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Fig. 1. We propose a method to quantify uncertainty in radiance fields using a novel and e�icient manifold sampling strategy. Our approach allows for

di�erentiable optimization of views to reduce reconstruction ambiguities. We demonstrate this capability in next-best view planning (le�) and illumination

planning (right) tasks.

Radiance �elds are powerful and, hence, popular models for representing the

appearance of complex scenes. Yet, constructing them based on image obser-

vations gives rise to ambiguities and uncertainties. We propose a versatile

approach for learning Gaussian radiance �elds with explicit and �ne-grained

uncertainty estimates that impose only little additional cost compared to

uncertainty-agnostic training. Our key observation is that uncertainties can

be modeled as a low-dimensional manifold in the space of radiance �eld

parameters that is highly amenable to Monte Carlo sampling. Importantly,

our uncertainties are di�erentiable and, thus, allow for gradient-based op-

timization of subsequent captures that optimally reduce ambiguities. We

demonstrate state-of-the-art performance on next-best-view planning tasks,

including high-dimensional illumination planning for optimal radiance �eld

relighting quality.
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1 INTRODUCTION

Recent years have witnessed the overwhelming success of volu-

metric radiance �eld representations for scene reconstruction and

rendering [Kerbl et al. 2023; Mildenhall et al. 2020; Tewari et al.

2022]. Typically, such algorithms are provided with images observ-

ing the scene from multiple viewpoints, but also additional input
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variation such as time [Park et al. 2021; Xian et al. 2021] or illumi-

nation [Martin-Brualla et al. 2021; Srinivasan et al. 2021] have been

considered.

The reconstruction of radiance �elds from image observations

is an instance of an ill-posed inverse problem: Multiple di�erent

reconstructions can explain the data [Tarantola 2005]. Therefore,

in addition to raw predictions, a complete and robust radiance �eld

model must also provide a measure of its epistemic uncertainty [Goli

et al. 2024; Ho�man et al. 2023; Jiang et al. 2024; Pan et al. 2022; Shen

et al. 2021]. Such an uncertainty estimate should arguably exhibit

three key properties: First, it should provide a high-quality and ex-

pressive estimate of the range of all scene attributes, avoiding proxy

computations. Second, the involved computations should be e�cient

to not interfere with high-performance pipelines [Fridovich-Keil

et al. 2022; Kerbl et al. 2023; Müller et al. 2022]. Finally, the uncer-

tainty estimate should be di�erentiable. This crucial property turns

uncertainty into a functional tool, as it allows to systematically

increase model con�dence by optimizing for viewpoints, lighting

conditions, etc. for subsequent capture – a particularly pressing chal-

lenge in resource-constrained applications. Further, di�erentiability

facilitates capture planning for high-dimensional input domains,

where plain enumeration and evaluation of candidate capture condi-

tions is infeasible. In this work, we set out to develop a novel, general,

and practical approach for uncertainty estimation in radiance �elds

that exhibits all the above desirable properties.

Existing methods for uncertainty quanti�cation in radiance �elds

typically come in one of two �avors. Stochastic approaches con-

sider explicit attribute distributions which are optimized during

training [Savant et al. 2024; Shen et al. 2022, 2021; Sünderhauf et al.

2023; Yan et al. 2023], often within a variational-inference frame-

work [Blei et al. 2017]. While they directly model distributions of
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parameters, such approaches often require many samples to obtain

stable estimates, signi�cantly impairing e�ciency. In a second line

of work, uncertainty is estimated based on fully trained radiance

�elds [Goli et al. 2024; Jiang et al. 2024]. Typically, a Laplace ap-

proximation [Daxberger et al. 2021; Ritter et al. 2018] is employed,

resulting in rather coarse uncertainty proxies. Since these estimates

require automatic di�erentiation, obtaining di�erentiable uncer-

tainties necessitates the computation of higher-order derivatives,

posing signi�cant practical challenges.

Our approach employs a stochastic radiance �eld [Savant et al.

2024; Shen et al. 2021] with a 3D Gaussian representation [Kerbl

et al. 2023] that treats all of its parameters as random variables.

Drawing samples from the joint distribution of parameters allows

for rendering di�erent realizations of the radiance �eld. Both, train-

ing and uncertainty estimation during inference, require an integral

over realizations, which we estimate using Monte Carlo sampling.

However, the high dimensionality of radiance �eld parameters poses

a signi�cant challenge, as the joint distribution is typically complex.

Incorporating complete covariance matrices across all parameters is

intractable. Assuming full independence between parameters [Pan

et al. 2022; Savant et al. 2024; Shen et al. 2021], even though common

practice for e�ciency, leads to excessive variance. Our key contribu-

tion is the observation that restricting samples to a low-dimensional

linear manifold in parameter space is su�cient for an Monte Carlo

estimator to e�ciently train and estimate uncertainty in a stochastic

radiance �eld. While stochastic sampling is typically considered

ine�cient and prone to high variance, with our method drawing

only very few samples is enough to obtain stable and high-quality

gradients for training and uncertainty estimation (Fig. 1).

The bene�ts of our formulation are threefold. First, explicit mod-

eling of the parameter distribution provides a convenient and inter-

pretable uncertainty measure. Second, the low-rank approximation

of the covariance matrix results in a smoother objective energy

landscape that lends itself to stable optimization. Further, due to

the low number of samples required, our strategy is highly e�cient

in terms of computational performance and memory requirements,

both during training and inference. Third, our uncertainties are triv-

ially di�erentiable, as they simply arise from the mean of rendered

radiance �eld realizations.

We demonstrate that our approach signi�cantly outperforms pre-

vious methods across multiple aspects. A main application of our

manifold sampling is next-best view planning, which we evaluate on

a variety of relevant scenarios. In addition to the optimal selection

of camera candidates [Jiang et al. 2024; Kopanas and Drettakis 2023;

Pan et al. 2022], an application where we outperform the state of

the art, our approach for the �rst time allows for a di�erentiable �ne-

grained optimization of camera parameters that optimally reduce

uncertainty given the current state of the model. We further show

that our approach enables di�erentiable uncertainty estimation in

augmented radiance �elds, exempli�ed by the task of relightable

reconstruction [Martin-Brualla et al. 2021; Srinivasan et al. 2021].

Concretely, we optimize for the next-best illumination condition

that minimizes relighting uncertainty in radiance �elds, demon-

strating the versatility of our approach and its ability to handle

high-dimensional domains.

In summary, our contributions are:

• A novel stochastic radiance �eld formulation based on mani-

fold sampling that can be e�ciently trained.

• Amethod for di�erentiable uncertainty estimation that allows

for �ne-grained optimization of subsequent scene captures.

• The evaluation of our approach on the tasks of next-best

viewpoint and illumination planning.

We provide all source code and pre-trained models on https://vcai.

mpi-inf.mpg.de/projects/2024-ManifoldUncertainty/.

2 RELATED WORK

2.1 Deterministic 3D Reconstruction

3D reconstruction is the problem of taking image observations as

input and reconstructing the underlying 3D scene. This problem has

been studied for a long time and mature systems such as structure-

for-motion (SfM) are widely used to reconstruct 3D geometry and

cameras from image observations [Schönberger and Frahm 2016].

Recent years have seen a lot of progress on 3D scene representa-

tions that enable high-quality novel view synthesis. Early advances

relied on neural scene representations, such as neural radiance

�elds [Mildenhall et al. 2020], which use neural networks to repre-

sent geometry and appearance quantities, and are optimized from

the input images using inverse volume rendering. More recently,

voxel-based representations [Fridovich-Keil et al. 2023, 2022; Müller

et al. 2022; Yu et al. 2021] and 3D Gaussians [Kerbl et al. 2023] have

been used to represent the underlying scene for e�cient recon-

struction and rendering. Similar progress has also been seen for

relighting problems, where di�erentiable physics-based rendering,

or image-based lighting formulations have been used to compute

3D reconstructions [Chen et al. 2024; Lyu et al. 2022; Mai et al. 2023;

Saito et al. 2024; Zhang et al. 2021a,b].

Most of the progress has focused on deterministic 3D reconstruc-

tion, where the underlying epistemic uncertainties are not taken

into account. Instead, these methods rely on a large number of in-

put observations to minimize the uncertainty. In contrast, we are

interested in modeling and reconstructing the uncertainties in the

problem.

2.2 Uncertainty in 3D Reconstruction

Modeling uncertainty is an active area of research in machine learn-

ing. A common way of estimating uncertainty in deep learning is

using variational inference, where a distribution over free parame-

ters is estimated [Blundell et al. 2015; Kendall and Gal 2017; Khan

et al. 2018; Zhang et al. 2018]. However, variational inference is

often very slow and expensive, e.g., representing the full covariance

matrix can be infeasible for larger models. Thus, many methods use

Laplace’s approximation that estimates the posterior distribution

from the optimized MAP solution [Denker and LeCun 1990; Foong

et al. 2019; Kristiadi et al. 2020; MacKay 1991; Ritter et al. 2018;

Savant et al. 2024]. While Laplace’s approximation is more e�cient,

it can struggle with recovering complex distributions.

Both strategies have also been explored in the context of ra-

diance �elds and 3D reconstruction. Variational inference-based

approaches compute the posterior distribution. S-NeRF [Shen et al.

2021], ActiveNeRF [Pan et al. 2022], and Savant et al. [2024] assume
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independence between all parameters of the 3D representation. CF-

NeRF [Shen et al. 2022] uses latent space modeling with normalizing

�ow models to learn more complex distributions. FisherRF [Jiang

et al. 2024] and Bayes’ Rays [Goli et al. 2024] use Laplace’s approxi-

mation to compute the uncertainty in reconstruction. Our method

is based on variational inference; however, we show that a simple

low-dimensional approximation of the covariance leads to tractable

training and inference. Our method outperforms methods that as-

sume independence between all parameters, and at a comparable

cost to methods that use Laplace’s approximation.

We contrast our approach with popular 3D reconstruction meth-

ods that rely on dense training data [Ho�man et al. 2023; Long et al.

2024; Sargent et al. 2023; Tewari et al. 2024; Xu et al. 2023]. These

approaches assume large and dense training datasets with no un-

certainty, which can then be used to recover epistemic uncertainty

at test time from sparse observations. Our method does not rely on

any dense training data, and only uses the sparse observations to

compute the reconstruction.

2.3 Active 3D Reconstruction

Reconstructing estimates of the uncertainty is important for active

scanning applications, where the uncertainty can guide the opti-

mal scene conditions, such as camera poses and lighting. The most

common application is camera selection, where the sequence of

cameras used for scanning is determined by the current estimate of

the uncertainty [Jiang et al. 2024; Kopanas and Drettakis 2023; Pan

et al. 2022]. We compare to the state-of-the art methods and demon-

strate better performance on this task. Further, we also introduce

a di�erentiable version of the task where cameras are allowed to

freely move in 3D, rather than restricted to some candidate cameras.

We also demonstrate results on lighting optimization where we

reconstruct scene appearance from very few lighting conditions.

To the best of our knowledge, we are the �rst to demonstrate this

application.

3 BACKGROUND

In this work, we are concerned with radiance �elds �) that model a

3D scene using the volumetric representation

�) : (x, d, / ) → (f, c). (1)

The radiance �eld outputs volumetric density f ∈ R+ and RGB

color c ∈ R3 as a function of three arguments: x ∈ R3 is a location

in the scene, d ∈ S2 is a 3D direction vector, and / ∈ R=/ is

an (optional) vector of auxiliary parameters that depend on the

application. For example, / is a scalar time dimension in the case

of dynamic reconstruction [Park et al. 2021; Xian et al. 2021], or

a high-dimensional vector of illumination conditions in the case

of relightable scenes [Lyu et al. 2022; Martin-Brualla et al. 2021;

Srinivasan et al. 2021].

How to best represent �) remains a subject of active research [Chan

et al. 2022; Fridovich-Keil et al. 2022; Kerbl et al. 2023; Mildenhall

et al. 2020; Müller et al. 2022; Xu et al. 2022; Yu et al. 2021]. In this

work, we focus on the 3D Gaussian Splatting (3DGS) representa-

tion [Kerbl et al. 2023], which marks the current state of the art in

terms of reconstruction quality and rendering speed. This model

represents a radiance �eld as a Gaussian mixture model, where each

Training Views

Radiance Field 1 Radiance Field 2

Fig. 2. Using the same four training views (top), di�erent model parameter

initializations yield di�erent radiance fields (bo�om), reflecting uncertainty.

primitive has a location in 3D space, an anisotropic covariance, an

opacity, and a view-dependent color represented in the spherical

harmonics (SH) basis. The detailed workings of this model are not

central to our approach. Therefore, we treat �) as a black box in

our exposition and denote all trainable parameters as ) ∈ R3) .

Typically, a high number of parameters is required to parameterize

a radiance �eld, with 3) often reaching into the millions.

A radiance �eld can be rendered to an RGB image � (/ ) using

emission–absorption volume rendering [Kajiya and Von Herzen

1984]:

�) (r, / ) =

∫ C5

C=

exp

(

−

∫ C

C=

f (r(B), / ) dB

)

f (r(C), / ) c (r(C), d, / ) dC .

(2)

Here,�) is the color of a rendered pixel of � corresponding to a cam-

era ray r(C) = o+Cdwith near and far bounds C= and C5 , respectively.

Again, the subscript ) denotes its dependence on the trainable pa-

rameters of �) . The primitive-based 3DGS representation solves this

integral using an approximation based on rasterization [Zwicker

et al. 2001]. Importantly, the rendering process is inherently di�eren-

tiable, which enables the optimization of radiance �eld parameters

) such that renderings match a set of posed training views.

However, regrettably, obtaining a potentially high-dimensional

radiance �eld from image observations alone is an ill-posed prob-

lem with nuanced ambiguities: A whole distribution of radiance

�elds can result in the same rendered image. This is illustrated in

Fig. 2, where two static radiance �elds are trained using the same

four training views (Fig. 2, top) but starting from di�erent initial-

izations. Despite both radiance �elds nearly perfectly �tting the

training views, rendering the reconstructions from a test view re-

veals vastly di�erent solutions (Fig. 2, bottom). This problem is even

more pronounced in higher-dimensional settings, such as relightable

radiance �elds, where capturing multiple illumination conditions

alongside multiple camera poses is necessary. The degree of am-

biguity gradually diminishes as more training views are captured.

However, �nding an optimal capture sequence requires accounting

for scene-speci�c uncertainties. In the following section, we develop

an e�cient approach to quantify these uncertainties, enabling us

to plan the next-best observations that optimally increase model

con�dence.
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4 METHOD

The central goal of this work is to learn a (multi-dimensional) ra-

diance �eld �) in the form of Eq. 1 from image data that provides

a �ne-grained estimate of its inherent epistemic uncertainty. We

are especially focused on computing uncertainty estimates that

are both e�cient and di�erentiable, enabling their application in

multi-dimensional next-best-view planning scenarios. To this end,

we devise a stochastic radiance �eld formulation (Sec. 4.1) with a

low-dimensional manifold sampler at its core (Sec. 4.2) that allows

highly e�cient training (Sec. 4.3) and di�erentiable uncertainty

estimation (Sec. 4.4).

We assume we have access to training data in the form of one or

multiple posed images, providing per-pixel tripletsT =

{

r8 , / 8 ,�8
}#T

8=1
.

Note how this setting is a two-fold generalization of typical radiance

�eld reconstruction tasks. First, the additional auxiliary parameter

vector / accommodates arbitrary and potentially high-dimensional

scene con�gurations, such as di�erent lighting conditions. Second,

we do not necessarily require multiple training images. Our algo-

rithm is capable of handling a single image as the initial input and

utilizes uncertainty estimates to suggest which images to capture

next for optimal successive uncertainty reduction.

4.1 Stochastic Radiance Field

We consider a distribution of radiance �elds ? (�) ) which we realize

using a probabilistic model, i.e., by explicitly modeling the joint

distribution ? () ) of all trainable parameters. Drawing a sample

) ∗ ∼ ? () ) gives rise to a speci�c radiance �eld realization � ∗
)
.

Our objective is to optimize the posterior distribution ? (�) |T ) by

minimizing rendering errors for training views while concurrently

maximizing uncertainty for novel views. This approach aims to

obtain a posterior distribution that is as spread out as possible while

making sure that each realization � ∗
)
explains the training data T ,

i.e., when � ∗
)
is rendered using inputs r8 and / 8 from the training

data set, it consistently outputs the corresponding pixel color �8 .

Since the dimensionality 3) is very high – radiance �elds rou-

tinely involve millions of parameters –, it is essential to take special

care to maintain tractability. We employ a variational-inference

framework [Blei et al. 2017] and choose to approximate ? () ) using

a continuous uniform distribution. In essence, this approximation

models a compact hyper-volume + ⊂ R3) within parameter space

with a constant probability density:

? () ) =

{

1
|+ |

) ∈ + ,

0 else.
(3)

As the ground-truth distribution of parameters is generally un-

known, we argue that choosing a uniform prior is a reasonable

choice. Although a Gaussian prior is commonly favored due to its

mathematical convenience [Pan et al. 2022], we do not use a Gauss-

ian prior because it assumes a higher probability around the mean.

A counter-example is a single-view case, where Gaussians can move

along the depth. Their probability distribution along depth should

not be symmetric and centered around any particular depth value.

Also, the color of occluded Gaussians should be equally likely to

be of any value. In addition, a uniform prior avoids sampling un-

bounded values such as Gaussian scales. Central to our approach is

a novel method for constructing the hyper-volume + , as described

in Sec. 4.2.

Using a uniform approximation of ? () ), our training loss for

�nding an optimal + can be formulated as follows:

L =

#T
∑

8=1

∫

)
∗∈+





�)
∗ (r8 , / 8 ) −�8







�
d) ∗ − _ |+ |. (4)

Here, the �rst term encourages that all realizations of �) match

the training data, while the second term encourages a large hyper-

volume. The scalar _ balances the two terms.

Given a trained radiance �eld, our main application of next-best-

view planning requires an uncertainty estimate* per image � (/ ).

Similar to our training objective in Eq. 4, this can be formalized as

an integral over rendered realizations of �) :

* (� (/ )) =
∑

r∈�

∫

)
∗∈+





�)
∗ (r, / ) − �̄ (r, / )







2
d) ∗, (5)

where

�̄ (r, / ) =

∫

)
∗∈+

�)
∗ (r, / )d) ∗ (6)

is the mean pixel color across realizations. A high uncertainty* for

a particular � (/ ) indicates a good candidate for subsequent capture.

Clearly, the high-dimensional integrals in Eqs. 4-6 over radiance

�eld realizations cannot be evaluated analytically due to the non-

linearity of the rendering function. Instead, we opt for a numerical

integration scheme. The most general approach that, in principle,

scales to high dimensions is Monte Carlo integration, which em-

ploys a random sampling of the integration domain. A Monte Carlo

estimator of Eq. 4 is given by

LMC =

#T
∑

8=1

1

"

∑

)
∗∼+





�)
∗ (r8 , / 8 ) −�8





 − _ |+ |, (7)

where ) ∗ are now " random samples. Note how Eq. 7 optimizes

over the space of generative models that allow to draw samples

from and thereby implicitly de�ne + . An analogous estimator for

Eq. 5 is

*MC (� (/ )) =
∑

r∈�

1

"

∑

)
∗∼+





�)
∗ (r, / ) − �̄ (r, / )







2
. (8)

The integral in Eq. 6 can be estimated correspondingly.

The bene�t of learning �) per Eq. 7 and estimating its uncertainty

per Eq. 8 is that is only requires a sum of �rst-order di�erentiable

rendered radiance �elds, i.e., di�erent from other approaches [Goli

et al. 2024; Jiang et al. 2024], our estimates are derivative-free. This

is particularly bene�cial in the uncertainty estimate of Eq. 8, as it

easily allows to di�erentiate*MC with respect to camera parameters

and/or / to perform gradient-based optimization of next-best views,

as described in Sec. 4.4. However, regrettably, Monte Carlo estima-

tors typically exhibit excessive variance and require a high number

" of samples to provide stable results, in particular in high dimen-

sions. The key technical contribution of this work is the observation

that the probability volume+ can be modeled as a low-dimensional

manifold. This allows stable and high-quality training per Eq. 7

and uncertainty estimation per Eq. 8 using a very low number of

samples, as described next.

4



Manifold Sampling for Di�erentiable Uncertainty in Radiance Fields SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

4.2 Manifold Sampling

We seek to devise a generative model that allows us to sample from

a compact radiance-�eld-speci�c volume+ ⊂ R3) of constant prob-

ability density that captures the distribution of trainable parameters

) . Ideally, we would aim for maximum expressivity by allowing +

to have arbitrary shapes. Powerful generative models of radiance

�eld parameters have been studied [Chan et al. 2021; Gu et al. 2022;

Müller et al. 2023] and typically rely on deep neural networks. Un-

fortunately, our e�ciency constraints – training a radiance �eld

needs to be quick while training a deep generative model on top is

slow – and the extremely high dimensionality 3) of the parameter

space, make such solutions impractical. Therefore, we impose a

more rigid structure.

Towards our solution, we consider a linear model � of the form

� (z) = )̄ + �z, (9)

where )̄ ∈ R3) is themean of the distribution, and z ∼ U([−1, 1]3) ),

is uniform-randomly sampled. The generating matrix � ∈ R3) ×3)

encodes a linear relationship between parameter dimensions and

de�nes the shape of + as a parallelotope (Fig. 3a, top). The covari-

ance matrix of the emerging distribution of parameter samples is

given by Σ = ��) ∈ R3) ×3) (Fig. 3a, bottom). Trivially, a uniform

sampling of z from the hypercube results in a uniform sampling

of + . The most challenging aspect of Eq. 9 lies in representing the

generating matrix �, which, in general, involves a number of entries

that grows with the square of the number of trainable parameters –

a completely intractable quantity.

a)

Full

(Intractable)
Diagonal Block-Diagonal

Low-Rank

(Ours)

b) c) d)

Fig. 3. Di�erent variants to model an uncertainty volume+ in the space of

radiance field parameters (top row, only three out of millions of parameters

are shown) using di�erent covariance matrices Σ (bo�om row, 20 dimen-

sions are shown). (a) A full Σ is the most expressive solution that leads to an

arbitrarily shaped parallelotope, but it su�ers from an intractable number

of parameters. (b) Restricting Σ to a diagonal matrix is a sparse solution,

but it can only represent axis-aligned hyper-rectangles. (c) A block-diagonal

Σ is slightly more expressive, but it requires making representation-specific

independence assumptions and small blocks to stay tractable. (d) Our so-

lution employs a low-rank covariance matrix, which results in a manifold

parallelotope (here a 2D parallelogram). This parameterization is highly

e�icient to train and results in expressive uncertainty estimates.

A commonly used solution to avoid this quadratic complexity is

to presume independence among the components of ) [Goli et al.

2024; Jiang et al. 2024; Pan et al. 2022; Shen et al. 2021]. In this case,

� and, consequently, Σ, reduce to a diagonal matrix, and + trans-

forms into an axis-aligned hyper-rectangle (Fig. 3b). Although this

strategy notably diminishes complexity, we observe a dispropor-

tionate compromise in expressivity and, thus, accuracy. A di�erent,

slightly less invasive strategy would be to presume independence

between groups of variables. In such a model, � and, consequently,

Σ, become block-diagonal and parameterize a parallelotope with

a restricted distribution of admissible slopes (Fig. 3c). While this

solution is strictly more expressive than using a diagonal matrix,

we observe that it still su�ers from reduced predictive accuracy.

Further, it requires making representation-speci�c independence

assumptions between small groups of variables to retain tractability.

Our key observation is that for high-quality and e�cient un-

certainty quanti�cation in radiance �elds, + can be modeled as a

linear :-dimensional manifold in 3) -dimensional parameter space,

where : ≪ 3) . Intuitively, the uncertainty volume of radiance �elds

exhibits signi�cantly fewer degrees of freedom compared to the

number of parameters de�ning the radiance �eld itself. Concretely,

the variation of radiance �eld parameters ) can be well explained

by a :-dimensional parallelotope (Fig. 3d, top). This translates into

a model

� (ẑ) = )̄ + �̂ẑ, (10)

where �̂ ∈ R3) ×: is the generating matrix of the manifold parallelo-

tope, and ẑ ∈ R: are low-dimensional random samples. Note how

this construction results in a low-rank covariance matrix Σ̂ = �̂�̂)

(Fig. 3d, bottom). Surprisingly, we observe that setting : = 2 is

su�cient for high-quality training and uncertainty estimation in

practice, while also enabling fast training.

The advantages of this formulation are three-fold: First, the low-

rank approximation results in a compact representation, as we only

require (: + 1) × 3) parameters to represent our full model. Second,

Eq. 10 is very e�cient to compute. Third, the low e�ective dimen-

sionality of + makes the Monte Carlo estimators in Eq. 7 and Eq. 8

highly e�ective and practically noise-free. We provide details on

training and uncertainty estimation of our approach in Sec. 4.3 and

Sec. 4.4, respectively.

4.3 Training

To train our stochastic radiance �eld, we incorporate Eq. 10 into

Eq. 7 to arrive at our �nal training objective, which optimizes over

the parameters )̄ and �̂ of our generative model:

Lmanif =

#T
∑

8=1

1

"

∑

ẑ∼U([−1,1]: )





�� (ẑ) (r8 , / 8 ) −�8




 − _∥�̂∥1 . (11)

In the data term, we use the generator � to sample from the param-

eter manifold. In practice, we use a low-discrepancy Sobol [1967]

sequence to sample ẑ for improved stability. We follow Kerbl et al.

[2023] and measure pixel di�erences using a sum of ℓ1 distance

and the SSIM [Wang et al. 2004] metric, while also employing their

heuristic densi�cation strategies.

The second term in Eq. 11 is an estimator of the volume of+ which

we seek to maximize. While the volume of an ordinary parallelotope

is easily computed using the determinant of its generating matrix,

the volume of a manifold of the shape of a parallelotope in a higher-

dimensional ambient space is not straightforward. As a substitute,

we employ the entrywise L1 norm of �̂, promoting longer sides of

the parallelotope, which we found provides higher-quality results
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than all alternatives we tested. We choose the L1 norm over L2

because it provides a constant gradient, preventing both gradient

vanishing when ∥�̂∥1 is small and gradient explosion when ∥�̂∥1 is

large.

We observe that, for optimal quality, special attention must be

given to the parameterization of �̂. A naïve parameterization, i.e., an

unconstrained optimization of the entries of �̂, is prone to producing

degenerate results where the columns of �̂ are nearly linearly de-

pendent. As a result, the manifold volume can have a lower e�ective

dimensionality than : . In our solution, we prevent such outcomes

using a simple strategy: The individual entries of �̂ are initialized to

low positive values, with a subsequent application of a ReLU activa-

tion function. The result is multiplied with a random but �xed sign,

i.e., +1 or −1, per matrix entry. This strategy e�ectively diversi�es

the directions of the column vectors of �̂, preventing degenerate

solutions in practice.

Thanks to our manifold sampling, we �nd that a single Monte

Carlo sample per training iteration, i.e.," = 1, is su�cient for fast

and stable convergence. Notably, we observe that our approach does

not increase the number of training iterations required to reach a

converged result. Consequently, our formulation imposes only minor

extra cost compared to standard radiance �eld training.

Except for our loss in Eq. 11 and a (: + 1)-fold increase in the

number of trainable parameters, the training process follows the

standard approach described in Kerbl et al. [2023]. We �nd that

the volume maximization term in Eq. 11 only needs to be applied

sporadically. In practice, we set _ = 1 every ten training iterations

and _ = 0 for all other iterations.

4.4 Di�erentiable Uncertainty Optimization

To obtain uncertainty estimates per view, we incorporate Eq. 10 into

Eq. 8, yielding

*manif (� (/ )) =
∑

r∈�

1

"

∑

ẑ∼U([−1,1]: )





�� (ẑ) (r, / ) − �̄ (r, / )






2
, (12)

with

�̄ (r, / ) =
1

"

∑

ẑ∼U([−1,1]: )

�� (ẑ) (r, / ). (13)

Similar to the training loss in Eq. 11, we use a Sobol [1967] sequence

for sampling ẑ in the unit hypercube, but found " = 2 necessary

for obtaining stable results.

Importantly, Eq. 12 is trivially di�erentiable with respect to the

camera position (via the rays r) and the auxiliary parameters / . This

property allows us to conduct gradient-based optimization with

respect to these quantities for �nding next-best views, for which

we use the Adam [Kingma and Ba 2015] optimizer with default

parameters.

5 EXPERIMENTS

In this section, we evaluate our manifold sampling approach for

uncertainty estimation, both quantitatively and qualitatively. Since

ground-truth uncertainty is unknown, we evaluate performance

on two distinct tasks: First, we consider active camera planning

(Sec. 5.1), where our objective is to optimize a sequence of cameras

to e�ectively reduce reconstruction uncertainty in ordinary radiance

�elds. Second, we explore the task of active illumination planning

(Sec. 5.2). Here, our aim is to reconstruct a relightable radiance �eld,

and we seek to optimize a sequence of illumination conditions to

be utilized for training. We evaluate our uncertainty quanti�cation

in Sec. 5.3. Finally, we provide an analysis of several further aspects

of our approach in Sec. 5.4.

5.1 Task 1 – Active Camera Planning

Here, we apply our approach to the task of �nding a scene-speci�c

sequence of views to be used for training that optimally reduces

reconstruction uncertainty in radiance �elds. Our evaluation proto-

col is structured as follows: During the training of a radiance �eld,

we systematically introduce one camera at a time, each added after

every 2000 training iterations, starting with a single camera.

We compare di�erent approaches for determining the next-best

views. We begin with a baseline method that employs farthest-point

sampling. In this approach, a camera is selected from a candidate

pool based on its maximum distance from the cameras already in

the training set. Then, we consider the two state-of-the-art un-

certainty estimation approaches ActiveNeRF [Pan et al. 2022] and

FisherRF [Jiang et al. 2024], as well as the active camera placement

(ACP) approach of Kopanas and Drettakis [2023]. We adapted all of

the aforementioned approaches to the 3DGS representation. Note

that none of these approaches support di�erentiable optimization

for the next-best camera; instead, they rely on selecting candidates

from a prede�ned pool. We do not consider the most recent work

on radiance �eld uncertainty estimation of Goli et al. [2024], as they

use the same Laplace approximation method as FisherRF [Jiang et al.

2024] but with di�erent representations: NeRF and 3DGS. To ensure

fairness, we reimplemented all baselines with 3DGS and found Fish-

erRF is identical to Bayes’ Rays with 3DGS in computing radiance

�eld parameter uncertainty. Further, Bayes’ Rays does not model

the analytical predictive distribution of rendered images. Finally,

we consider three variants of our method. In the �rst variant, Ours

(Sel.), we evaluate Eq. 12 for every candidate view and select the

one with the highest uncertainty, restricting our method to match

the capabilities of the baselines. In the second variant, Ours (Opt.

Sel.), we use Eq. 12 to di�erentiably optimize for the next-best view,

initialized from the solution of the �rst variant. In our �nal variant,

Ours (Opt. Rnd.), we explore the capabilities of our optimization

when the process is initialized from a random view.

We conduct our evaluation on the NeRF Synthetic [Mildenhall

et al. 2020] and the Mip-NeRF360 [Barron et al. 2022] datasets. In

both cases, the candidate pool consists of the full set of training

images available (100 and 150, respectively). Since we cannot rely

on SfM points, we initialize the 3DGS model using a random point

cloud. We evaluate the variants Ours (Opt. Sel.) and Ours (Opt. Rnd.)

only on the synthetic datasets, as these strategies require capturing

new training images online after each next-best view optimization.

For the Mip-NeRF360 dataset, we are limited to the existing training

views and hence only evaluate the variant Ours (Sel.). In Tab. 1

and Tab. 2, we provide the results of a quantitative evaluation of

reconstruction accuracy on a held-out set of test views. In Tab. 1,

we report the mean and standard deviation over ten runs, aver-

aged across eight scenes, to demonstrate the stability of our method

6
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and the chosen sample count. Fig. 4 and Fig. 5 show correspond-

ing qualitative results. Our approach outperforms the baselines

across all metrics for both datasets. Candidate selection based on

our uncertainty (Ours Sel.) already surpasses the state-of-the-art

view synthesis quality. Further, using this selection as a starting

point for �ne-grained optimization (Ours Opt. Sel.) tends to enhance

the quality even more. Starting with a random initialization (Ours

Opt. Rnd.) yields nearly equal-quality results, indicating that our

optimization method avoids getting stuck in local minima.

In Tab. 3, we compare the upper bound of novel-view synthesis

quality between 3DGS [Kerbl et al. 2023] and our method on the

NeRF Synthetic dataset, using all training views over 7000 itera-

tions. Our results, achieved through a stochastic training scheme,

demonstrate comparable quality to the original 3DGS method.

5.2 Task 2 – Active Illumination Planning

As a second application domain of our approach, we choose the

task of training a relightable radiance �eld [Martin-Brualla et al.

2021; Srinivasan et al. 2021] using controlled illumination. Here,

we focus on a scenario where scenes are captured from multiple

viewpoints under various illumination conditions, which can be

achieved, for instance, through a light stage setup [Debevec et al.

2000]. Rather than optimizing for emitted radiance using a set of<

spherical harmonics (SH) coe�cients per primitive, as commonly

done, we take inspiration from precomputed radiance transfer tech-

niques [Lyu et al. 2022; Saito et al. 2024; Sloan et al. 2002]. In our

method, we optimize for a radiance transfer matrix ) ∈ R<×= for

each primitive in the scene. Distant illumination is parameterized

by an SH coe�cient vector / ∈ R= . This vector is multiplied with

each transfer matrix) to compute the outgoing radiance per Gauss-

ian that needs to be rendered. This setup allows us to e�ciently

represent and manipulate illumination conditions for relightable

rendering. In our experiments, we set< = = = 16, covering the �rst

four SH bands.

Analogous to the setup in Sec. 5.1, we start with a single illumi-

nation condition – we choose an angularly uniform illumination,

i.e., only the DC coe�cient is active – and gradually add new illu-

mination samples every 7000 training iterations. The samples are

obtained by di�erentiably optimizing uncertainty per Eq. 12 with re-

spect to the illumination condition / . The optimization is initialized

from the one-hot parameter vector / that results in the highest un-

certainty. Note how our gradient-based approach avoids excessive

enumeration of candidates in the 16-dimensional parameter space.

In Fig. 6 and Fig. 7 we compare our approach against random

and Sobol [1967] sampling of next illumination conditions using

three scenes from the NeRF Synthetic dataset. We see that our

uncertainty-guided approach signi�cantly outperforms the scene-

agnostic baselines.

5.3 Uncertainty�antification

We evaluate pixel-wise predicted uncertainty in the sparse-view

setting by analyzing its correlation with depth estimation error,

which serves as an indicator of underlying geometric uncertainty.

Speci�cally, we follow Shen et al. [2022] and use the Area Under

Sparsi�cation Error (AUSE) metric on the LF dataset [Yücer et al.

2016]. The results of this analysis are presented in Tab. 4, where we

compare our approach against CFNeRF [Shen et al. 2022], Bayes’

Rays [Goli et al. 2024], and FisherRF [Jiang et al. 2024]. The results

for CFNeRF and Bayes’ Rays are taken directly from Goli et al.

[2024].

Our method can only be fairly compared against FisherRF, as

it is the only baseline using the 3DGS representation. The poten-

tial superiority of Bayes’ Rays in AUSE may be due to limitations

of 3DGS with forward-facing scenes and NeRF’s inherent ability

to ensure smoothness in the 3D uncertainty �eld, which leads to

smoother depth errors. To enable a fairer comparison, future work

will extend our method to NeRF-based architectures. Our stochastic

radiance �eld and training methodology are also readily applicable

to discrete volume representations, such as Plenoxels [Fridovich-

Keil et al. 2022]. Additionally, future work will explore extending

manifold sampling to general continuous neural representations.

5.4 Analysis

Here, we analyze various aspects of our approach. First, we examine

di�erent methods for modeling parameter covariance as shown in

Tab. 5. Since a naïve parameterization of the full 3) ×3) covariance

matrix is generally intractable (it would require petabytes ofmemory

for a typical scene), we explore the tractable alternatives listed in

Fig. 3, including our approach with di�erent ranks : . We consider

the task of active camera planning (Sec. 5.1) and measure novel-

view synthesis quality on the NeRF Synthetic dataset. Additionally,

we report the number of milliseconds required for one training

iteration; the total number of training iterations required to reach a

converged radiance �eld is roughly the same across methods.

We see that low-rank approximations consistently outperform

the alternatives. Surprisingly, the rank has only a minor impact on

result quality, but higher ranks increase training time. Our choice

of : = 2 strikes a reasonable balance between quality and speed.

Speci�cally, our solution is only 14% slower to train than a vanilla

3DGS model without uncertainty (w/o* ), on top of which a Laplace

approximation might be run. Asymptotic time complexity can be

computed by analyzing the sampling in Eq. 10 and the rasterization

of Gaussians. Eq. 10 leads to complexity O("#:) while rasteriza-

tion is O("# (? + log# )), where " is the number of samples, #

is the number of Gaussians, : is the rank, and ? is the number of

pixels.

In Fig. 8, we show representative examples of uncertainty land-

scapes generated by di�erent methods when a single training view

(red dot) is available. FisherRF provides a smooth landscape, but op-

timizing camera positions with this method is impractical due to the

need for higher-order derivatives. ACP’s energy landscape is fairly

uniform, as it aims to prevent view clustering, which is not a partic-

ularly useful measure in a sparse-view setting. Again, this energy

cannot be di�erentiated w.r.t. camera position. Stochastic sampling

with a diagonal or block-diagonal covariance matrix introduces

excessive noise, whereas our low-rank solutions are smooth by con-

struction. To gain further insights into the optimization dynamics,

we start from a random initialization (yellow dot) and di�erentiably

optimize for a view that maximizes uncertainty (green dot). With

diagonal and block-diagonal covariance matrices, this optimization
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Table 1. Numerical evaluation for novel-view synthesis with active camera selection on the NeRF Synthetic dataset [Mildenhall et al. 2020].

Method
5 cameras 10 cameras

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Farthest Point 21.91 ± 0.03 0.836 ± 0.001 0.139 ± 0.001 25.77 ± 0.05 0.899 ± 0.001 0.087 ± 0.001

ActiveNeRF 21.87 ± 0.48 0.831 ± 0.010 0.144 ± 0.010 25.59 ± 0.73 0.891 ± 0.011 0.093 ± 0.009

FisherRF 21.24 ± 0.60 0.821 ± 0.013 0.151 ± 0.012 25.89 ± 0.69 0.899 ± 0.008 0.087 ± 0.007

ACP 21.09 ± 0.39 0.818 ± 0.010 0.156 ± 0.009 26.20 ± 0.36 0.902 ± 0.005 0.084 ± 0.004

Ours (Sel.) 22.38 ± 0.36 0.841 ± 0.007 0.136 ± 0.006 26.99 ± 0.37 0.911 ± 0.003 0.077 ± 0.003

Ours (Opt. Sel.) 22.45 ± 0.50 0.841 ± 0.009 0.140 ± 0.008 27.52 ± 0.45 0.917 ± 0.005 0.076 ± 0.004

Ours (Opt. Rnd.) 22.02 ± 0.70 0.839 ± 0.015 0.147 ± 0.012 26.78 ± 0.52 0.908 ± 0.011 0.082 ± 0.008

Table 2. Numerical evaluation for novel-view synthesis with active camera

selection on the Mip-NeRF360 dataset [Barron et al. 2022].

Method
10 cameras 20 cameras

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

ActiveNeRF 12.50 0.265 0.615 14.38 0.368 0.569

FisherRF 18.02 0.550 0.408 21.38 0.673 0.330

ACP 18.71 0.568 0.399 21.41 0.684 0.320

Ours (Sel.) 18.87 0.578 0.388 22.27 0.696 0.312

Table 3. Numerical evaluation for novel-view synthesis with all training

cameras on the NeRF Synthetic dataset [Mildenhall et al. 2020].

Method PSNR↑ SSIM↑ LPIPS↓

3DGS 32.58 0.966 0.041

Ours 32.11 0.963 0.045

Table 4. Area Under Sparsification Error (AUSE↓) on the LF dataset [Yücer

et al. 2016].

Method Africa Basket Statue Torch Avg.

CFNeRF w/ NeRF 0.35 0.31 0.46 0.97 0.52

Bayes’ Rays w/ NeRF 0.27 0.28 0.17 0.22 0.23

FisherRF w/ 3DGS 0.64 0.54 0.52 0.47 0.54

Ours w/ 3DGS 0.27 0.44 0.47 0.44 0.40

eventually converges, but it requires many iterations due the noisy

uncertainty landscape. In contrast, our manifold sampling stably

converges two to three times faster, even in cases where the total

trajectory is longer.

6 CONCLUSION

We proposed a method that explicitly accounts for the epistemic

uncertainty in Gaussian radiance �elds. We observed that uncer-

tainty can be modeled as a low dimensional manifold in parameter

space, which allows e�cient Monte Carlo sampling. Importantly,

our formulation is fully di�erentiable, which in contrast to most

prior works, allows continuously optimizing scene parameters such

as the next-best camera view. We demonstrated the versatility of

Table 5. Ablation. We consider di�erent ways to model covariance. In addi-

tion to novel-view synthesis quality based on 5 and 10 training views, we

report the number of milliseconds required for one training iteration.

Method Time
5 cameras 10 cameras

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

w/o* 10.8 — — — — — —

Diag. 14.0 21.54 0.823 0.151 26.91 0.911 0.077

Block-D. 13.8 21.85 0.830 0.145 26.09 0.900 0.082

Rank 1 11.6 22.02 0.836 0.139 27.09 0.913 0.076

Rank 2 12.3 22.19 0.840 0.135 26.69 0.909 0.078

Rank 4 13.5 22.17 0.842 0.133 26.68 0.907 0.079

Rank 10 15.7 22.12 0.834 0.142 26.08 0.899 0.086

our formulation through various experiments, with a focus on ac-

tive camera and illumination planning. In the future, we plan to

investigate the applicability of manifold sampling to other radiance

�eld representations and even to di�erent signal modalities.
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