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This supplement provides additional insights on the
Barnes-Hut Rigid Gravitational Approach (BH-RGA).
More details on 2D-tree generation can be found in Sec. I.
Next, Sec. II explains how the reprojection of the scene flow
is visualised in Fig. 4 of the main draft. The detailed statis-
tics of the resolved initial misalignments in the clean-500
and N500-U100 experiments is provided in Sec. III. Sec. IV
elaborates on the differences in parameters of GA [7] and
the proposed approach. Original reference numbers to the
tables and figures from the main paper are preserved, and
Roman numerals refer to the tables and figures introduced
in this supplementary material.

I. Building a 2D-Tree

In this section, we summarise the rules for building a
2D-tree. The recursive algorithm was initially proposed by
Barnes and Hut [3] for the N-body simulation problem [1],
and we adapt it with minor high-level modifications as de-
scribed in the main matter.

A BH-tree is initialised as a root node with 2D empty
external nodes vj1, j ∈ {1, . . . , 2D}, and the depth of the
tree l equals to 1. Always starting from the root, a new par-
ticle pk is added to the tree following three rules, and ev-
ery insertion results in a new leaf, i.e., an occupied external
node. Every node corresponds to some subdivided area of
space (the root node stands for the entire space). Every in-
sertion begins with localisation of pk in the target space, i.e.,
a hierarchical determination of the quadrants (2D), octants
(3D), etc. which pk belongs to, as well as the corresponding
nodes, until an empty external node is reached. Localisation
is valid on all levels of the tree, and it is valid to say that pk
is localised at node vjl at tree level l. The insertion rules for
the localised pk are:

1) [pk is localised in an empty external vl] If an external
node vl is empty, add pk to vl and done. The depth of
the tree remains the same.
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Figure I: Insertion rule for building a 2D-tree for an empty external node.

2) [pk is localised in an internal (=non-empty) vl] If an
internal node vl is encountered, update its mass and the
centre of mass. Next, while relocalising pk, visit and up-
date all internal nodes hierarchically descending until an
external node is reached. Follow rule 1) or 3) depending
on whether the external node is empty or occupied.

3) [pk is localised in a non-empty external vl] If an ex-
ternal node vl is occupied, declare vl first to be a new
internal node, — introduce centre of mass and a mass of
the node — and then split vl into 2D new nodes. The
depth of the tree grows by one. After the splitting, there
will be one new occupied external node and 2D − 1 new
empty external nodes. Add pk to one of 2D external
nodes vjl+1 following either rule 1) or 3).

Fig. I exemplifies insertion rule 1). Fig. 2 in the main paper
illustrates rules 2) and 3).

II. Scene Flow Visualisation by Reprojection
We can interpret the result of rigid point set alignment in

the experiment with the SINTEL dataset [5] as an RGB-D
based scene flow. The objective of RGB-D scene flow esti-
mation is, given two RGB-D measurementsDt andDt+1, to
reconstruct a 3D displacement field ρ(Dt) : R3 × R → R3

warping Dt to Dt+1. We presume, without loss of gener-
ality, that each three-dimensional point in D[·] has a single
intensity value. In our matrix notation, Y and X correspond
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Figure II: Examples of reprojected 3D displacements obtained by BH-
RGA, compared to ground truth optical flows, for the sleeping1 and sleep-
ing2 sequences from the SINTEL collection [5]. The used Middlebury
optical flow encoding [2] is given on the top right.

to Dt and Dt+1, respectively. Recall that in the sleeping1
and sleeping2 sequences [5], scene transformations are rigid
or nearly rigid, and point sets are parametrised on a grid in-
duced by D[·]. The scene flow ρ(Dt) can then be computed
as the difference between the transformed and the initial
template in absolute coordinates:

ρ(Dt) = F3×M = [fi] = (R− I)Y + T, (1)

with T3×M =
[
t t . . . t

]
and i ∈ {1, . . . ,M}. M

equals to the total number of pixels in the RGB-D image.
Suppose the focal lengths {fx, fy} and the principal

point (cx, cy) of the camera are known (SINTEL [5] pro-
vides the intrinsic camera parameters). In the following, we
use the operator π−1 : Z2 × R → R3, which maps a 2D
image point (x, y) to the 3D space given its depth value:

π−1(x, y, z) =

(
z

(x− cx)

fx
, z

(y − cy)

fy
, z

)
. (2)

The optical flow for visualisation ρ2D : Ω ⊂ R2 → R2 is
obtained for every (x, y) ∈ Ω (image domain) by the scene
flow projection operator πρ : Z2 × R× R3 → R2 [8]:

πρ(x, y,Pz, fi) =

[
fx

fi,x+Px

fi,z+Pz
+ (cx − x)

fy
fi,y+Py

fi,z+Pz
+ (cy − y)

]
, (3)

where P = π−1(x, y,Pz), Pz = Dt(x, y) and the consec-
utive index i in fi is uniquely determined by (x, y) coordi-
nates on the grid using the row-major rule. From (3), we see
that ρ2D can be alternatively calculated by projecting every
transformed yi to the image plane and subtracting from the
projected value the respective point coordinates (x, y) on
the initial 2D image grid.

For sleeping1 and sleeping2 [5], the average endpoint er-
ror (AEPE) between the reprojected 3D flow fields parame-
terised by the recovered {R, t} and the ground truth optical
flow amounts to 2.242 and 0.914, respectively (see Fig. II
for visualisations). Both sequences are fifty frames long. In
our optical flow notation, EPE is defined per displacement
vector as ‖ρ2D,u − uGT , ρ2D,v − vGT ‖, where (uGT , vGT )
is the ground truth flow vector. The optical flow ρ2D is vi-
sualised with the Middlebury colour scheme [2].
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Figure III: Colour scheme for the statistics of the resolved initial mis-
alignments. One line in the disk (from the disk centre to the disk bound-
ary) denotes a successfully aligned pair of point sets differing in the global
orientation by Euler angles φ, θ and ψ encoded by colours, around the x-,
y- and z-axes, respectively. (a): Disk area subdivision for φ, θ and ψ. (b):
Colouring for all tested combinations of φ, θ and ψ. The numbers in the
φ area denote φ angle in degrees. (c): Angle sectors in the θ and ψ areas;
recall that ψ ∈ {0◦, 36◦, 72◦, 108◦ 144◦}.

III. Varying Angles of Initial Misalignment

Whereas Tables 1 and 2 of the main paper report
the summary of the rotation resolution capability of the
tested methods in multiple settings, we would also like
to analyse statistics of the resolved initial misalignments
in detail. We define a colour scheme for all possible
initial misalignments on a disk, see Fig. III. The disk is
subdivided into three areas indicating φ, θ and ψ Euler
angles used to transform the template point set in the
clean-500, N500-U50 and N500-U100 experiments. All
angles are sampled with the angular step of 36◦. We
discard duplicated states and obtain 500 input point set
pairs with different initial misalignment in total, i.e., φ, θ ∈
{0◦, 36◦, 72◦, 108◦, 144◦, 180◦, 216◦, 252◦, 288◦, 324◦},
and ψ ∈ {0◦, 36◦, 72◦, 108◦, 144◦}.

Thus, one line on the statistics disk stands for one re-
solved initial misalignment. In total, up to 500 lines at dif-
ferent angles can be present in the disk. Every line is sub-
divided into three segments with three colours, and each
colour indicates φ, θ and ψ of the resolved initial misalign-
ment. Fig. III-(b) shows at the same time the colour coding
if all initial misalignments are resolved (this should be the
desired case for a global point set alignment method).

Fig. IV shows the colour-coded statistics of the resolved
initial misalignments for the clean-500 and N500-U100 ex-
periments. We see that ICP [4], CPD (6 DoF) [10], GMR
(7 DoF) [9] and GA [7] considerably worsen their accuracy
on the N500-U100 dataset compared to clean-500 (the re-
sults of GMR (7 DoF) and GA and not shown for N500-
U100). Uniform noise affects the accuracy of the tested
methods in various ways. The success rate of LM-ICP [6]
drops by∼60%, and the success rate of CPD (6 DoF) halves
on N500-U100. GMR (7 DoF) does not resolve point sets
differing even by a small rotation, and GA resolves only
five cases. BH-RGA and CPD (7 DoF) are the only meth-
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Figure IV: Colour-coded statistics of the resolved initial misalignments in the clean-500 and N500-U100 experiments for ICP [4], LM-ICP [6], CPD [10],
GMR [9], GA [7] and BH-RGA (ours). The numbers in the brackets indicate the portion of the successfully resolved initial configurations in %.
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Figure V: Colour-coded comparative statistics of the resolved initial misalignments in the clean-500 and N500-U100 experiments for the evaluated
approaches. The colour scheme is given in the top row, middle. (a): Joint statistics for all methods. (b), (c): Statistics for BH-RGA versus CPD and GMR.

ods with the decreased success rate by as little as 6.4% and
4.2%, respectively. Whereas BH-RGA, CPD (6 DoF), CPD
(7 DoF), GMR (6 DoF), GMR (7 DoF) demonstrate compa-
rable success rates on clean-500, only BH-RGA and CPD
(7 DoF) show comparable top performance on N500-U100.
We observe that in the case of CPD, allowing for scaling

helps to cope with large amounts of noise. BH-RGA, thanks
to the globally multiply-linked alignment policy, achieves
high accuracy with 6 DoF (the scaling is not included).

It is also insightful to perform a comparative analysis of
resolved initial misalignments. Fig. V provides compar-
ative statistics of successfully registered configurations in
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parameter interpretation
G gravitational constant
mXj default mass of template points
mYi default mass of reference points
ε softening length
η strength of energy dissipation

∆t forward integration step
~v0Y initial template’s velocity (optional)

Table I: Overview of GA [7] parameters.

parameter interpretation
ε Huber loss threshold
γ distance threshold of 2D-tree
myi template point masses (optional)
mxj reference point masses (optional)

Table II: Overview of BH-RGA parameters.

clean-500 N500-U100

no Huber
loss

less resolved cases slightly higher RMSE (in the
fourth digit after the comma)

ε = 0.01 used in all experiments (Tables 1–3 of the paper)
ε = 0.1 same number of resolved cases, ∼15% higher RMSE

Table III: Influence of ε on the experimental results.

the clean-500 and N500-U100 experiments and helps us to
understand the strengths of the evaluated approaches bet-
ter. For both experiments, we report in Fig. V-(a) the cases
which are successfully resolved by all methods, cases which
at least one method is able to resolve, and cases which only
BH-RGA resolves. It is noticeable that the number of cases
which BH-RGA can resolve exclusively increases from zero
in clean-500 to fourteen in N500-U100.

Next, we plot the cases which BH-RGA resolves, but
another tested method (in this case, either CPD or GMR)
does not, and vice versa. If on clean-500, CPD (6 DoF) re-
solves more cases which BH-RGA cannot resolve, the situ-
ation inverts on N500-U100, and we observe that BH-RGA
resolves comparably more cases which CPD (6 DoF) can-
not resolve. This positions BH-RGA as a method which
can tackle many cases which are difficult for CPD (6 DoF)
on N500-U100. Recall that CPD (6 DoF) is the method
with the highest success rate on clean-500, followed by BH-
RGA. Next, there are no cases which BH-RGA cannot re-
solve but either ICP, LM-ICP or GA can. Thus, the corre-
sponding visualisations are trivial and, hence, not plotted.
The input sets which CPD (6 DoF), CPD (7 DoF), GMR
(6 DoF) and BH-RGA can resolve in clean-500, result in
the intersection with a high degree of overlapping. Last but
not least, the sets of configurations which BH-RGA, CPD
(7 DoF) or GMR (6 DoF) can exclusively resolve, become
more disjoint in N500-U100 compared to the noiseless case.

IV. Parameters in GA [7] and BH-RGA
BH-RGA reduces the number of compulsory parameters

by the factor of three compared to GA [7]. Tables I and II
provide an overview of GA and BH-RGA parameters. For
GA, if we choose default unit masses of template and ref-
erence points, we have to adjust the gravitational constant
G. The latter, in turn, influences the choice of the softening
length ε. The strength of the energy dissipation η depends
on all other parameters. It seems reasonable to fix masses
and G; although it turns out practically that for a new
dataset, other parameters have to be selected nevertheless.

In BH-RGA, we have to set the Huber loss threshold ε
and the distance threshold of the 2D-tree γ. We designate
both parameters compulsory, though we have learned from
the experiments that there exist values which work well for
many datasets. Table III elaborates on the influence of ε on
the outcome of the quantitative experiments. With no Huber
loss or different ε values, both the number of resolved cases
and RMSE slightly vary. Likewise, BH-RGA will probably
converge for a wide range of γ values, with a difference in
the speed and accuracy.
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