
EUROGRAPHICS 2014 / B. Lévy and J. Kautz
(Guest Editors)

Volume 33 (2014), Number 2

Supplementary Material for
Interactive Motion Mapping for Real-time Character Control

Helge Rhodin1, James Tompkin1,2, Kwang In Kim1,3, Kiran Varanasi1,4, Hans-Peter Seidel1, Christian Theobalt1

1Max-Planck-Institute for Informatics, 2Intel Visual Computing Institute, 3Lancaster University, 4Technicolor Research

1. Shape Space Transformation

In this section, we explain the utilized shape space (main
paper Section 4) and its reconstruction step (main paper
Section 6) in more detail. The main paper contains a con-
densed explanation as we only apply well known techniques
from soft body deformation methods [SCOL04] to extend
established deformation gradient based methods [SP04]. Our
shape space represents the shape of connected components
by per-face transformations, which are more suitable to
model rotations than absolute vertex positions. In addition,
we model the global position of each connected component
by vertex positions as this information is not contained in the
face transformations.

1.1. Mesh Representation

For each face f of the input mesh we compute the affine
transformation A f in relation to the rest pose x0. Rotation
R f and shear S f are extracted by polar decomposition on A f .
We compute the polar decomposition iteratively according to
Higham [Hig86]:

Initialize: U0 = A

Repeat: Uk+1 =
Uk +U−T

k
2

R f =Uk+1

If det(R f )< 0 then R f =−R f // prevent reflection

S f =
RT

f A f +AT
f R f

2
(1)

In our experiments three iterations sufficed. Rotations are
processed in axis-angle form the symmetric shear matrix is
linearized to a vector of 6 elements.

In addition to rotation and shear, we also store the original
vertex positions vi for each vertex i. Therefore, each pose
vector is a concatenation of 3F rotation, 6F shear, and 3V
point parameters for a character with F faces and V vertices.

1.2. Reconstruction

The combined shape space is overcomplete. The face trans-
formations can be completely characterized by the explicit
vertex positions. As we do not enforce constraints between
both representations during mapping, then they can contra-
dict. A globally-consistent shape is reconstructed by consid-
ering A f and vi as soft constraints with weight h on v. We
choose h by hand such that the contributions of face rota-
tions are approximately one order of magnitude larger than
the point features. Thereby, the face transformations domi-
nate the shape reconstruction while the vertex positions de-
termine the global position of connected components.

An efficient solution is possible by using a Laplacian co-
ordinate representation [SCOL04]. The Laplacian L is con-
structed once from the reference pose vertex positions v1 and
the mesh face edges with cotangent weights. The Laplacian
gives the differential coordinates δ by:

Lv = δ (2)

Given a shape space pose representation yshape := (A,v),
where A = (A1, · · · ,AF ) and v = (v1, ..,vV ), we optimize for
the mesh vertex positions v∗ that simultaneously fit the ref-
erence pose updated by rotations A and vertex positions v in
the least squares sense, as in soft body deformation methods:

v∗ = argmin
υ
‖v−υ‖2 +h‖LA(v1)−Lυ‖2, (3)

where A(v1) is the reference mesh updated by per face trans-
formations A. Since Equation 3 is quadratic in υ and L is
sparse, v∗ can be inferred efficiently by solving a sparse lin-
ear system of equations.

Explicit vertex constraints can easily be added by setting
selected vi to the goal location and increasing their weight
similar to [SCOL04]. This strategy could provide a good
way to prevent ground penetration and foot skating.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



Rhodin et al. / Supplementary Material - Interactive Motion Mapping

2. Latent Volume—a Pose Prior

We represent the plausible ranges of variations of character
poses ypose by their latent volume (see main paper Section
5.1). Our approach is to exploit unlabeled data for infer-
ring the admissible variations. This corresponds to finding
the support of probability distribution Pypose .

In general, finding the support of a probability distribution
is a non-trivial problem. However, by assuming that Pypose

is approximated by a Gaussian distribution, we find an ef-
ficient estimate of its support by first decorrelating the data
and then finding the support of the resulting empirical dis-
tribution within each data dimension. That is, the latent vol-
ume defines the support of Pypose and is specified as the min-
imum interval Ic encompassing all decorrelated data points
for each dimension c. In the context of the regression prob-
lem, the latent volume may be interpreted as an approximate
prior distribution Pypose on the target character pose.

3. Pseudocode

To aid reproductions and extensions of the presented
method, we provide pseudocode for the core methods.
Where suitable, we use the notation introduce in the main
paper. These listings begin overleaf.

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



Rhodin et al. / Supplementary Material - Interactive Motion Mapping

The confidence score is computed by the method computeConfidence. It requires the pose xpose
t at which the score should be

computed and the list of already selected source labels Lx. The output is the scalar confidence value.

function COMPUTECONFIDENCE(xpose
t ,Lx)

/* compute prediction variance */
X = (Lx[0],Lx[1], . . .)// data matrix
A = σ

−2XX>+ I
return xpose

t
>A−1xpose

t
end function

The performance based key frame selection is implemented as method performanceCorrespond. It assumes a list of target
labels Ly. It outputs corresponding source labels Lx. The user interacts with the system through the InputDevice and Remote-
Control and gets feedback trough the display of the confidence bar and the current pose.

function PERFORMANCECORRESPOND(Ly)
while size(Lx) < size(Ly) do

xpose
t = InputDevice.getCurrentPose()

/* display current pose */
display(xpose

t )
/* display confidence score bar */
display(computeConfidence(xpose

t , Lx))
if RemoteControl.buttonPressed() then
Lx.add(xpose

t )
end if

end while
return Lx

end function

The automatic key frame proposal is defined in method autoCorrespond. It requires the source reference motion Ux :=
(xpose

1 , · · · ,xpose
M ) and the target labels Ly as input. It returns the correspondences selected by the user out of a small pool

of automatically proposed candidates.

function AUTOCORRESPOND(Ux,Ly)
for all ypose ∈ Ly do

display(ypose)
/* compute confidence score */
for all xpose ∈ Ux do

conf[xpose] = computeConfidence(xpose,Lx)
end for
for all xpose ∈ Ux do

if conf.isLocalMaxima(conf[xpose]) then
proposals.add(xpose)

end if
end for
/* Let user choose from top k proposals */
Lx.add(userSelection(proposals))

end for
return Lx

end function

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



Rhodin et al. / Supplementary Material - Interactive Motion Mapping

The target motion Uy is preprocessed offline by method learnOffline. As input it requires the mesh edges meshEdges and the
Uy matrix, where each column contains the vertex positions of one frame and the global world translations U trans

y . The function
computes a PCA basis Vy, mean yshape, latent volume intervals Imin, Imax, and the global translation regression matrix WT .

function LEARNOFFLINE(Uy, U trans
y , meshEdges)

/* Shape space computation*/
shapeSpace.init(Uy[0], meshEdges)
U shape

y = shapeSpace.project(Uy)
/* Compute D-dimensional target PCA basis Vy*/
yshape = mean(U shape

y )
Vy = PCA(U shape

y −yshape) //element wise
Ũ shape

y =V>y · U
shape
y

/* derive bounds Imin, Imax for each PCA coefficient*/
Imin = min(Ũ shape

y ) //element wise
Imax = max(Ũ shape

y ) //element wise
/* compute global translation map*/
X = derivatives(Ũ shape

y ) // finite differences approximation
Y = U trans

y

A = σ
−2
T XX>+ I

WT = σ
−2
T Y X>A−>

return Vy, Imin, Imax, MT
end function

After correspondence definition learnOnline prepares the source character and learns the mapping from source to target. As
input it assumes source and target labels Lx, Ly, and source reference motion Ux in matrix form as input and accesses yshape

and Vy from the preceding offline training. It outputs the linear regression matrix W .

function LEARNONLINE(Lx, Ly, Ux)
/* Build data matrices from key frames*/
xpose = mean(Ux)
X = (Lx−xpose)
Y =V>y · (shapeSpace.project(Ly)−yshape)
/* Learn mapping*/
A = σ

−2XX>+ I
W = σ

−2Y X>A−>

return W
end function

Real-time synthesis is obtained by predictTarget. It takes the current live input pose χ
pose
t and computes the corresponding

target pose γ
pose
t based on the previously computed PCA basis and W and target translation γ

trans
t from WT .

function PREDICTTARGET(χpose)
/* Mean center source pose */
χ̃t

pose = V>x · (χ
pose
t −xpose)

/* apply linear map and bound by latent volume*/
γ̃t

shape = W · χ̃pose
t

γ̃t
shape = max(Imin, γ̃

shape
t ) //element wise

γ̃t
shape = min(Imax, γ̃

shape
t ) //element wise

/* reconstruct target pose*/
γ

shape
t = Vy · γ̃shape

t +yshape

γ
pose
t = shapeSpace.reconst(γshape

t )
/* infer global translation*/
γ

trans
t = WT · |γ̃shape

t | //element wise absolute value
return γ

pose
t ,γtrans

t
end function

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



Rhodin et al. / Supplementary Material - Interactive Motion Mapping

The shape space is divided into methods ShapeSpace::init, ShapeSpace::project and ShapeSpace::reconstruct. ShapeS-
pace::init requires the reference pose ypose

1 and the mesh connectivity meshEdges as input. It builds the augmented laplacian
matrix L′ and computes its Cholesky decomposition LC.

function SHAPESPACE::INIT(ypose
1 , meshEdges)

/* compute laplacian matrix*/
L = buildLaplacianMatrix(ypose

1 , meshEdges)
/* append identity matrix for vertex constraints */
L’ =

(L
I
)

/* prepare solver */
LC = sparseCholeskyDecomposition(L’)

end function

For a given target pose ypose
t method ShapeSpace::project extracts face rotations R f and shear S f for each face f . It returns

the feature vector yshape
t ∈ 3V +9F that contains rotation, shear, and vertex features.

function SHAPESPACE::PROJECT(ypose
t )

yshape
t = vec(ypose

t ) // initialize feature vector with linearized vertex positions
for all f ∈ ypose

1 do // loop over all faces
/* compute affine transform */
A f = affineTransform(ypose

t .face(f), ypose
0 .face(f))

/* polar decomposition */
[R,S] = polarDecomposition(A)
/* append roations and shear to feature vector */

yshape
t =

 yshape
t

axisAngle(R)
vec(S)


end for
return yshape

t
end function

ShapeSpace::project inverts the projection step. It takes the shape representation γ
shape
t as input and solves for the mesh

γ
pose
t that best match the face and vertex constraints by solving a linear system efficiently with the offline computed Cholesky

decomposition LC.

function SHAPESPACE::RECONSTRUCT(γshape
t )

/* extract position, rotation, and shear form vector */
[v1, · · · ,vN ,R1, · · ·RF ,S1, · · ·SF ] = extract(γshape

t )
/* differential of transformed faces */
diff = L R(S(ypose

1 ))
/* integrate vertex constraints */

diff’ =


diff
v1
...

vN

 ∈ 2V ×3

/* solve linear system */
vt = solve(L′vt =diff’) using LC
γ

pose
t = vec(vt)

return γ
pose
t

end function

References
[Hig86] HIGHAM N.: Computing the polar decomposition-with applications. SIAM Journal on Scientific and Statistical Computing (1986).

1

[SCOL04] SORKINE O., COHEN-OR D., LIPMAN Y.: Laplacian surface editing. Proc. SGP (2004), 175–184. 1

[SP04] SUMNER R. W., POPOVIĆ J.: Deformation transfer for triangle meshes. ACM TOG (Proc. SIGGRAPH) 23, 3 (2004), 399–405. 1

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.


