the array k= {k1, . . . , ki, . . . , kN}, ki 2 {1, . . . , K},
i 2 [1, . . . , N] which is considered to indicate the component
of the background or foreground GMM (according to ai) the
pixel zi belongs to. The energy function for the segmentation

is then

Eða; k; h; zÞ ¼ Uða; k; h; zÞ þ Vða; zÞ ð2Þ

which consists of a data term U and a smoothness term V. The

data term U computes the likelihood of a pixel to belong to
some label. It is based on p(Æ); the Gaussian probability distri-
butions of the GMM and p(Æ), which are the mixture weighting
coefficients:



Fit a 3D human model to 
the image

Generate silhoutte image of 
the 3D projected head 

Detect face position in the 
image

Initialize automatic tri-map 
of the Grabcut

Compute probabilistic 
models of colour and 
location distributions

Run modified GrabCut to 
iteratively minimize energy 
function and compute final 

segmentation

Figure 1 The framework of the modified GrabCut technique.
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Uða; k; h; zÞ ¼ Ri � log pðzijaiki; hÞ � log pðai; kiÞ ð3Þ

The smoothness term V is a regularizing prior term that
assumes that segmented regions should be coherent in terms
of the color, considering the neighborhood C around each
Figure 2 Sample results for different stages of the modified Grab

initialization of the modified GrabCut, and (c) the segmented head.
pixel. With this energy minimization scheme and given the
initial tri-map T, the final segmentation is performed using
the minimum cut algorithm of the graph cut [3].
3. Modified GrabCut

The main problem with the original GrabCut technique, for

image segmentation, is that it produces unacceptable segmen-
tation results, especially in the cases of camouflage, where the
color of foreground and background is not clearly separated.

This is mainly due to the probabilistic model, of the pixel color
distribution, which represents the core component of the
energy function of the GrabCut optimization algorithm.

Consequently, extra user refinements are applied; using
touch-up tools to enhance the segmentation results. The proposed
human face segmentation technique tries to solve the aforesaid

drawback by extending the data term of the GrabCut energy
function, Eq. (3). This extension includes adding a new shape
prior term representing the face location model as described in
Section 3.3. The outline of the proposed technique is shown in

Fig. 1.
The proposed human face segmentation technique starts

with pose fitting of a 3D morphable human model to an image

of a full human. This allows for automatic detection of the face
position in the image, in addition to automatic initialization of
the GrabCut GMM color and location models without any
Cut: (a) human pose fitting, (b) projected head silhouette and



Figure 3 Snapshot of the graphical user interface for fitting the 3D human model to the image.
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further user intervention (see Section 3.2). Sample results for
the main stages of the modified GrabCut technique are shown
in Fig. 2, while details are described in the following

subsections.

3.1. Human pose fitting

The 3D morphable human model is a parametric model that
allows for non-rigid pose and shape deformations. This model
was learned from a publicly available database of full body

laser scan of real persons and which was kindly provided by
Hasler et al. [15]. This model is based on a kinematic skeleton
comprising of 14 joints and a surface mesh. It allows for pose
and shape variations as a variant of the SCAPE model by

Anguelov et al. [16]. The fitting of the morphable model to
the image, Fig. 3, is performed manually using a locally devel-
oped graphical user interface. This graphical interface is

designed to allow a high degree of interactivity, through which
the 3D model shape and pose parameters are easily fitted using
quick up/down sliders in a process that takes less than a

minute per image.

3.2. Automatic initialization of the modified GrabCut

Fitting the 3D human model to the image is an initial step to
approximately define the face position in the image. This elim-
inates the need to the user intervention to determine the
desired rectangle around the foreground object. The GrabCut

starts automatically by drawing the required bounding box B,
extended by a small distance ratio from the box dimensions,
around the boundary of the projected head silhouette of the
fitted model, Fig. 2(b). This initializes the tri-map T from
the bounding box B resulted from the fitting as follows:
TU= {zi 2 B}, TB= {zi R B}.

3.3. Modified GrabCut energy function

The energy function of the original GrabCut, Eq. (3), will be

modified by adding a new shape prior term that minimizes
the distances of image pixels to the silhouette image of the
projected head. The distance is computed using the Squared

Euclidean Distance Transforms (SEDT). This distance
transforms work by labeling each pixel of the image with its
distance di to the nearest boundary pixel of the silhouette
image. Squared distance between point p = (p1, p2, . . . , pn)

and q = (q1, q2, . . . , qn) is given by:

dðp; qÞ ¼
Xn

i¼1
ðqi � piÞ

2 ð4Þ

Two new GMMs for representing the location model, each
consists of only one component, are introduced; one for the
background pixels (ai = 0) and the other for the foreground
pixels (aj = 1). These two GMMs are now parameterized as

follows:

h0 ¼ flðaÞ; rðaÞ; a�f0; 1gg ð5Þ

where l is the mean and r is the standard deviation of the

GMM. Eq. (3) of the original GrabCut energy function is
now updated into:

Uða; k; h; z; d; h0Þ ¼ Ri � log pðzijai; ki; hÞ � log pðdijai; h
0Þ

� log pðai; kiÞ ð6Þ



Figure 4 The dataset of full human images.
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Figure 5 Visual comparison for the segmentation results of

original GrabCut (the first row of each image) and modified

GrabCut (in the second row). (a) The segmentation results.

(b) The close up view on the right shows parts of exclusion

highlighted with red marks.
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The new data term of the energy function computes
the likelihood that each pixel in the image belongs to
foreground or background based on both color and distance

distributions.

4. Results and discussion

The modified GrabCut technique was experimentally tested
using a dataset collected from publically available images,
shown in Fig. 4. These images were selected to include different

human poses, head orientations and different color contrast
between human face and background. The current implemen-
tation performs only the hard segmentation part of the original

GrabCut technique [2].
Visual comparisons for the segmentation results of sample

images from the dataset, Fig. 4, are shown in Fig. 5.

These sample images were selected to cover different head
orientations and color contrast between foreground and
background. Comparison was performed between the modi-
fied GrabCut and original GrabCut [2]. It can be observed

that the results of the modified GrabCut are more accurate,
compared to the results obtained by the original GrabCut,
where some parts of the segmentation are mistakenly

excluded (highlighted with red marks in the close up view
images on the right). Exclusions occur mainly at the parts
adjacent to the face border, Fig. 5(iii and iv), where low

contrast exists between foreground and background colors,
while others occur internally in the face region as showed
in all sample images.

Table 1 shows quantitative comparisons between both tech-

niques for selected sample images from the dataset presented in
Fig. 4. The segmented ground truth data for the whole dataset
are manually generated using standard image processing

tools.1 The silhouette images for the segmentation results of
the ground truth, and both techniques (original and modified
GrabCut) are also generated for all images. Two measures;

the percentage error and the percentage overlap score; are
computed for and compared between both techniques. The
percentage error is calculated as the fraction of pixels with

wrong segmentation divided by the total number of pixels in
the image. Comparisons show that the modified GrabCut
technique exhibits better accuracy compared to the original
GrabCut. The mean percentage error rate is 0.19 ± 0.06%

for the modified GrabCut compared to 0.29 ± 0.15% for the
original GrabCut technique.

Between any two binary segmentations y1 and y2, an over-

lap score is given by y1 \ y2/y1 [ y2, while the standard-error,
in the segmentation process, is computed as the standard-
deviation divided by the square root of the data set size.

The modified GrabCut exhibits average overlap score
of 90.97% and standard-error of 1.35% compared to
85.97% and 3.53% for the original GrabCut. Fig. 6 shows
graph plots of the experimental results for better visual

comparisons.
Table 2 demonstrates a proof of how the minimization

function of the modified GrabCut techniques outperforms

the original one in terms of minimizing the error and improv-
ing the segmentation accuracy. The table presents the results of
one sample image, Fig. 4(f), which exhibits bad segmentation

results using original GrabCut technique. It shows the error
1 Adobe Photoshop�.



Table 1 Experimental segmentation results of sample images.

Image Error % in the

original GrabCut (%)

Error % in the modified

GrabCut (%)

Overlap score % in the

original GrabCut (%)

Overlap score % in the

modified GrabCut (%)

Fig. 4(f) 0.41 0.21 70 85

Fig. 4(h) 0.17 0.17 92 93

Fig. 4(o) 0.54 0.30 83 90

Fig. 4(q) 0.23 0.20 90 92

Fig. 4(y) 0.14 0.13 92 93

Fig. 4(x) 0.22 0.13 89 93

Mean 0.29 0.19 85.97 90.97

SD 0.15 0.06 8.64 3.32

Standard error 3.53 1.35

Table 2 Experimental results across minimization process for a sample image.

Iteration No. of pixels changed during minimization Error % Overlap score %

Original

GrabCut

Modified

GrabCut

Original

GrabCut (%)

Modified

GrabCut (%)

Original

GrabCut (%)

Modified

GrabCut (%)

1 5394 5108 0.249 0.258 81.621 80.987

2 271 28 0.41 0.224 70.445 81.250

3 1 9 0.41 0.223 70.400 81.924

4 0 2 0.41 0.221 70 83.834

5 0 0.21 85

(a)

(b)

Figure 6 Plot of experimental results: (a) percentage error and (b) percentage overlap score, between original and modified GrabCut

techniques of selected sample images.
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and overlap score percentages as calculated after each iteration
within the minimization process of both original and modified
GrabCut. The first two columns show the number of pixels
that have been changed across minimization by transferring
between foreground and background segments. The minimization
process converges whenever there is no longer change in the



(a)

(b)

Figure 7 Plot of experimental results across the minimization

process of a sample image: (a) percentage error and (b) percentage

overlap score.
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number of pixels. It can be noticed that although the modified

technique needs one more iteration to converge, both error and
overlap score percentages improve. The same results are visu-
ally compared in Fig. 7.

As shown, the modified GrabCut energy function is able to

overcome one of the original GrabCut drawbacks, which
occurs in the cases of camouflage. Such case occurs when
the true foreground and background distributions overlap

partially in the color space. This is because the minimization
algorithm is no longer dependent only on the color distribu-
tions. Combining both color and location distributions into

the energy function allows the segmentation to be more robust
to segment different faces even when foreground and back-
ground objects are not cleanly separated. Although the seg-
mentation process is still semi-automatic with initial manual

fitting, it is able to avoid much computational overhead of
the pre-processing such as the offline training process pre-
sented in [10]. In addition, the interactivity in fitting the para-

metric model is able to overcome the problem of human faces
with different views or orientation angels. Besides, no further
enhancements are required after segmentation through user

touch-up (manual editing via a brush tool), as presented in
the original paper of GrabCut [2].

5. Conclusions

A modified GrabCut technique is proposed by adding a new
‘‘location’’ term to the existing color term of the minimization

energy function of the original GrabCut. The new location
term considers the distance distribution of the pixels from
the silhouette boundary of a fitted head, of a 3D morphable
model, to the image. The results of the modified technique
were tested and compared both qualitatively and quantita-
tively to the original GrabCut technique. The results and the

comparisons proved that the modified technique is more
robust and accurate than the original GrabCut technique for
the segmentation of human faces from images of full humans.

In spite of being still semi-automatic, with the need for ini-
tial fitting of the 3D morphable human model to the image, the
modified technique has many advantages over the original

GrabCut. First, it solves the robustness problem of the original
GrabCut in the cases of camouflage. Second, it directly
produces face segmentation with acceptable accuracy without
extra segmentation refinements. Finally, it provides an

improvement toward the segmentation of the entire human
body from images, which will be considered in the future work.
Future work will also look forward for generalizing the mod-

ified algorithm to segment three dimensional models with
proper minimization function(s).
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