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Abstract

We introduce a supervised-learning framework for non-
rigid point set alignment of a new kind — Displacements on
Voxels Networks (DispVoxNets) — which abstracts away
from the point set representation and regresses 3D displace-
ment fields on regularly sampled proxy 3D voxel grids.
Thanks to recently released collections of deformable ob-
jects with known intra-state correspondences, DispVoxNets
learn a deformation model and further priors (e.g., weak
point topology preservation) for different object categories
such as cloths, human bodies and faces. DispVoxNets cope
with large deformations, noise and clustered outliers more
robustly than the state-of-the-art. At test time, our approach
runs orders of magnitude faster than previous techniques.
All properties of DispVoxNets are ascertained numerically
and qualitatively in extensive experiments and comparisons
to several previous methods.

1. Introduction

Point sets are raw shape representations which can im-
plicitly encode surfaces and volumetric structures with in-
homogeneous sampling densities. Many 3D vision tech-
niques generate point sets which need to be subsequently
aligned for various tasks such as shape recognition, appear-
ance transfer and shape completion, among others.

The objective of non-rigid point set registration
(NRPSR) is the recovery of a general displacement field
aligning template and reference point sets, as well as cor-
respondences between those. In contrast to rigid or affine
alignment, where all template points transform according
to a single shared transformation, in NRPSR, every point of
the template has an individual transformation. Nonetheless,
real structures do not evolve arbitrarily and often preserve
the point topology.

∗supported by the ERC Consolidator Grant 4DReply (770784) and the
BMBF project VIDETE (01IW18002).

Figure 1: Alignment results of human body scans [5] and thin plate [17]
with our DispVoxNets. In both cases, the template and reference differ
by large non-linear deformations (articulated motion in the case of hu-
man body scans). To the best of our belief, DispVoxNet is the first non-
rigid point set alignment approach which learns object-specific deforma-
tion models purely from data and does not rely on engineered priors.

1.1. Motivation and Contributions

On the one hand, existing general-purpose NRPSR tech-
niques struggle to align point clouds differing by large non-
linear deformations or articulations (e.g., significantly dif-
ferent facial expressions or body poses) and cause overreg-
ularisation, flattening and structure distortions [3, 9, 40, 31].
On the other hand, specialised methods exploit additional
engineered (often class-specific) priors to align articulated
and highly varying structures [39, 43, 13, 54, 56, 18]. In
contrast, we are interested in a general-purpose method
supporting large deformations and articulations (such as
those shown in Fig. 1), which is robust to noise and clus-
tered outliers and which can adapt to various object classes.

It is desirable but challenging to combine all these prop-
erties into a single technique. We address this difficult
problem with supervised learning on collections of de-
formable objects with known intra-state correspondences.
Even though deep learning is broadly and successfully ap-
plied to various tasks in computer vision, its applications to
NRPSR have not been demonstrated in the literature so far
(see Sec. 2). One of the reasons is the varying cardinalities
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Figure 2: Overview of our approach. The objective is to non-rigidly align a template Y to a reference X. In the displacement estimation stage, we first
convert the point sets to a voxel representation (P2V). DispVoxNets then regress per-voxel displacements that we apply to Y (V2P), see Table 1 for more
details on the network architecture. The first stage is trained in a supervised manner with ground truth displacements using the displacement loss (LDisp.).
The subsequent stage refines the displacements with the unsupervised point projection loss (LPP). Trilinear weights are applied to the displacements for
interpolation and are used to compute weighted gradients in the backward pass, see Fig. 3 and our supplement for more details on the trilinear interpolation.

of the inputs, which poses challenges in the network archi-
tecture design. Another reason is that sufficiently compre-
hensive collections of deformable shapes with large defor-
mations, suitable for the training have just recently become
available [5, 2, 17, 36].

To take advantage of the latter, our core idea is to as-
sociate deformation priors with point displacements and
predict feasible category-specific deformations between in-
put samples on an abstraction layer. At its core, our
framework contains geometric proxies — deep convolu-
tional encoder-decoders operating on voxel grids — which
learn a class-specific deformation model. We call the
proposed proxy component Displacements on Voxels Net-
work (DispVoxNet). Our architecture contains two identical
DispVoxNets, i.e., one for global displacements (trained in
a supervised manner) and one for local refinement (trained
in an unsupervised manner).

The proposed DispVoxNets abstract away from low-
level properties of point clouds such as point sampling den-
sity and ordering. They realise a uniform and computa-
tionally feasible lower-dimensional parametrisation of de-
formations which are eventually transferable to the tem-
plate in its original resolution and configuration. At the
same time, DispVoxNets handle inputs of arbitrary sizes.
To bridge a possible discrepancy in resolution between the
3D voxel grids and the point clouds, we maintain a point-to-
voxel affinity table and apply a super-resolution approach.
Due to all these properties, DispVoxNet enables the level of
generalisability of our architecture which is essential for a
general-purpose NRPSR approach.

A schematic overview of the proposed architecture with
DispVoxNets is given in Fig. 2. Our general-purpose
NRPSR method can be trained for arbitrary types of de-
formable objects. During inference, no further assumptions
about the input point sets except of the object class are
made. All class-specific priors including the weak topol-
ogy preserving constraint are learned directly from the data.

Whereas some methods model noise distributions to enable
robustness to noise [40], we augment the training datasets
by adding uniform noises and removing points uniformly at
random. We do not rely on parametric models, pre-defined
templates, landmarks or known segmentations (see Sec. 3).

In our experiments, DispVoxNets consistently outper-
form other tested approaches in scenarios with large defor-
mations, noise and missing data. In total, we perform a
study on four object types and show that DispVoxNets can
efficiently learn class-specific priors (see Sec. 4).

2. Related Work
Methods with Global Regularisers. When correspon-
dences between points are given, an optimal rigid trans-
formation between the point sets can be estimated in a
closed form [27]. Iterative Closest Point (ICP) alternates
between estimating the correspondences based on the near-
est neighbour rule and local transformations until conver-
gence [3, 7]. ICP is a simple and widely-used point set
alignment technique, with multiple policies available to im-
prove its convergence properties, runtime and robustness to
noise [23, 48, 21, 12]. In practice, conditions for a suc-
cessful alignment with ICP (an accurate initialisation and
no disturbing effects such as noise) are often not satisfied.
Extensions of ICP for the non-rigid case employ thin splines
for topology regularisation [9]1 or Markov random fields
linked by a non-linear potential function [24].

Probabilistic approaches operate with multiply-linked
point associations. Robust Point Matching (RPM) with a
thin-plate splines (TPS) deformation model [9] uses a com-
bination of soft-assign [14] and deterministic annealing for
non-rigid alignment. As the transformation approaches the
optimal solution, the correspondences become more and
more certain. In [61], point set alignment is formulated as a
graph matching problem which aims to maximise the num-

1introduced by Chui et al. [9] as a baseline ICP modification
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ber of matched edges in the graphs. The otherwise NP-hard
combinatorial graph matching problem is approximated as
a constrained optimisation problem with continuous vari-
ables by relaxation labeling. In Gaussian Mixture Model
(GMM) Registration (GMR) [31], NRPSR is interpreted as
minimising the distance between two mixtures of Gaussians
with a TPS mapping. The method was shown to be more
tolerant to outliers and more statistically robust than TPS-
RPM and non-rigid ICP. Myronenko and Song [40] interpret
NRPSR as �tting a GMM (template points) to data (refer-
ence points) and regularise displacement �elds using mo-
tion coherence theory. The resulting Coherent Point Drift
(CPD) was shown to handle noisy and partially overlapping
data with unprecedented accuracy. Zhouet al. [62] investi-
gate the advantages of the Student's-t Mixture Model over a
GMM. The method of Maet al.[38] alternates between cor-
respondence estimation with shape context descriptors and
transformation estimation by minimising the`2 distance be-
tween two densities. Their method demands deformations
to lie in the reproducing kernel Hilbert space.

Recently, physics-based alignment approaches were dis-
covered [11, 15, 1, 30, 19]. Denget al. [11] minimise a dis-
tance metric between Schrödinger distance transforms per-
formed on the point sets. Their method has shown an im-
proved recall,i.e., the portion of correctly recovered corre-
spondences. Aliet al. [1] align point sets as systems of par-
ticles with masses deforming under simulated gravitational
forces. Gravitational simulation combined with smoothed
particle hydrodynamics regularisation place this approach
among the most resilient to large amounts of uniform noise
in the data, and, at the same time, most computationally ex-
pensive techniques. In contrast, the proposed approach exe-
cutes in just a few seconds and is robust to large amounts of
noise due to our training policy with noise augmentation.

Large Deformations and Articulations. If point sets dif-
fer by large deformations and articulations, global topology
regularisers of the methods discussed so far often overcon-
strain local deformations. Several extended versions of ICP
address the case of articulated bodies with the primary ap-
plications to human hands and bodies [39, 43, 54]. Geet
al. [13] extend CPD with a local linear embedding which
accounts for multiple non-coherent motions and local de-
formations. The method assumes a uniform sampling den-
sity and its accuracy promptly decays with an increasing
level of noise. Some methods align articulated bodies with
problem-speci�c segmented templates [16]. In contrast to
all these techniques, our DispVoxNets can be trained for
an arbitrary object class and are not restricted to a single
template. Furthermore, our approach is resilient to sam-
pling densities, large amounts of outliers and missing data.
It grasps the intrinsic class-speci�c deformation model on
multiple scales (global and localised deformations) directly

from data. A more in-depth overview and comparison of
NRPSR methods can be found in [55, 63].

Voxel-Based Methods. Voxel-based methods have been
an active research domain of 3D reconstruction over the
past decades [50, 6, 4, 44, 33, 37, 49, 58]. Their core idea
is to discretise the target volume of space in which the re-
construction is performed. With the renaissance of deep
learning in the modern era [34, 20, 53, 29, 26], there have
been multiple attempts to adapt voxel-based techniques to
learning-based 3D reconstruction [8, 46]. These methods
have been criticised for a high training complexity due to
expensive 3D convolutions and discretisation artefacts due
to a low grid resolution. In contrast to previous works, we
use a voxel-based proxy to regress displacements instead of
deformed shapes. Note that in many related tasks, deforma-
tions are parametrised by lower-resolution data structures
such as deformation graphs [52, 41, 60]. To alleviate dis-
cretisation artefacts and enable superresolution of displace-
ments, we apply point projection and trilinear interpolation.

Learning Deformation Models. Recently, the �rst su-
pervised learning methods trained for a deformation model
were proposed for monocular non-rigid 3D reconstruction
[17, 45, 51, 57]. Their main idea is to train a deep neural
network (DNN) for feasible deformation modes from col-
lections of deforming objects with known correspondences
between non-rigid states. Implicitly, a single shape at rest (a
thin surface) is assumed which is deformed upon 2D obser-
vations. Next, several works include a free-form deforma-
tion component for monocular rigid 3D reconstruction with
an object-class template [35, 28]. Hanockaet al. [25] align
meshes in a voxelised representation with an unsupervised
learning approach. They learn a shape-aware deformation
prior from shape datasets and can handle incomplete data.

Our method is inspired by the concept of a learned defor-
mation model. In NRPSR, both the reference and template
can differ signi�cantly from scenario to scenario, and we
cannot assume a single template for all alignment problems.
To account for different scenarios and inputs, we introduce a
proxy voxel grid which abstracts away from the point cloud
representation. We learn a deformation model for displace-
ments instead of a space of feasible deformation modes for
shapes. Thus, we are able to use the same data modality for
training as in [17, 51, 57] and generalise to arbitrary point
clouds for non-rigid alignment. Wanget al. [59] solve a
related problem on a voxel grid: predicting object defor-
mations under applied physical forces. Their network is
trained in an adversarial manner with ground truth deforma-
tions conditioned upon the elastic properties of the material
and applied forces. In contrast to 3D-PhysNet [59], we learn
displacement �elds on a voxel grid which is a more explicit
representation of deformations intrinsic to NRPSR.
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Figure 3: Overview of the forward and backward pass of trilinear interpo-
lation on a voxel grid. NumbersI
 , II
 , III
 and IV
 indicate the sequence
of steps performed in every training iteration, see Sec. 3.1 for more details.

3. The Proposed Approach

We propose a neural network-based method for NRPSR
that takes a template and a reference point set and returns
a displacement vector for each template point, see Fig. 2
for an overview. As described in Sec. 2, existing methods
show lower accuracy in the presence of large deformations
between point sets. We expect that neural-network-based
methods are able to deal with such challenging cases since
they learn class-speci�c priors implicitly during training. In
NRPSR, the numbers of points in the template and refer-
ence are generally different. This inconsistency of the input
dimensionality is problematic because we need to �x the
number of neurons before training. To resolve this issue,
we convert the point sets into a regular voxel-grid repre-
sentation at the beginning of the pipeline, which makes our
approach invariant with respect to the number and order of
input points. Furthermore, due to the nature of convolu-
tional layers, we expect a network with 3D convolutions to
be robust to noises and outliers. Even though handling 3D
voxel data is computationally demanding, modern hardware
supports suf�ciently �ne-grained voxel grids which our ap-
proach relies on.

Notations and Assumptions. The inputs of our algorithm
are two point sets: the referenceX = ( x1; : : : ; xN )T 2
RN � D and the templateY = ( y1; : : : ; yM )T 2 RM � D

which has to be non-rigidly matched toX . N andM are
the cardinalities ofX andY respectively, andD denotes
the point set dimensionality. We assume the general case
whenM 6= N andD = 3 in all experiments, although our
method is directly applicable toD = 2 and generalisable to
D > 3 if training data is available and a voxel grid is feasi-
ble in this dimension. Our objective is to �nd the displace-
ment function (a vector �eld)v : RM � 3 � RN � 3 ! RM � 3

so thatY + v(Y ; X ) matchesX as close as possible.
There is no universal criterion for optimal matching and

it varies from scenario to scenario. We demand 1) thatv

ID Layer Output Size Kernel Padding/Stride Concatenation
1 Input 64x64x64x2 - - -
2 3D Convolution 64x64x64x8 7x7x7 3/1 -
3 LeakyReLU 64x64x64x8 - - -
4 MaxPooling 3D 32x32x32x8 2x2x2 0/2 -
5 3D Convolution 32x32x32x16 5x5x5 2/1 -
6 LeakyReLU 32x32x32x16 - - -
7 MaxPooling 3D 16x16x16x16 2x2x2 0/2 -
8 3D Convolution 16x16x16x32 3x3x3 1/1 -
9 LeakyReLU 16x16x16x32 - - -
10 MaxPooling 3D 8x8x8x32 2x2x2 0/2 -
11 3D Convolution 8x8x8x64 3x3x3 1/1 -
12 LeakyReLU 8x8x8x64 - - -
13 3D Deconvolution 16x16x16x64 2x2x2 0/2 12 & 10
14 3D Deconvolution 16x16x16x64 3x3x3 1/1 -
15 LeakyReLU 16x16x16x64 - - -
16 3D Deconvolution 32x32x32x32 2x2x2 0/2 15 & 7
17 3D Deconvolution 32x32x32x32 5x5x5 2/1 -
18 LeakyReLU 32x32x32x32 - - -
19 3D Deconvolution 64x64x64x16 2x2x2 0/2 18 & 4
20 3D Deconvolution 64x64x64x16 7x7x7 3/1 -
21 LeakyReLU 64x64x64x16 - - -
22 3D Deconvolution 64x64x64x3 3x3x3 1/1 -

Table 1: U-Net-style architecture of DispVoxNet. The concatenation col-
umn contains the layer IDs whose outputs are concatenated and used as an
input to the current layer. We use a negative slope for LeakyReLU of0:01.

results in realistic class-speci�c object deformations so that
the global alignment is recovered along with �ne local de-
formations, and 2) that the template deformation preserves
the point topology as far as possible. The �rst requirement
remains very challenging for current general NRPSR meth-
ods. Either the shapes are globally matched while �ne de-
tails are disregarded or the main deformation component
is neglected which can lead to distorted registrations. The
problem becomes even more ill-posed due to noise in the
point sets. Some methods apply multiscale matching or pa-
rameter adjustment schemes [21, 18]. Even though a relax-
ation of the global topology-preserving constraint can lead
to a �ner local alignment, there is an increased chance of
arriving at a local minimum and �tting to noise.

Let V X andV Y be the voxel grids,i.e., the voxel-based
proxies on which DispVoxNets regress deformations. With-
out loss of generality, we assume thatV X andV Y are cu-
bic and both have equal dimensionsQ = 64. We propose
to learnv as described next.

3.1. Architecture

Our method is composed ofdisplacement estimationand
re�nementstages. Each stage contains a DispVoxNet,i.e.,a
3D-convolutational neural network based on a U-Net archi-
tecture [47] , which we also denote byD vn . See Figs. 2–3
and Table 1 for details on the network architecture.

Displacement Estimation (DE) Stage. We �rst discre-
tise bothY andX on V Y andV X , respectively (P2V in
Fig. 2). During the conversion, the point-to-voxel corre-
spondences are stored in an af�nity table. As voxel grids
sample the space uniformly, each point ofX and Y is
mapped to one of theQ3 voxels inV X andV Y , respec-
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Figure 4: (I) The displacement estimation stage regresses rough displace-
ments betweenY andX . (II) For all y 0 in Y + v(Y ; X ), we �nd the
distance to the closest pointx y 0 among all points inX . (III) At test time,
the re�ned displacements yield a smoothed resultY + v(Y ; X ).

tively. In V X andV Y , we representX andY as binary
voxel occupancy indicators,i.e., if at least one point falls
into a voxel, the voxel's occupancy is set to1; otherwise,
it equals to0. Starting fromV X andV Y , DispVoxNet re-
gresses per-voxel displacements of the dimensionQ3 � 3.
During training, we penalise the discrepancy between the
inferred voxel displacements and the ground truth displace-
mentsZ using a mean squared error normalised by the num-
ber of voxels.Z is obtained by converting the ground truth
point correspondences to the voxel-based representation of
dimensionsQ3 � 3 compatible with our architecture. The
point displacementloss is given by:

L Disp :(Z; V Y ; V X ) =
1

Q3 kZ � D vn (V Y ; V X )k2
2 : (1)

Using the af�nity table betweenY andV Y , we determine
each point's displacement by applying trilinear interpola-
tion on the eight nearest displacements in the voxel grid
(V2P in Fig. 2 and see supplement). After adding the dis-
placements toY , we observe that the resulting output after
a single DispVoxNet bears some roughness. The re�nement
stage described in the following alleviates this problem.

Re�nement Stage. Since the DE stage accounts for
global deformations but misses some �ne details, the un-
resolved residual displacements at the re�nement stage are
small. Recall that DispVoxNet is exposed to scenarios with
small displacements during the training of the DE stage,
since our datasets also contain similar (but not equal) states.
Thus, assuming small displacements, we design a re�ne-
ment stage as a combination of a pre-trained DispVoxNet
and an additional unsupervised loss. Eventually, the re�ne-
ment stage resolves the remaining small displacements and
smooths the displacement �eld. To summarise, at the be-
ginning of the re�nement stage, the already deformed tem-
plate point set is converted into the voxel representation
V �

Y . FromV �
Y andV X , a pre-trained DispVoxNet learns

to regress re�ned per-voxel displacements.
To apply the inferred voxel displacements to a template

point at the end of the re�nement stage (see Fig. 3), (I)2 we

2(I), (II), (III) and (IV) refer to the steps in Fig. 3

compute the trilinear interpolation of the eight nearest dis-
placements ofy i , i 2 f 1; : : : ; M g, and calculate a weighted
consensus displacement fory i . (II) The weights and indices
of the eight nearest voxels are saved in an af�nity table. To
further increase the accuracy, (III) we introduce the unsu-
pervised, differentiablepoint projection(PP) loss between
the �nal outputY + v(Y ; X ) andX . The PP loss penalises
the Euclidean distances between a pointy 0 in Y + v(Y ; X )
and its closest pointx y 0 in X :

L PP (Y + v(Y ; X ); X ) =
1

M

MX

i =1

ky 0
i � x y 0k2: (2)

We employ ak-d tree to determinex y 0 for all y 0 in Y +
v(Y ; X ), see Fig. 4 for a schematic visualisation.

Since the training is performed through backpropaga-
tion, we need to ensure the differentiability of all network
stages. Our approach contains conversions from voxel to
point-set representations and vice versa that are not fully
differentiable. Thanks to the af�nity table, we know the cor-
respondences between points and voxels at the re�nement
stage. Therefore, (IV) gradients back-propagated from the
PP loss can be distributed into the corresponding voxels in
the voxel grid as shown in Fig. 3. As eight displacements
contribute to the displacement of a point due to trilinear in-
terpolation in the forward pass, the gradient of the point is
back-propagated to the eight nearest voxels in the voxel grid
according to the trilinear weights from the forward pass.

Two consecutive DispVoxNets in the DE and re�nement
stages implement a hierarchy with two granularity levels
for the regression of point displacements. Combining more
stages does not signi�cantly improve the result,i.e.,we �nd
two DispVoxNets necessary and suf�cient.

3.2. Training Details

We use Adam [32] optimiser with a learning rate of
3 � 10� 4. As the number of points varies between the train-
ing pairs, we set the batch size to 1. We train the stages
in two consecutive phases, starting with the DE stage us-
ing the displacement loss until convergence. This allows
the network to regress rough displacements betweenY and
X . Then, another instance of DispVoxNet in the re�nement
stage is trained using only the PP loss. We initialise it with
the weights from DispVoxNet of the DE stage. Since the
PP loss considers only one nearest neighbour, we need to
ensure that each output point from the DE stage is already
close to its corresponding point inX . Thus, we freeze the
weights of DispVoxNet in the DE stage when training the
re�nement stage. See our supplement for training statistics.

To enhance robustness of the network to noise and miss-
ing points,0 � 30% of the points are removed at random
from Y andX , and uniform noise is added to both point
sets. The number of added points ranges from 0% to 100%
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Ours NR-ICP [9] CPD [40] GMR [31]

thin plate[17]
e 0.0103 0.0402 0.0083/ 0.0192 0.2189
� 0.0059 0.0273 0.0102 / 0.0083 1.0121

FLAME [36]
e 0.0063 0.0588 0.0043/ 0.0094 0.0056
� 0.0009 0.0454 0.0008 /0.0005 0.0007

DFAUST[5]
e 0.0166 0.0585 0.0683 / 0.0721 0.2357
� 0.0020 0.0215 0.0314 / 0.0258 0.8944

cloth[2]
e 0.0080 0.0225 0.0149 / 0.0138 0.2189
� 0.0021 0.0075 0.0066 / 0.0033 1.0121

Table 2: Comparison of registration errors for all tested methods. For
CPD, we also report results with FGT (right-hand values).

DE DE + Ref. (nearest voxel) Full: DE + Ref. (trilinear)
e 0.0100 0.0088 0.0069
� 0.0021 0.0075 0.0016

Table 3: Ablation study highlighting the importance of the re�nement
stage and trilinear interpolation compared to a nearest voxel lookup.

of the number of points in the respective point set. The
amount of noise per sample is determined randomly. When
computing the PP loss, added noise is not considered.

4. Experiments

Our method is implemented in PyTorch [42]. The eval-
uation system contains two Intel(R) Xeon(R) E5-2687W
v3 running at 3.10GHz and a NVIDIA GTX 1080Ti GPU.
We compare DispVoxNets with four methods with publicly
available code,i.e., point-to-point non-rigid ICP (NR-ICP)
[9], GMR [31], CPD [40] and CPD with Fast Gaussian
Transform (FGT) [40]. FGT is a technique for the fast eval-
uation of Gaussians at multiple points [22].

4.1. Datasets

In total, we evaluate on four different datasets which rep-
resent various types of common 3D deformable objects,i.e.,
thin plate [17], FLAME [36], Dynamic FAUST (DFAUST)
[5] and cloth [2]. Thin plate contains4648 states of a
synthetic isometric surface.FLAME consists of a variety
of captured human facial expressions (10k meshes in to-
tal). DFAUSTis a scanned mesh dataset of human subjects
in various poses (7948meshes in total). Lastly, thecloth
dataset contains6238captured states of a deformable sheet.
Except forFLAME, the datasets are sequential and contain
large non-linear deformations. Also, the deformation com-
plexity in FLAME is lower than in the other datasets,i.e.,
the deformations are mostly concentrated around the mouth
area of the face scans.

We split the datasets into training and test subsets by con-
sidering blocks of a hundred point clouds. The �rst eighty
samples from every block comprise the training set and the
remaining twenty are included in the test set. ForFLAME,
we pick20%of samples at random for testing and use the
remaining ones for training. As all datasets have consis-
tent topology, we directly obtain ground truth correspon-

dences which are necessary for training and error evalua-
tion. We evaluate the registration accuracy of our method
on clean samples (see Sec. 4.2) as well as in settings with
uniform noise and clustered outliers (added sphere and re-
moved chunk, see Sec. 4.3), since point cloud data captured
by real sensors often contains noise and can be incomplete.
In total, thirty template-reference pairs are randomly se-
lected from each test dataset. We use the same pairs in all
experiments. For the selected pairs, we report the average
root-mean-square error (RMSE) between the references and
aligned templates and standard deviation of RMSE, denoted
by e and� respectively:e = 1

M

P M
i =1

ky i � x i k2p
D

; with the
template pointsy i and corresponding reference pointsx i .

4.2. Noiseless Data

We �rst evaluate the registration accuracy of our method
and several baselines on noiseless data. Table 2 and Fig. 1
summarise the results. Our approach signi�cantly outper-
forms other methods on theDFAUST and cloth datasets
which contain articulated motion and large non-linear de-
formations between the template and reference. Onthin
plate, DispVoxNets perform on par with CPD (CPD with
FGT) and show a lowere in three cases out of four. On
FLAME, which contains localised and small deformations,
our approach achievese of the same order of magnitude as
CPD and GMR. CPD, GMR and DispVoxNets outperform
NR-ICP in all cases. The experiment con�rms the advan-
tage of our approach in aligning point sets with large global
non-linear deformations (additionally, see the supplement).

Ablation Study. We conduct an ablation study on the
cloth dataset to test the in�uence of each component of our
architecture. The tested cases include 1) only DE stage, 2)
DE and re�nement stages with nearest voxel lookup (the
nä�ve alternative to trilinear interpolation) and 3) our entire
architecture with DE and re�nement stages, plus trilinear
interpolation. Quantitative results are shown in Table 3. The
full model with trilinear interpolation reduces the error by
more than30%over the DE only setting.

4.3. Deteriorated Data

The experiments with deteriorated data follow the eval-
uation protocol of Sec. 4.2. We introduce clustered outliers
and uniform noise to the data.

Structured Outliers. We evaluate the robustness of our
method to added structured outliers and missing data. We
either add a sphere-like object to the inputs or arbitrarily re-
move a chunk from one of the point sets. As summarised in
Tables 4–5, our approach shows the highest accuracy among
all methods onthin plate, DFAUSTandcloth, even though
DispVoxNets were not trained with clustered outliers and
have not been exposed to sphere-like structures.
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Figure 5: Comparison of registration errors in the scenario with uniform noise.p% is the ratio between the number of noise points added to the template
and the number of points in the unperturbed template.e statistics of our approach is barely affected by the noise level. See the supplement for more results.

Ours NR-ICP [9] CPD [40] GMR [31]

thin plate[17]
ref.

e 0.0151 0.0349 0.1267 / 0.1136 0.6332
� 0.0117 0.0302 0.0224 / 0.0211 1.5749

temp.
e 0.0150 0.0509 0.0304 / 0.0636 0.0528
� 0.0106 0.0406 0.0200 / 0.0149 0.0300

FLAME [36]
ref.

e 0.0098 0.0039 0.0492 / 0.0617 0.0577
� 0.0034 0.0007 0.0301 / 0.0218 0.0205

temp.
e 0.0073 0.0566 0.0072/ 0.0246 0.0309
� 0.0015 0.0334 0.0070 / 0.0142 0.0117

DFAUST[5]
ref.

e 0.0308 0.0605 0.1127 / 0.1151 0.9730
� 0.0111 0.0226 0.0308 / 0.0295 2.2267

temp.
e 0.0190 0.0669 0.0791 / 0.0775 0.0845
� 0.0036 0.0187 0.0304 / 0.0220 0.0295

cloth[2]
ref.

e 0.0213 0.0248 0.1081 / 0.1096 0.1098
� 0.0091 0.0095 0.0235 / 0.0223 0.0234

temp.
e 0.0649 0.0296 0.0408 / 0.0522 0.0476
� 0.0395 0.0081 0.0115 / 0.0114 0.0223

Table 4: Registration errors for the case with clustered outliers. For CPD,
we also report results in the mode with FGT (right-hand values).“ref.” and
“temp.” denote whether outliers are added toX or Y , respectively.

Ours NR-ICP [9] CPD [40] GMR [31]

thin plate[17]
ref.

e 0.0107 0.0668 0.0218 / 0.0386 0.4415
� 0.0061 0.0352 0.0148 / 0.0067 1.4632

temp.
e 0.0108 0.0334 0.0479 / 0.0471 0.4287
� 0.0062 0.0281 0.0101 /0.0038 1.3832

FLAME [36]
ref.

e 0.0084 0.0519 0.0046/ 0.0140 0.0193
� 0.0010 0.0451 0.0009 /0.0006 0.0008

temp.
e 0.0088 0.0215 0.0076/ 0.0201 0.0274
� 0.0010 0.0219 0.0010/ 0.0016 0.0019

DFAUST[5]
ref.

e 0.0167 0.0463 0.0562 / 0.0636 0.0714
� 0.0029 0.0195 0.0308 / 0.0216 0.0282

temp.
e 0.0169 0.0426 0.0672 / 0.0710 0.0737
� 0.0033 0.0194 0.0291 / 0.0229 0.0243

cloth[2]
ref.

e 0.0090 0.0455 0.0248 / 0.0315 0.0288
� 0.0018 0.0061 0.0056 / 0.0027 0.0087

temp.
e 0.0132 0.0208 0.0486 / 0.0347 0.0397
� 0.0019 0.0087 0.0077 /0.0014 0.0092

Table 5: Registration errors for the case with missing parts. For CPD, we
also report results in the mode with FGT (right-hand values).“ref.” and
“temp.” denote whether parts are removed fromX or Y , respectively.

Tables 4–5 report results for both the cases with modi�ed
references and templates, and Fig. 6 compares results qual-
itatively. DispVoxNets are less in�uenced by the outliers
and produce visually accurate alignments of regions with
correspondences in both point sets. CPD, GMR and NR-
ICP suffer from various effects,i.e., their alignments are
severely in�uenced by outliers and the target regions are
corrupted in many cases. We hypothesise that convolutional
layers in DispVoxNet learn to extract informative features
from the input points set and ignore noise. Furthermore, the
network learns a class-speci�c deformation model which
further enhances the robustness to outliers.

Uniform Noises. Next, we augment templates with uni-
form noise and repeat the experiment. Fig. 5 reports metrics
for different amounts of added noise. Note that CPD, GMR
and NR-ICP fail multiple times, and we de�ne the success
criterion in this experiment ase < (4 � median) followed
by e < 4:0. DispVoxNets show stable accuracy across dif-
ferent noise ratios and datasets, while the error of other ap-
proaches increases signi�cantly (up to100 times) with an
increasing amount of noise. Only our approach is agnostic
to large amount of noise, despite CPD explicitly modeling a
uniform noise component. For a qualitative comparison, see

the �fth and sixth rows in Fig. 6 as well as the supplement.

4.4. Runtime Analysis

We prepare �ve point set pairs out ofDFAUST dataset
where the number of points varies from1:5k to 10k. The
runtime plots for different number of points are shown in
Fig. 7. The numbers of points in both point sets are kept
equal in this experiment. For10k points, GMR, NR-ICP,
CPD and CPD (FGT) take about 2 hours, 1.5 hours, 15
minutes, and 2 minutes per registration, respectively. Our
approach requires only 1.5 seconds, which suggests its po-
tential for applications with real-time constraints.

4.5. Real Scans

In this section, we demonstrate the generalisability of
DispVoxNets to real-world scans. We test on 3D head point
sets from the data collection of Daiet al. [10]. Since fa-
cial expression do not vary much in it, we use a reference
from FLAME [36] and a template from [10]. Registration
results can be seen in Fig. 8. Although some distortion in
the output shape is recognisable, DispVoxNets transfer the
reference facial expression to the template. Even though the
network has only seenFLAME at training time, it is able to
align two point sets of different cardinalities and origins.
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