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Abstract
One fundamental assumption in pattern classification prob-
lems is that the data generation process lies on a manifold.
This holds true for several algorithms for diffusion and reg-
ularization, e.g., in graph-Laplacian-based algorithms. Exist-
ing algorithms can be improved if we additionally account
for how the manifold is embedded within the ambient space
— if we consider the extrinsic geometry of the manifold. We
characterize the extrinsic curvature of a manifold, and use
this in anisotropic diffusion and regularization. The result-
ing re-weighted graph Laplacian demonstrates superior per-
formance over classical graph Laplacian in semi-supervised
learning and spectral clustering.

Figure 1: Controlling diffusivity depend-
ing on curvature: diffusivity is large along
flat paths (red); small along the curved
path (blue).

Anisotropic diffusion on manifolds:

∂f

∂t
= −∆Df := divD grad f,

D: a positive definite (p.d.) operator that controls the strength
and direction of diffusion.

Characterizing curvature on a sub-manifold M ⊂ Rn —
the second fundamental form:

II =

m∑
r,s=1

n∑
i=m+1

[(
∂2yi

∂xr∂xs

)
dxrdxs

]
Yi,

{x1, . . . , xm} and {y1, . . . , yn}: local coordinates in M and
Rn, respectively. Embedding:

yi = yi(x1, . . . , xm) for i = 1, . . . , n,

and { ∂
∂y1 , . . . ,

∂
∂ym } = {Y1, . . . , Ym}.

Constructing D from II — the shape operator:

s =

m∑
r,s,δ=1

n∑
i=m+1

[
|Hi|P

]
rs
grδ∂δdx

s,

Hi: Hessian in {xi}; |A|P : a p.d. version of a matrix A.
s expands the input vector into direction of high curvature.
Our vector-valued diffusivity operator Dp at point p:

Dp = (Sp + I)−1,

Sp is a matrix representation of s.
Scalar-valued diffusivity operator dp:

dp(Zp) = ‖Dp(Zp)‖/‖Zp‖.

Figure 2: Applying the diffusivity operator Dp: (Left) The
black input vector is orthogonal to the direction where M
has no curvature, and so the red output vector is identical;
(Right) Input parallel to the maximally curved direction of M
causes maximum output shrinkage. (Middle) In general, the
input vector is shrunk depending on how M is curved.

Practical algorithm — re-weighted graph Laplacian:
Hessian Hi estimated based on locally fitting quadratic poly-
nomials. Scalar-valued diffusivity operator dp scales the weight
(adjacency) matrix W in the standard graph Laplacian:

L = G−W,

G: column sum of W .

Results:
Theorem: estimated II converges to analytic version.

Table 1: Classification performance (error rate) of graph
Laplacian (Lap) and re-weighted graph Laplacian (r-Lap).

Algorithm USPS COIL2 BCI Text C-PASCAL

Lap 6.72 0.47 37.19 22.3 10.63
r-Lap 5.78 0.41 35.67 20.8 9.83

Improvement (%) 14.00 12.77 4.09 6.73 6.02

Lap (GT) 5.92 0 32.60 20.9 8.89
r-Lap (GT) 4.94 0 25.94 19.9 8.20

Improvement (%) 15.55 0 20.43 4.79 7.40

Table 2: Clustering performance of Lap and r-Lap; m: mani-
fold dimensionality.

Algorithm Lap r-Lap

m Error rate Improvement (%)

USPS 0.22

2 0.23 -4.54
3 0.28 -27.27
4 0.15 31.82
5 0.21 4.54
6 0.24 -9.09

MNIST 0.31

2 0.19 38.71
3 0.21 32.26
4 0.32 -3.23
5 0.25 19.35
6 0.32 -3.23


