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In this supplement, we provide details on the interpo-
lation of the coarse displacement field (Sec. A) and report
training statistics (Sec. B). We show more qualitative com-
parisons (Sec. C) as well as graphs for further cases with
uniform noise (Sec. D).

A. Interpolation of the 3D Displacement Field

Due to the limited resolution of the voxel grid, we ap-
ply trilinear interpolation to obtain displacements for ev-
ery template point at sub-voxel precision. Note that in DE
stage, interpolation is applied only in the forward pass. In
the refinement stage, it is applied in the forward pass, and
the computed trilinear weights are used during backpropa-
gation to weight the gradients.

Suppose ~D : Z3 → R3 is the initial regressed 3D dis-
placement field on a regular lattice induced by the voxel
grid. Suppose the template point of interest after the DE
stage y∗

j = (xj , yj , zj), j ∈ {1, . . . ,M}, falls into a
neighbourhood cube between eight displacement values of
~D. We denote these boundary displacements compactly by
d = {dabc}, a, b, c ∈ {0, 1} on a unit cube1 in a local
coordinate system, see Fig. I for a schematic visualisation.
In the refinement stage, we store for every y∗

j the index of
the voxel it belongs to, the indexes of the eight nearest dis-
placements as well as the corresponding trilinear interpola-
tion weights w ∈ R8 in the point affinity table. The latter is
then used in the backward pass of the refinement stage.

Let xmax, ymax, zmax and xmin, ymin, zmin be the maximum
and minimum x-, y- and z-values among the eight nearest
lattice point coordinates, respectively. To convert y∗

j from
the coordinate system of the lattice to the local coordinate
system, we calculate normalised distances lx, ly and lz:

lx =
xj − xmin

xmax − xmin
, ly =

yj − ymin

ymax − ymin
and lz =

zj − zmin

zmax − zmin
. (1)

The individual displacement ~vj of y∗
j is obtained by trilinear

∗supported by the ERC Consolidator Grant 4DReply (770784) and the
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1dabc is a shorthand notation for the displacement at point (x, y, z) in
the local coordinate system, i.e., at (0, 0, 0), (0, 0, 1), (0, 1, 0), etc.

Figure I: Schematic visualisation of trilinear interpolation for a given y∗
j .

thin plate FLAME DFAUST cloth
DE stage 530k 400k 715k 500k

refinement 14k 20k 24k 12k

Table I: Number of training iterations for DispVoxNets in the DE and
refinement stages for the tested datasets.

interpolation of the eight nearest displacements, i.e., as an
inner product of w and x-, y- and z-components of d:

~vj,x = wTdx =
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, (2)

~vj,y = wTdy =
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and

~vj,z = wTdz =


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. (4)

Note that w, lx, ly and lz are shared across all dimensions.

B. Training Statistics

Table I shows the number of training iterations until con-
vergence for each dataset. Since DFAUST contains rela-
tively large displacements between point sets, it requires
the highest number of iterations followed by thin plate and
cloth. On the contrary, FLAME contains only small dis-
placements, and the network requires fewer parameter up-
dates to converge compared to other datasets.

C. Qualitative Analysis and Observations

In this section, we provide additional qualitative results.
In Fig. II, we show selected registrations by our approach
and other tested methods (NR-ICP [5], CPD/CPD with FGT
[10], and GMR [7]) on the tested datasets (thin plate [6],
FLAME [8], DFAUST [4] and cloth [2]).

On the thin plate — due to the rather simple object struc-
ture — all approaches except NR-ICP align the point sets
reasonably accurate. CPD and DispVoxNets produce qual-
itatively similar results in the shown example. All methods
show similar qualitative accuracy on the cloth dataset, while
differences are noticeable in the corners and areas with large
wrinkles. At the same time, only our approach simultane-
ously captures both small and large wrinkles. Thus, many
fine foldings present in the reference surface are not well
recognisable in the aligned templates in the case of NR-ICP,
CPD/CPD with FGT and GMR. All in all, results of these
methods appear to be oversmoothed.

In the absence of large displacements between the point
sets — which is the case with FLAME dataset — model-
based approaches CPD and GMR regress the displacements
most accurately. The result of DispVoxNets is of compara-
ble quality, though the deformed template is perceptually
rougher and the points are arranged less regularly. This
is due to the intermediate conversion steps from the point
cloud representation to the voxel grid and back. We see that
for small displacements, the limited resolution of the voxel
grid is a more influential factor on the accuracy than the de-
formation prior learned from the data. With an increase of
the voxel grid resolution, we expect our approach to come
closer to CPD and GMR, up to the complete elimination

of the accuracy gap (this is the matter of future work; cur-
rently, our focus is handling of large deformations which is
a more challenging problem).

Next, we see that model-based approaches with global
regularisers often fail on the FAUST dataset, while the
proposed approach demonstrates superior quantitative and
visual accuracy. Even though the surface produced by
DispVoxNets after the refinement stage can still seem
coarse at some parts, the overall pose and shape are cor-
rectly and realistically inferred as we expect, despite sub-
stantial differences between the template and reference in
the feet area (a subject standing on one foot and a sub-
ject standing on both feet respectively). Thus, model-based
methods have difficulty in aligning the feet.

Overall, the qualitative results in Fig. II demonstrate
the advantages of DispVoxNets for non-rigid point set
alignment over classic, non-supervised learning-based ap-
proaches. Since our technique learns class-specific priors
implicitly during training, it is successful in registering sam-
ples with large displacements and articulations.

D. Additional Experiments with Noisy Data
We present further experimental results with uniform

noise in this section. Fig. III shows RMSE graphs for var-
ious combinations of uniform noise ratios in the reference
and template for all four datasets (thin plate [6], FLAME
[8], DFAUST [4] and cloth [2]).

For previous methods, we observe the tendency that
adding uniform noise to both the template and the reference
can result in a lower error than only adding it to one of them.
It is reasonable to assume that two point sets certainly dif-
fer more if noise is added to only one of them. Thus, when
inputs contain a similar amount of noise (we can say that
the noise levels correlate), we observe the tendency that the
alignment error becomes lower (e.g., see the seventh row,
third column), i.e., some graphs roughly show a U-curve
bottoming out at around 50% of the added noise in the tem-
plate. We hypothesise that this is due to what we call the
mutual noise compensation effect. Further study is required
to clarify a more precise reason (it is possible that our ob-
servations are dataset-specific). Note that adding noise to
both point sets is not a common evaluation setting. Usually,
either template or reference is augmented with noise (cf. ex-
perimental sections in [7, 10, 9, 1]). With our experiment,
we go beyond the prevalent evaluation methodology with
noisy point sets.

On the one hand, CPD has the most stable error curve
among the four model-based approaches, followed by NR-
ICP and GMR. GMR shows higher errors when the noise is
only in the template rather than in the reference, and CPD
with FGT is the least stable as the noise ratio increases.
Moreover, we observe that the relative performance of NR-
ICP increases with the added noise. Thus, NR-ICP outper-
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Figure II: Qualitative comparison of our DispVoxNets approach and other methods (NR-ICP [3], CPD/CPD with FGT [10] and GMR [7]). The input
samples from each dataset are shown in the top rows, followed by the results (aligned templates and overlayed samples) for every method.
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Figure III: RMSE (e) graphs for additional experiments with uniform noise on thin plate [6], FLAME [8], DFAUST [4] and cloth [2] datasets. p% is the
ratio between the number of added points and the number of points in the sample. In this experiment, both reference and template are augmented with noise.

forms CPD only on DFAUST according to Table 2 of the
paper (the experiment with no added noise). In Fig. III, we
recognise multiple cases when NR-ICP outperforms CPD
also on FLAME (the blue curve is below the red curve).

On the other hand, our approach with DispVoxNets
shows almost constant error through all noise ratio com-
binations and all datasets. Compared to the case without
noise, it even achieves the lowest RMSE on FLAME for

multiple noise level combinations (∼40% of the cases). As
our network becomes aware of class-specific features after
the training and learns to ignore noise, it can distinguish
the meaningful shapes from noise, which contributes to its
overall robustness. To the best of our belief, it is for the first
time that a NRPSR method is so stable, even in the pres-
ence of large amount of noise in the data. Recall that we
follow a simple noise augmentation policy for the training
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data (Sec. 3.2 of the paper). Thus, our framework seemingly
learns to filter uniform noise. Another factor could be that
individual unstructured points cause neuron deactivations.
In future work, it could be interesting to study augmenta-
tion policies for further types of noise (e.g., Gaussian noise
along the surfaces or mixed pixel noise).
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