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Abstract

Modern adiabatic quantum computers (AQC) are al-
ready used to solve difficult combinatorial optimisation
problems in various domains of science. Currently, only
a few applications of AQC in computer vision have been
demonstrated. We review AQC and derive a new algorithm
for correspondence problems on point sets suitable for ex-
ecution on AQC. Our algorithm has a subquadratic com-
putational complexity of the state preparation. Examples
of successful transformation estimation and point set align-
ment by simulated sampling are shown in the systematic ex-
perimental evaluation. Finally, we analyse the differences
in the solutions and the corresponding energy values.

1. Introduction

Since their proposal in the early eighties [8, 43, 27],
quantum computers have attracted much attention of physi-
cists and computer scientists. Impressive advances both
in quantum computing hardware and algorithms have been
demonstrated over the last thirty years [40, 30, 61, 58, 42,
19, 25, 49, 65, 48]. Quantum computers are not universally
faster than conventional machines, but they can natively ex-
ecute algorithms relying on quantum parallelism, i.e., the
ability to perform operations on exponentially many super-
imposed memory states simultaneously [59].

To harness the advantages, carefully designed algorithms
are required. Nowadays, the motivation to take advantage of
quantum effects in computing is also facilitated by the clas-
sical computing paradigm approaching its limits, since the
quantum effects are becoming non-neglectable while man-
ufacturing and using conventional CPUs. As a result, al-
ternative paradigms such as massively parallel computing
devices have been brought into being.

While universal gate quantum computer technology has
not yet reached the maturity, modern adiabatic quantum an-
nealers (AQA) are already capable of solving difficult real-
world combinatorial optimisation problems [15, 14, 23, 49].
The primary difference of universal gate quantum comput-
ing and AQA is that the latter can address objectives formu-
lated as quadratic unconstrained binary optimisation prob-

Figure 1: Different 2D point sets — fish [47], qubit, kanji and composer
— aligned with our QA approach. For every pair of point sets, the initial
misalignment is shown on the left, and the registration is shown on the
right. QA is the first transformation estimation and point set alignment
method which can be executed on adiabatic quantum computers.

lems (QUBOP) defined as

arg min
q∈Bn

qTPq, (1)

where q is a set of n binary variables, and P is a symmetric
matrix of weights between the variables. The operational
principle of AQA is grounded on the adiabatic theorem of
quantum mechanics [17] which states that

if a quantum-mechanical system is in the ground state
of a time-dependent Hamiltonian and parameters of
this Hamiltonian are changing gradually enough, the
system will continue to remain in the ground state dur-
ing the evolution (see Table 1 for quantum notions).

(2)

In their seminal paper, Farhi et al. [26] have shown
that the adiabatic principle (2) can be used for solving
NP-complete optimisation problems and laid the founda-
tion for adiabatic quantum computing. Several years later,
Aharonov et al. [2] theoretically showed the equivalence be-
tween classical quantum computing and quantum anneal-
ing models. As of 2019-2020, general-purpose quantum
computers accessible for research purposes and applications
contain up to 20 qubits [19]. In contrast, the latest quantum
annealers support up to 210 qubits [21]1. Nevertheless, due

1the amount of logical qubits which are available on this system is an
order of magnitude lower since most qubits are used for the error correction
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to design and practical restrictions, quantum algorithms for
the gates model such as Shor’s prime number factorisation
[61] or Grover’s search algorithms [30] cannot be imple-
mented on current quantum annealers.
Motivation and Contributions. Considering recent suc-
cessful applications of AQA in several fields of computa-
tional science [42, 49, 65], we are motivated to investigate
how useful AQA can be for computer vision and which
problems can be potentially solved on the new hardware.
The vast majority of available materials about quantum an-
nealers are either oriented to physicists or lack technical de-
tails and clarity. Our goal is to fill this gap, introduce the
reader into the modern AQA and provide all notions and
the background to understand, analyse, simulate and design
quantum algorithms for computer vision which can poten-
tially run on modern AQA, as well as interpret the results.

We consider correspondence problems on point sets
which have various applications in computer vision. They
consist in finding an optimal rigid transformation between
inputs [34, 13, 47, 66]. While transformation estimation as-
sumes known matches, point set alignment is more general
and targets, in addition, the recovery of correspondences.
We consider two inputs, i.e., a fixed reference point set and a
template undergoing a rigid transformation. Thus, our goal
is to design a quantum approach for point set alignment
which can potentially run on AQA and show that it offers
advantages compared to the classical counterparts.

Therefore, we adapt the recent progress in rigid point
set alignment and formulate a globally multiply-linked en-
ergy functional which does not require any intermediate
correspondence updates [29]. In the gravitational approach
(GA) [29], the optimal alignment is achieved when the grav-
itational potential energy (GPE) of the system with two in-
teracting particle swarms is locally minimal. Proceeding
from GA, we build the weight matrix P for the associated
QUBOP (1) which is unalterably valid in the course of the
optimisation. Along with that, we are targeting at a method
which is implementable on classical hardware and can solve
real-world problems, cf. Fig. 1. To summarise, the main
contributions of this paper are:

• A self-contained and detailed introduction into modern
quantum annealers for computer vision problems, in-
cluding notions from quantum physics and computing
(Sec. 2), modern adiabatic quantum annealers (Sec. 3)
including D-WAVE (Sec. 3.2), and previous and related
works from quantum computing (Sec. 4).

• The first quantum approach (QA) to transformation esti-
mation (Sec. 5) and point set alignment (Sec. 6) which
can run on the upcoming quantum annealers (Sec. 6.2).

• Experimental analysis of the proposed method in a simu-
lated environment on several datasets (Sec. 7).

quantum notion classical counterpart
qubit (states |0〉 and |1〉) bit (states 0 and 1)

(time-dependent) Hamiltonian energy functional
eigenstate some energy state

ground state globally optimal energy state
quantum system evolution optimisation process
quantum annealing [26] simulated annealing [39]

Table 1: Quantum notions and their counterparts in computer vision.

2. Preliminaries, Definitions and Notations

In this section, we introduce the reader into the basics of
quantum computing. See Table 1 for a lookup of notions
specific to AQA which have counterparts and interpretation
in the classical optimisation theory for computer vision.
Qubit. Quantum computing encompasses tasks which can
be performed on quantum-mechanical systems [53]. Quan-
tum superposition and entanglement are two forms of par-
allelism evidenced in quantum computers. A qubit is a
quantum-mechanical equivalent of a classical bit. A qubit
|φ〉 — written in the Dirac notation — can be in the state
|0〉, |1〉 or an arbitrary superposition of both states denoted
by |φ〉 = α|0〉 + β|1〉, where α and β are the (generally,
complex) probability amplitudes satisfying |α|2 + |β|2 = 1.
In quantum computing, the state |0〉+|1〉√

2
denoted by |+〉 is

often used for initialisation of a qubit register. The state of
a qubit remains hidden during the entire computation and
reveals when measured. If qubits are entangled, measur-
ing one of them influences the measurement outcome of the
other one [59]. During the measurement, the qubit’s state
irreversibly collapses to one of the basis states |0〉 or |1〉.
Efficient physical realisation of a qubit demand very low
temperatures. Otherwise, thermal fluctuations will destroy
it and lead to arbitrary changes of the measured qubit state.

One possible physical implementation of a qubit is an
electron which possesses a spin, i.e., its intrinsic magnetic
moment [53, 63]. The spin of an electron can be manip-
ulated and brought to the state spin down, spin up, or a
superposition of both. A concrete experimentally realised
scheme that uses this property is represented by an atom
of phosphorus 31P embedded into a 28Si silicon lattice at-
tached to a transistor [37, 46, 67]. The nucleus of 31P has
a positive charge compensated by electrons. The bundle of
electrons in the transistor is filled up to the energetic level
between the energy of spin-down and spin-up state of 31P.
To change a state of a 31P–28Si qubit, a microwave pulse of
the frequency — which is equal to the resonance frequency
of the atom — is applied to it. The new state |φ〉 depends on
the duration of the exposure. A transistor is used to measure
a state of the 31P–28Si qubit. If the extra electron of 31P tun-
nels into the electron bundle, a positive charge is measured
in the transistor indicating the spin-up state (e.g., |1〉).

Fig. 2-(a) visualises a qubit with a so-called Bloch
sphere. Every qubit can be both in a superposition and en-
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Figure 2: (a): Schematic depiction of a qubit with a Bloch sphere. Spin-
up or |1〉 is located on the north pole, and spin down or |0〉 is located on
the south pole. The state |0〉+|1〉√

2
with equal probability amplitudes to

measure |1〉 and |0〉 values is geodetically equidistant to both poles. A
point on the surface of the Bloch sphere corresponds to a valid pure state
|φ〉 = α|0〉 + β|1〉. (b): Schematic visualisation of adiabatic quantum
annealing (AQA). At the beginning, all qubits are initialised in the state
|+〉. After the annealing is finished, the qubit states are measured and
returned. After the measurement, the states of variables are classical.

tangled with other qubits. Thus, quantum superposition is
the property that calculations are performed on all possible
inputs simultaneously which can result in exponential par-
allelism in the number of qubits. When entangled, states of
qubits cannot be described independently from each other.
Schrödinger Equation. In the universal or gates model,
changes are expressed by a series of unitary transformations
applied to qubits. This is a useful practical simplification,
while the evolution of every quantum-mechanical system
can be described more precisely by continuous Schrödinger
equation, which in common notation reads:

− i d
dt
|φ(t)〉 = Ĥ(t) |φ(t)〉. (3)

For the simplicity, we denote here by |φ〉 a state of n qubits
at time t, and Ĥ(t) is a Hamiltonian which is, in this case,
a 2n×2n Hermitian matrix. Thus, a discrete time evolution
of the quantum system is given by a unitary transformation.
Hamiltonian. Hamiltonian Ĥ is an energy operator of a
system of n qubits. It defines the energy spectrum of a
system or, in our case, the space of all possible solutions.
The ground state of the system is its lowest energy eigen-
state. Finding a ground state of a Hamiltonian is equivalent
to finding an optimal solution to the problem. The expec-
tation value of Hamiltonian 〈Ĥ〉 provides an instantaneous
energy of a given qubit configuration. In correspondence
problems, 〈Ĥ〉 is a quantitative characteristic of point set
alignment. We denote by ∆(Ĥ) the spectral gap of Ĥ, i.e.,
the difference between the energies of the ground state and
the second lowest eigenstate. The spectral gap influences
the annealing rate and is considerable for algorithm design
and evaluation in quantum annealing.
Pauli Matrices. An arbitrary Hamiltonian of a n-qubit-
system can be expressed by a linear combination of tensor
products of Pauli matrices denoted by:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (4)

The Pauli matrices are 2×2 Hermitian and unitary. Together
with the identity σ0 = I2×2, they form a basis for C2×2.
σx flips the probabilities to measure |0〉 and |1〉, whereas
σz|0〉 = |0〉, and σz|1〉 = −|1〉.
Pseudo-Boolean Functions. A pseudo-boolean function is
a real vector-valued function of n boolean variables denoted
by x of the form F(x) : Bn → RM, where M is the number
of real-valued outputs.
Quantum Annealing. Quantum annealing is a heuristic
combinatorial optimisation method for finding global op-
tima which relies on quantum effects (superposition, entan-
glement and tunnelling) [11, 36]. In particular, it is used to
find a ground state of an Ising Hamiltonian [35, 57], which
encodes the target computational problem, see Fig. 2-(b).

Quantum annealing is the quantum counterpart of sim-
ulated annealing [45, 39]. Starting from the superposition
state [|+〉]⊗n (this is a shorthand for n qubits in the state
|+〉, cf. (9)), the system evolves according to (3) under an
external time-dependent magnetic field (a transverse field).
When the external field is faded away, the system reaches
the ground state of an Ising model [35]. According to (2), if
an external magnetic field is changing gradually enough, the
system remains near the ground state with high probability
throughout the optimisation. Quantum annealing systems
taking advantage of (2) are called adiabatic quantum com-
puters (AQC). QUBOP is the most common problem form
which can be mapped to current realisations of AQC.

3. Modern Adiabatic Quantum Computation
Adiabatic quantum computation is a form of quantum

annealing which relies on the adiabatic theorem of quantum
mechanics (2) [17]. Starting from a ground state of an ini-
tial default Hamiltonian ĤI , an AQC system adiabatically
evolves into the ground state of a problem Hamiltonian ĤP

which encodes a solution to a problem [26]. In the case of
adiabatic quantum annealing (AQA), the problem Hamil-
tonian ĤP is given by the Ising model [35]:

ĤP =
∑
j∈V

hjσ
z
j +

∑
(j, k)∈EP

Jj,k σ
z
j ⊗ σzk, (5)

with the Kronecker product ⊗, hj denoting exterior local
magnetic fields and Ji,j standing for the pairwise connec-
tions between the particles. V is a set of particles, and EP
is a set of edges (intra-particle links) of the graph. Eq. (5) is
written in a notation common in physics. The first term of
(5) on the right side in the explicit notation reads

Ĥj∈V
P =



[
σz ⊗ I⊗ . . .⊗ I

][
I⊗ σz ⊗ . . .⊗ I

]
. . .[

I⊗ I⊗ . . .⊗ σz
]

T


2n×n2n


h1 I2n×2n

h2 I2n×2n

...
hn I2n×2n


n2n×2n

,

(6)
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where I without a subscript is a 2 × 2 identity matrix. The

second term Ĥ
(j, k)∈EP

P of (5) can be expressed in a similar
manner, involving pairs of σz in the tensor product depend-
ing on the connectivity of the lattice.

Theoretically, each particle can interact with any other
particle from the whole set of qubits. In practice, the cou-
plings are restricted to local neighbourhoods (see Sec. 3.2).
Thus, (5) describes a system of N interacting spin-½ parti-
cles under the influence of distributed magnetic forces, and
in the expanded form, ĤP is a 2n × 2n matrix. Finding a
ground state of an Ising model is an NP-hard problem [7].
In the ground state, the spin configuration of all particles
which minimises Ising energy EIsing is given by:

EIsing =
∑
i

hisi +
∑
i,j

Ji,jsisj , (7)

where si ∈ {1,−1} denotes two possible spin measurement
outcomes of a spin-½ particle.

3.1. Quantum System Evolution

Solving NP-hard problems such as QUBOP on a clas-
sical computer requires exponential time in the size of the
input. The main idea of the AQC is that a QUBOP (1) can
be mapped to the Ising model (5) and optimised by allowing
the system to evolve according to the adiabatic principle (2).
Once annealing is finished, the qubit register will represent
the solution to the programmed problem with a high proba-
bility [26] (cf. Appendix A on the annealing rate criterion).
The initial Hamiltonian of the system is always initialised
in the state

ĤI = −
∑
j∈V

Bxσ
x
j , (8)

where Bx > 0 stands for a magnetic field pointing in the x
direction. The ground state of (8) is a symmetrised superpo-
sition with equal normalised probability amplitudes for the
states |0〉 and |1〉 for all qubits, i.e.,

[|+〉]⊗n =

(
|0〉+ |1〉√

2n

)⊗n
. (9)

This initial state (9) is comparably easy to construct by radi-
ating a microwave of the same duration and wavelength to
all qubits. In mathematical terms, (9) is obtained by apply-
ing a Hadamard transform H = 1√

2

[
1 1
1 −1

]
to n |0〉 qubits.

The lowest energyEGS = −nBx of (8) is achieved when
all qubits in the system point in the anti-parallel direction of
the magnetic field, so that σxj |sj〉 = |sj〉. During AQC, the
initial Hamiltonian ĤI is evolving into the problem Hamil-
tonian ĤP , with a high probability of reaching the ground
state of ĤP [26]. The interpolation between the Hamilto-
nians can be written as

Ĥ = [1− s] ĤI + s ĤP , (10)

with s ∈ [0; 1] being the time in relative units from the start
of annealing at s = 0 until reaching the ground state of ĤP

at s = 1. The problem Hamiltonian and the final state of the
system depend on the objective function f(x) or the matrix
of weights between the qubits P in (1). After the annealing
is accomplished, the state of each qubit is measured, and
the result corresponds to the solution of the programmed
problem with a high probability. At this stage, the states of
all binary variables are classical, and not quantum anymore.

To remain in the ground state during the system evolu-
tion, the annealing rate has to be carefully chosen. The con-
dition of adiabaticity (2) is derived from the time-dependent
perturbation theory of quantum systems. It is achieved
when the average energy pumped into the system per time
interval T is smaller than the minimal energy difference be-
tween the ground state and the first excited state. This state-
ment was quantified in [4] which generalises the original
adiabatic theorem [17] for periodic driving, see Appendix A
for further details.

3.2. Quantum Annealer D-WAVE

D-WAVE relies on the adiabatic criterion in its specified
form and currently supports up to ≈2000 qubits [22]. It re-
flects the state of the art in physical realisation of quantum
processors. It is relatively inexpensive to bring the system in
the superposition state, and every computation on D-WAVE
starts with the problem-independent ĤI (8). Qubits can in-
teract with a restricted number of other qubits, and it is pos-
sible to define qubit equality and entanglement constraints
[22]. Possible interactions can be seen from the chimera
graph which schematically depicts the layout of the quan-
tum processor [22, 16]. At the same time, the physically
realised connectivity can model QUBOP with arbitrary con-
nectivities through an internal conversion [16]. The draw-
back is that in the worst case, a quadratic increase in the
number of variables is required. A fully connected graph of
layers with N qubits would require N2 qubits for process-
ing. Some QUBOP cannot be mapped to the chimera graph,
and some problems can be mapped in multiple ways [55].

4. Previous and Related Work
Universal Quantum Computers. The paradigm of the uni-
versal quantum computer originates in the attempts to gain
control over individual quantum systems in the early eight-
ies [62, 53]. Later, extending the control to multiple quan-
tum systems has attracted the interest of physicists, promis-
ing to facilitate discoveries in quantum physics [53]. By that
time, it was noticed that simulating a quantum-mechanical
system on a classical computer requires exponential time
in the number of simulated elements [43, 27]. “Can you
do it2 with a new kind of computer – a quantum com-

2to simulate quantum-mechanical effects
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puter?” [27] is a famous quote by R. Feynman which has
triggered research on quantum computers in the subsequent
years. The so-called no-cloning theorem [56, 64] belongs to
the first discoveries strongly influenced quantum informa-
tion theory and quantum computations. Nowadays, quan-
tum computers can be used not only to fulfil their primary
goal, i.e., to simulate quantum-mechanical systems for dif-
ferent branches of science, but also to solve other computa-
tional problems — such as balanced function decision prob-
lem [24], quantum Turing machines for complexity analy-
sis [12], prime number factorisation and discrete logarithms
[61], database search [30], graph matching [3], data classifi-
cation [58] and principal component analysis [42] — faster
than on classical machines. The related field of quantum
communication and quantum key distribution has already
found broad practical use nowadays [10, 9, 60].
Classical Methods using Quantum Analogies. Quantum-
mechanical effects inspired multiple techniques for conven-
tional computers including variants of genetic and evolu-
tionary algorithms [31, 32], non-rigid mesh analysis [5] and
image segmentation [6], among others.
Quantum Annealers in Computer Vision. Only a few
theoretical results and applications of AQC to image pro-
cessing, machine learning and computer vision are known.
Neven et al. [51] have shown how image recognition can
be formulated as QUBOP. Image classification on 12 × 12
images with AQC was addressed in [52]. The approach of
O’Malley et al. can learn facial features and reproduce fa-
cial image collections [54]. Boyda et al. [18] propose an
AQC method to detect areas with trees from aerial images.
Several methods target classification, dimensionality reduc-
tion and training of deep neural networks [50, 38, 1]. Not all
theoretical findings of these works are possible to test on the
real AQC hardware yet. Nonetheless, we believe that it is
essential to explore the theory and highlight the advantages
of the upcoming hardware for computer vision tasks.

5. Quantum Transformation Estimation
In this section, we introduce our QA to transformation

estimation. The inputs are a reference point set [xn] ∈
X ∈ RD×N and a template point set [yn] ∈ Y ∈ RD×N ,
n ∈ {1, . . . , N}. N is the number of points in both point
sets and D is the dimensionality of the points. We assume
that translation is resolved, the centroids of the point sets
coincide, and points are in correspondence.

5.1. Transformation Estimation in 2D

To obtain an advantage in solving transformation estima-
tion on a quantum annealer we should avoid uniform sam-
pling of rotations applied to Y. Elements of the rotation
group are non-commutative, and it is not possible to formu-
late multiplication of basis rotations as QUBOP. Instead, we
propose to represent the transformation matrix as a linear

combination of basis elements. Recall that for any rotation
matrix, R−1 = RT. Rotation in 2D consists of four ele-

ments, i.e., R =

(
r1,2 r2,2
r2,1 r2,2

)
. Additively, we can create a

basis for all possible values of R and encode the influence
of the additive elements as binary variables. Consider in-
stead the power series of R in 2D. Every such matrix has a
corresponding skew-symmetric matrix of the form

S = θM, M =

[
0 −1
1 0

]
, (11)

with a real number θ. According to the Cayley-Hamilton
theorem, S2 + θ2I = 0 which leads to the following expo-
nential map for R with power series:

R = exp(S) =

cos(θ) I +

(
sin(θ)

θ

)
S = cos(θ) I + sin(θ) M.

(12)

From (12) we see that R is composed of an identity
weighted by cos(θ) and M weighted by sin(θ). If the basis
would resemble additive elements I and M of the exponen-
tial map, we can stronger constrain the resulting R. We see
that r1,1 is entangled with r2,2, and r1,2 is entangled with
r2,1. Eventually, we need fewer basis elements, the optimi-
sation will finish faster and the method can be also imple-
mented and tested on a classical computer. Thus, our basis
Q = {Qk} for R is a compound of K = 20 elements:{

Qk = ωC ∈ R2×2,∀ω ∈ {0.5, 0.2, 0.1, 0.1, 0.05},
∀C ∈ {I,M,−I,−M}

}
.

(13)

Since we want to find R which minimises the distances be-
tween the corresponding points (xn,yn), we multiply each
template point with a negative sign −yn with each basis
element Qk and stack the result into Φ:

Φ =


xT
1 xT

2 . . . xT
N

−[Q1y1]
T −[Q1y2]

T . . . −[Q1yN ]T

−[Q2y1]
T −[Q2y2]

T . . . −[Q2yN ]T

...
...

. . .
...

−[QKy1]
T −[QKy2]

T . . . −[QKyN ]T

 . (14)

Next, we set the weight matrix in (1) as

P = ΦΦT, (15)

and the final QUBOP reads

arg min
q∈B21

qTΦΦTq. (16)

In total, 21 qubits are required to resolve the transformation
on AQC in 2D, with the first qubit of q being fixed to |1〉.
After solving (16) with quantum annealing and measuring
q, we obtain a classical bitstring q̂. The resulting (perhaps
approximate) R is then obtained by unembedding as

R =

K∑
k=1

q̂k+1Qk. (17)
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5.2. Transformation Estimation in 3D

In 3D, a skew-symmetric matrix can be represented as

S = θM, M =

m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

 =

 0 a b
−a 0 c
−b −c 0

 ,
(18)

where θ, a, b and c are real numbers, and a2 + b2 + c2 =
1. In the 3D case, the Cayley-Hamilton theorem states that
−S3 − θ2S = 0. The exponential map for R in 3D with
power series reads

R = exp(S) =I +

(
sin θ

θ

)
S +

(
1− cos θ

θ2

)
S2 =

I + sin θM + (1− cos θ) M2.
(19)

Next, M can be decomposed as follows:

M = a

 0 1 0
−1 0 0
0 0 0


︸ ︷︷ ︸

Ma

+ b

 0 0 1
0 0 0
−1 0 0


︸ ︷︷ ︸

Mb

+ c

0 0 0
0 0 1
0 −1 0


︸ ︷︷ ︸

Mc

.

(20)
Regarding M, we see that

• {m1,2;m2,1}, {m1,3;m3,1} and {m2,3;m3,2} are mu-
tually dependent or entangled,

• mi,j ∈ [−1; 1],

• M = −MT, Ma = −MT
a , Mb = −MT

b and Mc =
−MT

c , i.e., they are anti-symmetric, and

• M2 =

[
v−1 d e
d v−2 f
e f v−3

]
is symmetric negative semi-

definite, with {v−1 , v
−
2 , v

−
3 } ∈ R−, and {d, e, f} ∈ R.

The basis for rotation in 3D is comprised of the identity
matrix I, Ma, Mb, Mc as well as the basis for M2:

Md =

0 1 0
1 0 0
0 0 0

 ,Me =

0 0 1
0 0 0
1 0 0

 ,Mf =

0 0 0
0 0 1
0 1 0

 .

(21)
Thus, our basis Q3D = {Q3D

k } for R in 3D is a compound
of K = 80 elements:{

Q3D
k = ωC3D ∈ R3×3,∀ω ∈ {0.5, 0.2, 0.1, 0.1, 0.05},

∀C3D ∈ {I,−I, Ma,−Ma,Mb,−Mb,Mc,−Mc,

Md,−Md,Me,−Me,Mf ,−Mf}
}
.

(22)
The final QUBOP and the unembedding (i.e., decoding the
solution to QUBOP) after quantum annealing for the 3D
case are obtained similarly to (14)–(17) with q ∈ B81 (q0

remains fixed to |1〉 and Qk are replaced by Q3D
k in (17)).

6. Quantum Point Set Registration
In point set registration, the input point sets are of dif-

ferent cardinalities, and correspondences between points
are, generally, not known, i.e., [xn] ∈ X ∈ RD×N and
[ym] ∈ Y ∈ RD×M , m ∈ {1, . . . ,M}. N and M are
the numbers of points in the reference and template, respec-
tively, while D is the point dimensionality. The objective of
point set alignment is to recover rotation R (R−1 = RT,
det(R) = 1) and translation t aligning Y to X. We assume
that the translation is resolved in the pre-processing step by
bringing the point set centroids into coincidence.

Point set alignment can be alternatingly solved on AQC
by finding some point matches and estimating the transfor-
mation with the given correspondences in the ICP fashion
[13]. This would result in a sequence of QUBOP of the form
(16). To express alignment as a single QUBOP, we have to
find an energy functional which is correspondence-free and
which, when minimised in one shot on AQC, would result
in an optimal alignment. The desired form of the energy
functional has been recently shown in the literature [29].

6.1. Particle Dynamics Based Alignment

Barnes-Hut Rigid Gravitational Approach (BHRGA)
[29] is a recent point set alignment method with a single
energy functional which remains unchanged during the en-
tire optimisation. BHRGA is a globally multiply-linked ap-
proach, i.e., all ym interact with all xn. In [29], point sets
are aligned by minimising the mutual gravitational poten-
tial energy (GPE) E of the corresponding system of parti-
cles in the force field induced by X:

E(R, t) =
∑
m

∑
n

µym
µxn
‖R ym + t− xn‖2 , (23)

where µym
and µxn

denote masses of ym and xn, respec-
tively. With no imposed boundary conditions, particles are
initialised with unit masses. In [29], (23) is optimised with
the Levenberg-Marquardt algorithm [41, 44], and the op-
timum is achieved when the system’s GPE is locally min-
imal. Without acceleration by a 2D-tree, the method has
quadratic complexity and (23) involves all possible interac-
tions between the template and reference points.

We can now derive a QUBOP in the similar fashion as
in Sec. 5 for the transformation estimation. Note, however,
that the bases (13) and (22) allow for affine transformations
and scaling. Thus, implicitly, we would optimise

E(R, t, s) =
∑
m

∑
n

µym
µxn
‖R yms+ t− xn‖2 , (24)

where the scalar s is the scaling of the template. As proven
in [28], allowing for scale in globally multiply-linked point
set alignment results in the shrinkage of the template to a
single point with a very high probability. To remedy the

6



problem, either prior correspondences can be used, or point
interactions can be restricted to local vicinities [28]. In our
QA, we opt for the second solution which allows to use the
rotational bases (13) and (22) elaborated in Sec. 5. Eventu-
ally, the Φ ∈ R(K+1)×(D)(L(1)+L(2)+...+L(N)) matrix en-
coding point interactions for point set alignment reads

Φ =
[
Φ1Φ2 . . .ΦN

]
, (25)

with Φn, n ∈ {1, . . . , N}, of the form
xT
n xT

n . . . xT
n

−[Q1y
n
1 ]

T −[Q1y
n
2 ]

T . . . −[Q1y
n
L(n)]

T

−[Q2y
n
1 ]

T −[Q2y
n
2 ]

T . . . −[Q2y
n
L(n)]

T

...
...

. . .
...

−[QKyn1 ]
T −[QKyn2 ]

T . . . −[QKynL(n)]
T

 , (26)

with Qk being as in (13) or (22) for the 2D and 3D case,
respectively. Φ1, Φ2 and ΦN encode point interactions be-
tween every xn and corresponding L(n) � M points of
the template denoted by superscripted {yn1 ,yn2 , . . . ,ynL(n)}.
Note that the latter build N subsets of {y1,y2, . . . ,yM}
of different cardinalities L(n), L̄ on average. If differ-
ent xn interact with the same ym, the corresponding sub-
columns

[
[Q1ym]T[Q2ym]T . . . [QKym]T

]T
of Φn can be

computed only once and reused. The final QUBOP for point
set alignment with Φn as in (26) reads

arg min
q∈BK+1

qTΦΦTq. (27)

In total, K + 1 = 21 and K + 1 = 81 qubits are re-
quired to align point sets on AQC in the 2D and 3D case,
respectively. Both transformation estimation and point set
alignment need the same number of qubits in the same di-
mensions, and the difference lies in the complexity to con-
struct P (see Sec. 6.2). Note that if the same template has to
be aligned to multiple references, the corresponding Φ can
be obtained by reusing

[
[Q1ym]T[Q2ym]T . . . [QKym]T

]T
(which has to be computed only once). The first qubit of q
has to be fixed to |1〉, since the first element of every column
contains a reference point which has to be active during the
entire optimisation. The unembedding is performed simi-
larly to the case of transformation estimation, see Sec. 5.

6.2. Complexity to Prepare P = ΦΦT

To prepare Φ, O(KDNξ) and O(KDNL̄ξ) operations
are required for the transformation estimation and point
set alignment, respectively. ξ denotes the number of op-
erations for multiplying ym with one element of the ad-
ditive basis Qk. To obtain the final P, we need to trans-
pose Φ and multiply Φ with ΦT which, in the worst case,
takes O(K2DN) operations for the transformation estima-
tion and O(K2DNL̄) operations for the point set align-
ment. There are also slightly faster algorithms for matrix
multiplication compared to the naı̈ve way [20].

TE K
10 20 30 40 50

e2D 0.023 0.026 0.041 0.078 0.17 0.3
σ2D 0.012 0.013 0.012 0.012 0.012 0.013
eR 0.058 0.062 0.083 0.22 0.47 0.764
σR 0.041 0.044 0.041 0.036 0.031 0.03

Table 2: The accuracy of QA under random initial misalignments, for the
transformation estimation (”TE”) and point set alignment (K > 1).

7. Experimental Evaluation
The current generation of D-WAVE annealers does not

support the precision of weights in P necessary for our
method [22]3. It is foreseeable that future generations will
enable a higher accuracy for couplings. We thus implement
and test QA with an AQC sampler on a conventional com-
puter (Intel i7-6700K CPU with 32GB RAM). All quanti-
tative tests are performed with 21 binary variables corre-
sponding to the size of the Q basis in 2D.

We report two error metrics, i.e., the alignment error
e2D and the transformation discrepancy eR, together with
their standard deviations denoted by σ2D and σR, respec-
tively. The alignment error e2D =

‖RY−X‖HS
‖X‖HS

(‖·‖HS de-
notes the Hilbert-Schmidt norm) measures how accurately
the aligned shape coincides with the reference and requires
ground truth correspondences. The transformation discrep-
ancy is defined as eR =

∥∥I−RRT
∥∥
HS , where R is the

recovered rotation. It measures how closely the recovered
transformation resembles a valid rigid transformation. The
usage of two complementary metrics is necessary because
a low eR does not automatically imply an accurate registra-
tion. On the other hand, a low e2D does not quantify how
rigid the recovered transformation is.
Datasets and Proof of Concept. We use four 2D datasets,
i.e., fish [47], qubit, kanji and composer with cardinalities
varying from 91 (fish) to 7676 (composer), see Fig. 1 for
qualitative registration results. For point sets with up to a
few thousand points, the simulation time τP < 1 sec. For
∼7.7k, τP grows to 20.178 sec (by a factor of ∼104). Sim-
ulation with n = 30 takes already ∼2.5 days. More binary
variables allow for more elements in the basis Q resulting
in more accurate alignment. Note that even with 80 qubits,
i.e., for problems with n = 80, annealing on AQC takes
around 100 ms. A simulation with n = 80 is not possible
even on a conventional supercomputer in a reasonable time.
Initial Misalignment and Point Linking. We test how ac-
curately our method recovers the transformation under the
random angle of initial misalignment θ and the different size
of the point linking region. We generate 500 random trans-
formations in the range θ ∈ [0; 2π] of the fish dataset and
resolve them with QA, for each K ∈ {1, 10, 20, 30}. The
results are summarised in Table 2. We see that e2D corre-

3the current generation natively supports 9-bit floating-point numbers
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Figure 3: The metrics as the functions of A/: the size of the point inter-
action region parametrised by K; B/: the angle of initial misalignment θ;
C/: the template noise ratio.

lates with eR for all tested K. For K = 30 — which cor-
responds to one third of the template points — both metrics
are still comparably low. We also study how the choice of
the point interaction region or K affects the accuracy of the
transformation recovery and plot e2D and eR as the func-
tions of K for several angles of initial misalignment θ in
Fig. 3-A. Interacting points are determined with theK near-
est neighbour rule for each xn. Recall that according to the
singularity theorem [28], the globally multiply-linked align-
ment (here, K = 91) results in a shrinkage of the template
to a single point, which is observed experimentally.

Next, we systematically vary the angle of initial mis-
alignment θ in the range [0; 2π] with the angular step π

36
and report e2D and eR as the functions of θ, for K ∈
{1, 10, 20, 30, 40, 50}. This test reveals the differences in
the transformations caused by θ, which arise due to the com-
position and the expressiveness of the chosen basis M , see
Fig. 3-B. QA is almost agnostic to θ, which is a desirable
property of every point set alignment method.
Sensitivity to Noise. We systematically add uniformly dis-
tributed noise to the template and test the robustness of the
proposed QA to outliers in the data, since real data often
contains outliers. The highest template noise ratio amounts
to 50%. Each metric for every noise ratio and every K is
averaged over 50 runs, see Fig. 3-C. σR and σ2D do not
exceed 0.057 and 0.03, respectively. We observe both the
increasing alignment error and the discrepancy in the ob-
tained transformations with the increasing noise level. For
small K, nonetheless, even large noise ratios seem not to
influence the metrics significantly.
Spectral Gap Analysis. Spectral gap ∆(Ĥ) is the differ-
ence between the energy of the ground state and the second-
lowest eigenstate. Each problem has an intrinsic and unique
∆(Ĥ). Even though a rigorous analysis of the spectral gap
is out of the scope of this paper, we make several qualitative
observations about the energy landscape of QA, the differ-
ence in the energy values and the corresponding registra-
tions for one exemplary problem. In Fig. 4, we plot the se-
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Figure 4: The sequences of energy-decreasing transitions and the corre-
sponding energy values observed in our sampler, for transformation esti-
mation (K = 1) and point set alignment with K = 30 interactions per
xn. Besides the graphs, we visualise alignment results for selected energy
values and the angle of initial misalignment θ ∈

{
π
8
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, π
2

}
.

quences of energy-decreasing transitions together with the
energy values in the experiment with fish, for three θ values.
We notice that some solutions have very small differences
in the energies and are qualitatively indistinguishable from
each other. This is accounted for by the choice of the ad-
ditive basis, i.e., that the same alignment can be encoded in
different ways. In contrast, we see significant differences
in the energy values of the qualitatively different solutions
(orders of magnitudes larger in the analysed experiment).

We conclude that even though ∆(Ĥ) is small, the align-
ments corresponding to several few lowest eigenstates are
qualitatively similar. This suggests that our selection of the
basis leads to problems with sufficient spectral gaps.

8. Conclusions

This paper introduces AQC for the computer vision com-
munity and shows that fundamental low-level problems can
be brought to a representation suitable for solving on AQC.
In simulations on a classical computer and in a wide range
of scenarios, our QA is shown to successfully recover 2D
transformations which are close approximations of globally
optimal transformations. With the chosen basis of 20 el-
ements, the solutions result in low transformation discrep-
ancy and alignment errors. Observations on how to avoid
singularities as well as the noise sensitivity and spectal gap
analysis complement the experimental section.

In future work, our technique can be extended to affine
transformations and other related computer vision prob-
lems. We hope to see more research on computer vision
methods with quantum hardware in the next decades.
Acknowledgements. This work was supported by the ERC Con-
solidator Grant 770784. VG is grateful to Polina Matveeva for
many enlightening discussions on the physical foundations of adi-
abatic quantum computing. The authors thank Bertram Taetz and
Hanno Ackermann for reviewing an earlier version of this paper.
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A. Appendix
In this additional section, we provide details on the se-

lection of the annealing rate, analyse the structure of P and
formalise the unembedding, i.e., the conversion of the solu-
tion to QUBOP (16) to the solution of the original alignment
problem on point sets. We preserve the notations referring
to the sections and equations from the main matter. The
equations and the figure introduced in this supplement are
equipped with Roman numerals.
Annealing Rate. Suppose En(s) is the ground state of in-
stantaneous Hamiltonian, En(0) is the initial state (ground
state) of the system and Em(s) is any other excited state of
the instantaneous Hamiltonian. Let s = t

T ∈ [0; 1], where
T is the overall time of interpolation and t is physical time.
Then, according to [4], T has to be chosen so that

T � |〈Em(s)|dH/ds|En(s)〉|
Enm(s)2

, ∀m 6= n, (i)

where dH/ds is the rate of change of Hamiltonian with re-
spect to s and Enm is the difference in the corresponding
instantaneous energies.
Analysis of P. Fig. I visualises several exemplary weight
matrices P from the experiments with clean and noisy data
(see Sec. 7). There are several observations. First, P =
ΦΦT is symmetric upon algorithm design. We also see that
the columns of Φ can be arbitrarily reshuffled as long as
the correspondences are preserved4. Second, P contains
regularly arranged zero submatrices, due to our choice of
the basis. As soon as a row of Φ induced by qCI, where
CI ∈ {I,−I}, is multiplied by a column of ΦT induced by
qCM, where CM ∈ {M,−M}, and vice versa, we obtain
a zero entry in P. The reason is that

[I
∑
i yi]

T [M
∑
j yj ] = 0

[−I
∑
i yi]

T [M
∑
j yj ] = 0

[I
∑
i yi]

T [−M
∑
j yj ] = 0

[−I
∑
i yi]

T [−M
∑
j yj ] = 0

, (ii)

if
∑
i yi =

∑
j yj , which holds in our case since each row

of Φ except the first row includes all points of Y multi-
plied by a single basis element Qk (see Fig. I-(top left) for
C pairs resulting in zero matrices). Third, the structure of
P reflects that its diagonal entries encode biases, and non-
diagonal elements represent couplings between the qubits.

With the increasing K, the span of the absolute energy
values increases, due to the higher number of point inter-
actions. As expected, P depends on data and the angle of
initial misalignment between the point sets. For all possi-
ble inputs and initial conditions — point sets of different
cardinalities, K and θ — the structure of P is the same for

4a reshuffling of rows requires changing the order of elements in Q

K = 1 K = 20 K = 40

K = 20K = 10 K = 40

A/

B/

, ,

, ,

, ,

, ,

Figure I: Exemplary visualisations of the weight matrix P = ΦΦT in
the experiment with clean (A/) and noisy data with 35% of outliers in the
template (B/), for K ∈ {1, 10, 20, 40} and θ ∈

{
π
4
, π
}

. The colour
scheme and the range of energy values are given to the right of each P.
White colour stands for zero entries. The diagonal values in P represent
biases (marked in orange on the top left), and non-zero elements represent
couplings between the qubits. In the visualisation on the top left, we list
the pairs of C ∈ {I,M,−I,−M} eventually leading to zero matrices.

the chosen basis. From P, we also recognise that the con-
sidered alignment problem is not purely combinatorial and
requires high-precision weights Jj,k in (5).
Unembedding. Unembedding is the decoding of the solu-
tion to QUBOP (16) to the solution of the original alignment
problem. Upon the design, our QA method assembles the
entries of the transformation matrix in the additive basis Qk

(see Secs. (5.1)–(6.1)). Suppose q̂ is the measurement re-
sult of q, i.e., it is a classical bitstring with K + 1 elements.
Recall that q1 is reserved for reference points and does not
contribute to the assembly of the transformation. Once q̂ is
measured and returned, we obtain the corresponding trans-
formation R by summing up Qk multiplied by q̂k+1:

R =
∑
k

q̂k+1Qk. (iii)

The obtained R is an affine transformation. If the solution
has to represent a valid rotation matrix Rr, R can be pro-
jected to the rotation group by solving the closest orthogo-
nal approximation problem with constraints:

min ‖Rr −R‖2HS ,
s. t. R−1r = RT

r and det(Rr) = 1.
(iv)

For a solution to (iv) by singular value decomposition, see
[33].
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