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Fig. 1. Deep Reflectance Fields – given only two observations (color gradient images) of an actor, our method is able to relight the subject under any lighting
condition. Our approach generalizes to unseen subjects, viewpoints, illumination conditions and can handle dynamic performances.

We present a novel technique to relight images of human faces by learning
a model of facial reflectance from a database of 4D reflectance field data
of several subjects in a variety of expressions and viewpoints. Using our
learned model, a face can be relit in arbitrary illumination environments
using only two original images recorded under spherical color gradient illu-
mination. The output of our deep network indicates that the color gradient
images contain the information needed to estimate the full 4D reflectance
field, including specular reflections and high frequency details. While cap-
turing spherical color gradient illumination still requires a special lighting
setup, reduction to just two illumination conditions allows the technique
to be applied to dynamic facial performance capture. We show side-by-side
comparisons which demonstrate that the proposed system outperforms the
state-of-the-art techniques in both realism and speed.
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1 INTRODUCTION
Modifying the lighting in a facial portrait image is a much sought
after capability that would benefit many visual effects including
portrait photography, and virtual or augmented reality applications.
This relighting is particularly challenging since the facial appearance
is the result of a complex interaction of light with themanymaterials
that make up the skin, eyes, hair, teeth, and clothing, each of which
have complex geometry and varying amounts of specular reflection
and subsurface scattering. Further, ignoring or approximating these
properties is especially perilous as humans are highly capable of
detecting the subtle cues of realism in facial renderings. While
today’s computer graphics techniques can produce photo-realistic
digital human models which can be rendered in any lighting and
from any viewpoint, creating suchmodels is still extremely laborious
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and expensive. Indeed, progress towards automated avatar creation
still falls far short of photo-realism.

In order to reach the highest level of photo-realism, image-based
relighting systems capture actors at high resolution under a large
number of lighting conditions. For instance, high quality pore-level
4D reflectance fields of humans can be acquired with the Light Stage
proposed by Debevec et al. [2000] – a spherical dome equipped with
a large number of controllable light sources and cameras. The 4D
reflectance field from one camera view can be sampled by capturing
hundreds of one-light-at-a-time (OLAT) images, each of them cap-
turing the subject illuminated by a single light on the Light Stage.
By projecting the environment map of a new illumination condi-
tion onto this captured illumination basis, photo-realistically re-lit
images of a subject can be created as a weighted combination of
the OLAT images. The relighting results exhibit the full range of
local and global effects, including diffuse lighting, specular reflec-
tions, inter-reflection, subsurface scattering, and self-shadowing.
Unfortunately, capturing several hundreds OLAT images, a number
typically required for high quality reflectance field capture, requires
several seconds, e.g., ≈8 seconds using the Light Stage 2 [Debevec
2012]. Capturing a time-varying reflectance field of dynamic scenes
in this way is challenging, and relies on a hardware setup variant
equipped with high speed cameras, as well as an error-prone optical
flow alignment step [Einarsson et al. 2006].
To allow the capture of dynamic scenes, the key is to be able to

rely on a small set of input images that can be captured at real-time
frame rates – while the actor is performing freely. In this setting,
strong priors can help to better constrain reconstruction, but they
introduce significant trade-offs. For instance, [Saito et al. 2017] and
Yamaguchi et al. [2018] only handle skin, and can not correctly
relight facial hair, eyes, teeth, accessories, or upper body clothing,
since their underlying assumptions do not hold in these regions.
An alternative to manually crafted priors is the use of learnable
pipelines such as the one proposed by Xu et al. [2018]. Their deep
neural network seeks to relight a scene under novel illumination
based on a set of five optimal images captured under predefined
directional lighting. The approach provides compelling results on
synthetic data, but fails to handle complex object shapes and high
frequency details such as shadows, and can only handle low image
resolutions (128 × 128 pixels).

We introduce a new approach for the acquisition of high-quality
time-varying 4D reflectance fields of a human actor at 30 fps in
a Light Stage, without having to resort to time-multiplexing, mo-
tion compensation techniques, or priors. Our approach uses a deep
neural network to learn a mapping from only two images, captured
under spherical gradient illumination, to the full 4D reflectance field.
As such, it can reconstruct any OLAT image from a given lighting
direction. The predicted dynamic reflectance fields come very close
in quality to models captured with a dense set of OLAT images.
Our method enables quasi-photorealistic relighting of the complete
human head as it handles skin subsurface scattering, wrinkle de-
tails, skin specularity, facial hair, and teeth, as well as the complex
appearance of the human eyes in a unified manner, and in a way
that generalizes across different identities. While a Light Stage only
generates a discrete illumination basis due to the finite number of

mounted light sources, we recover a continuous illumination basis,
since the network can be evaluated for any illumination direction.

Our core technical contributions can be summarized as:
• A capture system that enables 4D reflectance field estimation of
moving subjects.

• A machine learning-based formulation that maps spherical gra-
dient images to the OLAT image corresponding to a particular
lighting direction.

• A task-specific perceptual loss trained to pick up specularities
and high frequency details.

• A sliding window based pooling loss that robustly handles the
small misalignments between the spherical gradient images and
the groundtruth OLAT images.

Our experiments show that our method is effective in real appli-
cations such as relighting in arbitrary lighting environments and
compares favorably with off-line capture systems and other state-
of-the-art approaches.

2 RELATED WORK
Modeling photorealistic humans is an active research topic in the
computer vision, graphics, and machine learning communities. Here
we categorize related works that are representative of different
trends in the literature as parametric model fitting, image-based, and
learning-based solutions.

Parametric Model Fitting. These approaches assume strong priors,
typically performing an explicit reconstruction while employing
hand-designed reflectance and/or lighting models. General shape,
illumination, and reflectance can be recovered based on a set of
hand-crafted priors and optimization [Barron and Malik 2015; Meka
et al. 2017]. Parametric models of geometry, surface reflectance, or il-
lumination have been employed for reconstruction and relighting in
the context of human bodies [Theobalt et al. 2007], faces [Blanz and
Vetter [n. d.]; Garrido et al. 2013, 2016; Gotardo et al. 2018; Hawkins
et al. 2004; Ichim et al. 2015; Thies et al. 2016], eyes [Bérard et al.
2016], eyelids [Bermano et al. 2015], and hair [Hu et al. 2015; Zhang
et al. 2017]. Faces can be relit under a diffuse appearance assumption
based on radiance environment maps and ratio-images [Wen et al.
2003]. Other approaches jointly estimate parametric BRDF mod-
els and wavelet-based incident illumination to relight 3D videos
of humans [Li et al. 2013]. Relighting of the human head can be
formulated as a mass transport problem [Shu et al. 2017] based on
position and normal estimates recovered by a parametric face model.
Cosine lobe relighting can be performed analytically based on a
pair of spherical gradient illumination images [Fyffe et al. 2009], but
secondary effects such as shadows are of low quality due to the use
of approximations in modeling the face geometry. Some recent deep
learning-based approaches [Saito et al. 2017; Yamaguchi et al. 2018]
estimate the parameters of a predefined reflectance model from
single images. The approach of Gotardo et al. [2018] for dynamic
appearance estimation extracts SVBRDF (diffuse and specular) and
geometry (also fine scale) from images captured under uniform
lighting, but their approach is restricted to the skin region. Recently,
multiple works have also focused on the challenging problem of
extracting the SVBRDF from a single image using a flash [Li et al.
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2018a,b; Nam et al. 2018]. Since, all model-based approaches use
hand-crafted priors, they are typically limited to specific parts of
the human body and only handle these in isolation. Many of these
approaches only work under low-frequency illumination conditions
and do not handle the specularity of skin and sub-surface scattering
effects. In contrast, our model-free approach enables relighting of
the complete human head.

Image-Based Relighting. To reach the highest level of realism,
image-based relighting techniques capture actors at high resolution
under a large number of lighting conditions. High quality pore-
resolution 4D reflectance fields of humans can be acquired with a
Light Stage [Debevec et al. 2000]. Einarsson et al. [2006] illuminates
the scene with a smaller set of approximately 30 lighting basis func-
tions with larger spatial support to enable real-time capture, but
this comes at the expense of lighting resolution. Other techniques
use high framerate video and time-multiplex the sampling of the
lighting basis over a window of several frames [Wenger et al. 2005],
but this requires expensive and error prone motion estimation. An
alternative approach is to use a reference subject’s 4D reflectance
field to modify the lighting on a target subject’s performance using
an aligned ratio image [Peers et al. 2007]. However, this requires hav-
ing a 4D reflectance field available of a similar-looking subject and
can transfer high-frequency details from the reference subject to the
target. And for dynamic performances, this solution is approximate
as it interpolates from a sparsely sampled collection of static poses.
The style transfer technique of [Shih et al. 2014] matches local image
statistics from a reference portrait to a target portrait and thereby is
also able to perform some degree of relighting of the target portrait.
However, the technique can require manual touch-up and can be
challenged by harsh lighting scenarios. Unfortunately, the acquisi-
tion of 4D reflectance fields is a slow process and thus the subject
would have to move in a stop-motion manner. This makes captur-
ing high quality reflectance fields of dynamic facial performances
very difficult, requiring expensive high speed cameras running at
thousands of frames per second and potentially uncomfortable light
levels [Wenger et al. 2005]. To the best of our knowledge, we in-
troduce the first approach for deriving time-varying 4D reflectance
fields of a human actor at 30 fps in a Light Stage.

Learning-Based Techniques. Deep learning based techniques have
recently been applied to the problem of relighting arbitrary ob-
jects [Meka et al. 2018; Ren et al. 2015; Xu et al. 2018] and human
bodies [Kanamori and Endo 2018]. The method of [Nalbach et al.
2017] showed that appearance synthesis can be cast as a learning
based screen-space shading problem based on per-pixel scene at-
tributes such as position, normal and reflectance. Based on a set of
OLAT images, the approach of [Xu et al. 2018] is trained to relight
a scene under novel illumination based on an optimal set of five
jointly selected OLAT images. While results are compelling, it fails
to handle complex object shapes, high-frequency specularities, and
shadows caused by grazing angle illumination and non-convex ge-
ometry. The data-driven rendering of Lombardi et al. [2018] learns
a joint representation of facial geometry and appearance from a
multi-view capture setup, but this technique does not address the
problem of relighting. The approach by Kanamori and Endo [2018]
enables occlusion-aware inverse rendering for the human body, but

Fig. 2. Capture setup – We use programmable light sources mounted on
a geodesic dome to light the subject under RGB color gradient images and
OLAT images for training, inference, and validation data.

results are restricted to Lambertian surfaces and low-frequency illu-
mination. In contrast, we propose a novel machine learning-based
formulation that maps spherical gradient images to a full dataset of
one-light-at-a-time (OLAT) images. This enables model-free relight-
ing of dynamic scenes captured in a Light Stage.

In contrast to all other approaches, we leverage the insight of Fyffe
et al. [2009], where spherical gradient images are used to derive
full-color diffuse/specular albedo and surface normals for dielectric
materials. Fyffe et al. [2009] assumed a simple cosine lobe model,
which uses only local information and low frequency statistics to fit
the BRDF.We argue that, if we provide a more expressive underlying
model, spherical gradient images contain all the information neces-
sary to generate the full reflectance field. In our method, this model
is a neural network that infers the complex mapping from spherical
gradient images to every possible directional lighting condition. Our
model can take advantage of non-local information and contextual
cues. For the first time, this enables estimating full reflectance fields
of dynamic subjects without any explicit prior or BRDF model.

3 DEEP REFLECTANCE FIELDS
As light follows the superposition principle, one can photo real-
istically apply any desired lighting configuration to a given actor
by combining a finite set of lighting conditions. In more detail, by
capturing a set of images where only one light is turned on at a
time (OLAT), one can linearly combine the RGB channels of these
images in order to simulate a desired environment map; see Figure 3.
In practice, sufficiently high sampling resolution in both captured
images and light sources is key to ensure that details in both the
surface (e.g., skin pores) and directional effects (e.g., specularities)
are captured. The main disadvantage of this approach is the ex-
tended duration of time during which the subject has to remain
still while the OLAT images are captured. As there are 331 lights in
our system, the acquisition of the corresponding 331 OLAT images
would take several seconds, making the capture and relighting of

ACM Trans. Graph., Vol. 38, No. 4, Article 77. Publication date: July 2019.



77:4 • Meka et al.

dynamic performances a real challenge. One of the contributions
of this work is overcoming this limitation by directly regressing an
arbitrary OLAT image using only two observations of the subject
captured under spherical gradient illumination.

3.1 Spherical Color Gradient Images
Spherical color gradient illumination images for reflectance estima-
tionwere originally proposed in [Fyffe et al. 2009]. Given the lighting
direction vector θ of a LED relative to the center of the Light Stage,
the light emitted by that LED for the first gradient image is pro-
grammed to have the RGB color ((1 + θx )/2, (1 + θy )/2, (1 + θz )/2),
and the second gradient image is programmed to have the RGB
color ((1 − θx )/2, (1 − θy )/2, (1 − θz )/2). Figure 2 shows the two
gradient images captured from a single camera viewpoint. Although
simple to form, these images can be leveraged to recover important
reflectance information about the surface being captured [Fyffe and
Debevec 2015; Fyffe et al. 2009]. In particular, the patterns, when
summed, produce a full-on white light condition which reveals the
subject’s total reflectance (diffuse plus specular), and the difference
of the images encodes the average reflectance direction into the
RGB color channels (a strong cue for surface normals). Further, the
magnitude of the difference image relative to the sum image is a
function of not only the BRDF but also the local self-shadowing
(cues to shadow estimation). In this sense, the photographs under
the two illumination patterns provide both geometric and albedo
information to the inference algorithm. In contrast to previous work
that interpreted gradient images using simple local parametric re-
flectance models, we employ deep learning to leverage the spatial
context of the gradient images to infer far more realistic reflectance
estimates.

3.2 Hardware and Data Capture
To acquire the necessary spherical gradient observations with cor-
responding ground truth OLAT images for training, we leveraged a
LED sphere Light Stage capture setup [Debevec 2012]. Our Light
Stage is a 3.5m diameter spherical dome on which 331 custom LED
light sources with red, green, blue, and white controllable LEDs
are evenly distributed as in Figure 2. Each of these LEDs is fully
controllable by a driver, allowing it to emit light of any desired
intensity and color. In order to capture actors at high resolution and
under different viewpoints, we leverage nine Sony IMX253 cameras,
capable of capturing 12.4MP images at 60Hz. All of the lights and
cameras are synchronized via a hardware trigger.

Data Capture and Post-Processing. As we cast relighting as a su-
pervised regression problem, we require corresponding inputs and
outputs to train the neural network; see Figure 4. The input con-
sists of two color spherical gradient images and a desired lighting
direction, while the output is an OLAT image corresponding to that
lighting direction. In order to relight an image at test time, we pre-
dict a collection of OLAT images (the full 4D reflectance field) using
only the two spherical gradient images as input. Note that the OLAT
images are only captured for training purposes and thus, at inference
time, we only capture gradient images for the dynamic sequences
we wish to relight. Precise pixel-to-pixel correspondence between
OLATs and gradient images at training time is crucial to infer sharp

OLAT images at inference time. Unfortunately, it is challenging
for actors to remain completely still for the extended amount of
time required to capture all 331 OLAT images. To overcome this
challenge, when capturing training data, we interleave “tracking
frames” into the capture sequence:

(1) Capture the 331 OLAT images, however:
(1.1) After every 11 OLAT captures, capture a “tracking frame”
(2) Capture the two gradient images

A tracking frame is an image captured where all the lights on the
Light Stage are turned on to generate homogeneous illumination.
Once the capture session is over, we consider the last tracking
image as a reference, and compute a dense optical flow-field across
tracking frames using the method by Anderson et al. [2016]. The
homogeneous illumination in the tracking frames is what makes the
computation of dense optical flow possible. The optical flow field
computed over tracking frames, is then linearly interpolated through
time to provide correspondences across the OLATs. Although this
procedure generally provides flow-fields of sufficiently good quality,
the motion compensated frames can still present mis-alignments
that could hinder the performance of our regressor. We address this
issue by proposing a training loss that effectively compensates for
small mis-alignments in image space; see Section 3.3.

3.3 Predicting Photo-Realistic 4D Reflectance Fields
In this section we describe our main algorithmic contribution: a deep
neural network capable of predicting photo-realistic 4D reflectance
fields for previously unseen faces. In more detail, given two gradient
images and a lighting direction as input, we want to predict how
any subject would look under white light coming from a specified
spotlight direction. Our OLAT prediction can be seen as solving an
image-to-image translation task [Chen and Koltun 2017; Isola et al.
2016; Zhu et al. 2017], where the goal is to start from input images
from a certain domain and “translate" them into another domain.
Our scenario is similar in the sense that we are transforming gradient
illumination images to another image with the same content, but
different illumination.
As such, the architecture that we employed is inspired by U-

NET [Ronneberger et al. 2015] which has recently shown impressive
results on image-to-image translation tasks involving photo-realistic
images of humans [Martin-Brualla et al. 2018]. We employ a fully
convolutional variant [Long et al. 2015] allowing efficient training
of our network on patches and processing of high resolution images
at inference time. At inference time, the input of our network is
two spherical gradient images of resolutionW =2560 and H =3072.
Similar to [Eslami et al. 2018], we concatenate the lighting direction
to each pixel of the input tensor. This results in an input tensor of
sizeW ×H×9. The output of the network is an RGB image of size
W ×H×3.

The U-NET encoder takes the input tensor and runs M =8 con-
volutional layers using 3×3 convolutions. The output of the convo-
lutions is immediately passed through a ReLU activation function,
followed by a batch-normalization layer, and a max-pool layer. In
the decoder stage we use bilinear upsampling followed by a convo-
lutional layer. We use skip connections between the encoder and
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Fig. 3. Image-Based Relighting – An environment map (left) can be approximated with the 331 lighting directions of the light stage (middle). With a denser
sampling of 1301 light directions, as enabled by our method, we obtain a better lighting environment approximation (right).

Fig. 4. Pipeline – Our network receives as input a pair of gradient images and a lighting direction. Via a U-Net architecture, it regresses the OLAT image that
is corresponding to that particular lighting configuration. Network legend: Conv2D, ReLU, Batch Norm, MaxPooling and Upsampling.

the decoder by concatenating the output from the encoder convolu-
tional layer to the features at the corresponding decoder layer. The
network is illustrated in Figure 4.

3.4 Training
At training time we employ random crops with resolution 512 ×
512 × 9 as input to the network. After the M = 8 convolutional
layers this produces a tensor of size 2 × 2 × 512. Crops are crucial
to train fast enough on high resolution images and to achieve the
highest level of quality. They effectively limit the amount of context
the network is able to see and hence prevent over-fitting [Kuo et al.
2018]. Using crops during training also enables the formulation of a
novel patch-based local alignment strategy.

Training Setup. In order to hasten training, we distribute the
training across 12 NVIDIA Tesla V100 GPUs. At each training epoch,
we randomly pick a training frame, a patch within that frame and
one OLAT per GPU. We use the ADAM optimizer [Kingma and Ba
2014] with a learning rate of 10−4, and use exponential decay of the
learning rate, with a rate of 0.1 every 106 iterations. We optimize
our network for 1 million iterations before the training converges.

Training Losses. Choosing the appropriate loss for a new task
is non-trivial and requires systematic trial and error. For example,
a simple photometric loss does not lead to photo-realistic output
as also shown by previous works [Martin-Brualla et al. 2018]. We
therefore employ a loss function to specifically address this problem.
Let Ipred be the prediction of our network and Igt the ground truth
OLAT image, we define our loss as:

L = ∥Perc(Ipred) − Perc(Igt)∥22 . (1)

The loss is the squared ℓ2-norm of the difference in feature space
between the predicted image and the ground truth image. Here, we
indicate feature space by Perc(·). A common choice in the literature
is to use a VGG network [Simonyan and Zisserman 2014] pre-trained
on ImageNet to compute the perceptual loss [Zhang et al. 2018].
While this loss is well suited for generic natural images, our task at
hand is specific and such an ImageNet trained model would lead to
sub-optimal results, especially when regressing specularities and
other high frequency details; see Figure 5. Therefore, we propose
to enhance the loss using a VGG architecture that has been trained
on a more relevant task: we consider as input a random image
patch sampled from a groundruth OLAT image Igt and the goal is
to correctly determine which light direction generated the given
patch – we recall that in total we have 331 light directions. We cast
the problem as a regression task and hence train the network to
minimize the ℓ1-loss between the predicted direction and the ground
truth direction. Training was stable with ℓ2 or ℓ1 losses. We used
an ℓ1 loss as it tends to produce sharper results for image-to-image
translation tasks.
As specularities heavily depend on the direction of incoming

light, a perceptual loss using our new task specific VGG network
is particularly sensitive to these high-frequency effects, but is in-
ferior to a perceptual loss using a network trained on ImageNet
when it comes to reconstructing lower frequencies; see Figure 5.
As these two losses capture complementary aspects of the desired
result, we combine them L = Lpretrained + λLspecific, where the
two components Lpretrained and Lspecific are obtained by using the
pre-trained VGG and the task specific VGG loss respectively. In
more detail, we use five convolutional layers from each VGG and
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Fig. 5. Training losses – Effect of different training losses on the final results. (a) ground truth, results generated with: (b) VGG pre-trained on ImageNet, (c)
task dependent specific loss, (d) without alignment loss, (e) proposed loss.

Fig. 6. Alignment Loss. Our slide-pooling loss accounts for misalignment
between the ground truth OLAT crop (top left) and the gradient crop (top
center). In the (x, y) coordinate frame (bottom) the energy of Equation 2
has a minimum at (x ′, y′) slightly up and to the left, marked with a red dot.
The ground truth OLAT image aligned to the minimum energy (top right)
appears well aligned to the gradient image.

rescale activations by their corresponding feature length to ensure
that they all contribute in the same manner to the final loss. We use
λ = 0.5 in our training.The effect of this loss is shown in Figure 5.

Sliding window pooling loss. Slight misalignments of gradient
and ground truth OLAT images leads to complications with losses
that assume pixel-perfect alignment; see Sec. 3.2. Indeed, naively
computing the pixel difference loss will result in blurred results. To
solve this problem, we propose a novel alignment strategy:

x ′,y′ = argmin
x,y

∑
u

∑
v

∥Igt(u − x ,v − y) − Ipred(u,v)∥1, (2)

where I (u,v) is the intensity value for a certain pixel location (u,v),
the offsets x ,y are sampled in a [−20, 20]×[−20, 20]window, and x̂ , ŷ
are the optimal offsets that correspond to the best aligning image,
denoted Îgt. The image Îgt is then used in Equation 1 instead of Igt,
effectively producing a slide-pooling loss that takes into account
translational mis-alignments; see Figure 6.

3.5 Inference
As described in Section 3.2, we only capture two gradient images per
frame, allowing us to capture relightable data at 30Hz. Once the data
is captured, the user only needs to define the lighting environment
that should be used for relighting the captured sequences. A dense
set of light directions from which to sample the environment map
also has to be defined. We run each of these directions together
with the two gradient images through the network to estimate the
corresponding OLAT images. Once all the OLAT images have been
obtained, they can be combined according to the environment map
to form the relit images. It is interesting to note that the number
of lights composing that environment map can be much greater
than the 331 used during training, leading to more detailed relit
images. For input images of 2560x3072 resolution, the inference
time of our network for a single OLAT image, averaged over 100
runs, is 270.14ms on a workstation using an Nvidia TitanXp GPU
and 1360.65ms on a workstation with only 2 Intel Xeon Gold 6154
CPUs. Although the inference time seems quite high, we use parallel
GPU clusters to speed up the OLAT inference.

4 EXPERIMENTS
In this section, we perform an in-depth analysis of the proposed
approach. To this end, we captured a dataset with 18 subjects. For
each subject, we recorded sets of 331 ground truth OLAT images,
2 gradient illuminations, and 33 fully lit tracking frames. As men-
tioned in Section 3.2, tracking and OLAT images are only used at
training time. For each person, we recorded their imagery from 9
different viewpoints. We additionally recorded each subject giving
a dynamic facial performance for 5 seconds while interleaving the
two color gradient lighting conditions. We split the captured data
into a training set consisting of frames from (10) training subjects
and a test set consisting of frames from (8) test subjects. We only
used 5 viewpoints for training, leaving 4 unseen viewpoints for
testing.

4.1 Qualitative Comparisons
In this sectionwe show qualitative results on different test sequences
and under different conditions. It is important to note that none of
the subjects used for these comparisons are part of the training set.

ACM Trans. Graph., Vol. 38, No. 4, Article 77. Publication date: July 2019.



Deep Reflectance Fields • 77:7

Fig. 7. Qualitative results – examples of gradient input images, inferred OLAT images and ground truth. Notice how high frequency details such as
specularities, shadows and skin texture are correctly extracted from the gradient images.

OLAT Inference. In Figure 7, we show some examples of OLAT
images inferred by our neural network. Our method reproduces
both coarse- and high-frequency details and achieves realistic re-
constructions which closely approximate the ground truth imagery.
Shadows, reflections and details present in the original OLAT image
data are faithfully reconstructed by our approach.

Light Direction Interpolation. In Figure 8, we show how our system
is able to infer lighting directions that are not part of the dataset,
demonstrating our method’s ability to generalize. Our ground truth
comprises OLAT images from 331 lighting directions. As such, a
direct application of this discretized reflectance field to relight a
sequence is limited in lighting resolution; for example, specular

highlights that would be caused by lighting directions that are not
part of the 331 sampled directions are not seen. In contrast, using
our network we can infer an OLAT image for any lighting direction,
essentially recovering a continuous reflectance field, as opposed to
a discretized version obtained by the Light Stage.

Viewpoint Generalization. In Figure 9, we demonstrate general-
ization with respect to viewpoints. As discussed, our rig includes
9 cameras of which only 5 are used for training, leaving 4 unseen
viewpoints for testing. As it can be observed, the proposed method
does not introduce any specific artifacts with respect to the view-
point. This demonstrates that the gradient images contain enough
information so that the network can infer some notion of geometry.
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Fig. 8. Generalization w.r.t. light direction – Top row: inferred OLAT
images; bottom row: ground truth OLAT images. The center two columns
correspond to two lighting directions interpolated between the lighting
directions in the far left and far right columns. Despite, not having ground
truth images for these directions, due to the sparsity of lights on the light
stage, our method can infer OLAT images (top middle images).

Fig. 9. Generalizationw.r.t. viewpoint – Themethod is able to generalize
across views, showing that the input incorporates some form of geometrical
information that the network can exploit.

Comparison with the State of the Art. In Figure 10, we compare
our results to the state-of-the-art approaches of Fyffe et al. [2009]
and Shu et al. [2017]. The method of Fyffe et al. [2009] also takes
as input two gradient illumination images, but relies on the cosine
lobe reflectance model to generate images under arbitrary lighting
conditions. Note this method has the drawback that it requires an
additional color correction calibration to account for differences
in camera color primaries vs light color primaries, whereas our
proposed method simply learns to relight in whichever color space
the input data is given (note that in our experiments, due to the
missing color calibration step, there is a purple color cast in the

Fig. 10. Comparison of OLAT images. We compare OLAT images gener-
ated with different methods. See text for details.

results). Shu et al. [2017] uses a light transport approach: the method
transfers lighting from a source portrait image to a target portrait
image. We utilize it to transfer the lighting from on OLAT image of
the source subject to the fully lit image of a target subject thereby
generating a single OLAT image of the source subject. Conducting
the transfer for each source OLAT image allows us to generate all
the OLAT images for the target subject from a single fully lit image
of the target subject. The final relighting with the environment map
is based on the generated OLAT images. Notice how the results
produced by the other baselines lack details where we are able to
infer even extreme oblique spotlights.

Dynamic Capture. In Figure 11, we show how our method is able
to handle dynamic subjects performing arbitrary motions and ex-
pressions. Note that no ground truth is available for these sequences
as OLAT ground truth acquisition is feasible only for static scenes.
Importantly, our network is able to generalize to facial expressions
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Fig. 11. Dynamic Capture – Top rows: input gradients for a moving subject. Bottom rows: inferred OLAT images. See more examples in our video.

which are not present in the training data, which is captured with a
neutral expression. Compared to Fyffe et al. [2009], our technique
produces more natural skin reflectance, a better reproduction of
specular highlights, and significantly better shadows; see our sup-
plementary video for more examples.

4.2 Ablation Study
In Figure 5, we evaluate the effect of each component of the proposed
loss function. The proposed loss outperforms a VGG network pre-
trained on ImageNet that is not able to pick up specularities, shadows
and high frequency detail. Furthermore, the alignment strategy we
propose in Equation 2 leads to sharper results.
In Figure 12, we explored different input modalities by training

a network that takes as input a subset of the OLAT images (with
wide and narrow baseline between the input lighting directions)
and infers the remaining ones. Note how these networks failed
to recover high-frequency shadows and texture, proving that the
proposed gradient images are a better choice for the relighting task.

In Table 1, we report quantitative evaluations. In particular we
compute metrics such as photometric error andMS-SSIM by training
multiple architectures where we selectively use one or more losses.

4.3 User Study
In order to objectively gauge the quality of our predicted OLATs,
we executed two user studies, one with static images, and the other
with videos. In the first user study, we randomly sampled 10 ground
truth OLAT images and 10 images predicted by our network for
140 users to assess. We show the users each OLAT image and with
no additional information, ask them if they believe that the image
is real, i.e., captured using an actual camera, or synthetic. Among
the 2800 responses, participants were able to correctly identify the
real or synthetic images 79% of the time, indicating that there is
room for improvement of the quality of the OLAT images generated
by our method. Among the wrong assessments, 50.8% of the real
images were wrongly determined to be synthetic and 49.2% of the
synthetic images were wrongly classified as real.
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Table 1. Quantitative evaluations on test sequences of subjects. Photometric error is measured via the ℓ1-norm. We fixed the architecture and we compared
the proposed loss function with the other baselines. We obtained significantly lower MSE with the ground truth while the SSIM score is similar to the other
networks. Do note that these statistical measured often do not quantify well the subjective photorealism of the images.

Ours Lpretrained Lspecific No Alignment Loss 3-OLAT Input
Photometric Error 808.64 917.82 914.81 956.98 1320.51
MS-SSIM 0.222 0.217 0.216 0.290 0.216

Fig. 12. Ablation study – Comparisons with different input modalities.
Taking three OLAT as input (top) does not perform as well as the proposed
gradient images (bottom).

In the second user study with 58 participants, we showed users
6 randomly selected video relighting results, to gauge whether the
video appeared real or fake. Of the net 348 responses, more than 66%
were marked real. This shows that even though the inferred OLATs
might appear synthetic, the relighting results under high-frequency
environment maps were mostly considered realistic. We also asked
the participants what cues they used to decide if an image was real or
synthetic. Common responses included issues with eye highlights,
teeth texture and general blurriness.

4.4 Environment Map Based Relighting
We use our estimated reflectance field to relight an image under a
new lighting environment. Given an environment map, we use the
OLAT images to produce an image under the desired illumination,
see Figure 3. For each OLAT image we assign an RGB scaling factor
based on the intensity of the environment map as in [Debevec et al.
2000]. The final relit image is generated as a linear combination of
the weighted OLAT images. In Fig. 13, we compare our results to
Fyffe et al. [2009] which uses exactly the same input but requires a
prior in the form of a parametric BRDF representation. In Fig. 14,
we compare to the relighting capability of the state-of-the-art works
of [Shu et al. 2017] and [Yamaguchi et al. 2018]. Our results show
state-of-the-art quality for a method that can perform relighting of
dynamic sequences without resorting to parametric priors.

5 CONCLUSIONS
We have proposed a novel approach for capturing high-quality time-
varying 4D reflectance field at 30 FPS without requiring high-speed
cameras, motion compensation, or parametric priors. This enables
our method to generate relightable dynamic sequences of human
actors. Our approach provides a simple and effective model and
process which can be applied not only to producing high-quality
time-varying 4D reflectance fields of faces, but potentially to any
static or dynamic object or scene.

Limitations. While our results are generally realistic and are a sig-
nificant improvement over existing techniques, our analysis shows
that the synthetic OLAT images can in some cases be detected due
to small artifacts, and occasional over-smoothing. We note that spec-
ular highlights in our estimated OLAT images are often attenuated,
and at times missing on particularly noticeable regions of the face,
such as eyes and teeth. This may be a result from the low-frequency
nature of the color gradient illumination. This type of illumina-
tion captures enough information to infer a simplistic reflectance
model. Additional (static) capture sessions could be used to better
capture the reflectance of skin. In other words, an interesting ques-
tion for future research is the relationship between lighting pattern
configuration and reflectance information that can be captured.

As common in time-multiplexed capture, the slight misalignment
between the two input images causes temporal artifacts. We ex-
pect that the continuous improvements in camera hardware will
help mitigate these issues. Nonetheless, note that in environment
relighting results these artifacts are averaged out by the integration
process, resulting in very plausible relighting.

Future Work. It remains of interest to improve the output quality
while making the algorithm more efficient. An interesting way to
improve performance is to reuse features extracted early on in the
network for all the OLAT directions one would predict, for example
by using a late fusion technique for the lighting direction instead of
the current early fusion. To further improve output quality, we can
imagine exploring novel task-specific perceptual losses and neural
generative techniques (GANs) to further aid in recovering high
frequency details. An additional interesting avenue of research is
to explore input representations beyond spherical gradient images
which could lead to higher quality outputs. Such representations
could be handcrafted, or even learned as part of the neural network
training process. The success of our method in recovering detailed
reflectance fields suggests the tantalizing possibility of high quality
multi-view geometry and BRDF capture along the lines of [Ghosh
et al. 2011; Ma et al. 2007] in dynamic settings.
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Fig. 13. Relighting with HDRI lighting environments – Row 1: Ground truth OLAT base relighting, Row 2: cosine lobe relighting [Fyffe et al. 2009], Row
3: our relighting results. Notice how our method outperforms all state-of-the-art methods and comes very close to the ground truth.
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