Curvature-aware Regularization on Riemannian Submanifolds

Kwang In Kim,^{1,2} James Tompkin,^{1,3} and Christian Theobalt¹

Max-Planck-Institut für Informatik,¹ Lancaster University,² Intel Visual Computing Institute³

Abstract

One fundamental assumption in pattern classification problems is that the data generation process lies on a manifold. This holds true for several algorithms for diffusion and regularization, e.g., in graph-Laplacian-based algorithms. Existing algorithms can be improved if we additionally account for how the manifold is embedded within the ambient space — if we consider the extrinsic geometry of the manifold. We characterize the extrinsic curvature of a manifold, and use this in anisotropic diffusion and regularization. The resulting re-weighted graph Laplacian demonstrates superior performance over classical graph Laplacian in semi-supervised learning and spectral clustering.

Figure 1: Controlling diffusivity depending on curvature: diffusivity is large along *flat* paths (red); small along the *curved* path (blue).

Anisotropic diffusion on manifolds:

$$\frac{\partial f}{\partial t} = -\Delta_D f := \operatorname{div} D \operatorname{grad} f,$$

D: a positive definite (p.d.) operator that controls the strength and direction of diffusion.

Characterizing curvature on a sub-manifold $M \subset \mathbb{R}^n$ — the second fundamental form:

$$II = \sum_{r,s=1}^{m} \sum_{i=m+1}^{n} \left[\left(\frac{\partial^2 y^i}{\partial x^r \partial x^s} \right) dx^r dx^s \right] Y_i$$

 $\{x^1,\ldots,x^m\}$ and $\{y^1,\ldots,y^n\}$: local coordinates in M and $\mathbb{R}^n,$ respectively. Embedding:

$$y^i = y^i(x^1, \dots, x^m)$$
 for $i = 1, \dots, n$,
and $\{\frac{\partial}{\partial y^1}, \dots, \frac{\partial}{\partial y^m}\} = \{Y_1, \dots, Y_m\}.$

Constructing *D* **from** *II* **— the shape operator**:

$$s = \sum_{r,s,\delta=1}^{m} \sum_{i=m+1}^{n} \left[|H^i|_P \right]_{rs} g^{r\delta} \partial_{\delta} dx^s,$$

 H^i : Hessian in $\{x^i\}$; $|A|_P$: a p.d. version of a matrix A. s expands the input vector into direction of high curvature. Our vector-valued diffusivity operator D_p at point p:

$$D_p = (S_p + I)^{-1},$$

 S_p is a matrix representation of s. Scalar-valued diffusivity operator d_p :

$$d_p(Z_p) = ||D_p(Z_p)|| / ||Z_p||.$$

max planck institut

Figure 2: Applying the diffusivity operator D_p : (Left) The black input vector is orthogonal to the direction where M has no curvature, and so the red output vector is identical; (Right) Input parallel to the maximally curved direction of M causes maximum output shrinkage. (Middle) In general, the input vector is shrunk depending on how M is curved.

Practical algorithm — re-weighted graph Laplacian:

Hessian H^i estimated based on locally fitting quadratic polynomials. Scalar-valued diffusivity operator d_p scales the weight (adjacency) matrix W in the standard graph Laplacian:

$$L = G - W,$$

G: column sum of W.

Results:

Theorem: estimated II converges to analytic version.

Table 1: Classification performance (error rate) of graph Laplacian (Lap) and re-weighted graph Laplacian (r-Lap).

Algorithm	USPS	COIL2	BCI	Text	C-PASCAL
Lap r-Lap	6.72 5.78	0.47 0.41 12 77	37.19 35.67	22.3 20.8	10.63 9.83 6.02
Lan (GT)	5 92	0	32.60	20.9	8.89
r-Lap (GT) Improvement (%)	4.94 15.55	0 0	25.94 20.43	19.9 4.79	8.20 7.40

Table 2: Clustering performance of Lap and r-Lap; m: mani-

dimensional	ity.				
Algorithm	Lap	r-Lap			
		m	Error rate	Improvement (%)	
USPS	0.22	2	0.23	-4.54	
		3	0.28	-27.27	
		4	0.15	31.82	
		5	0.21	4.54	
		6	0.24	-9.09	
MNIST	0.31	2	0.19	38.71	
		3	0.21	32.26	
		4	0.32	-3.23	
		5	0.25	19.35	
		6	0 32	-3.23	

