FML: Face Model Learning from Videos
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4. Pipeline 6. Results and Evaluations
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® 3D human face model learning from monocular videos
e Joint learning of 3D face reconstruction from monocular images
¢ Real-time inference at ~200fps

‘ ‘ Monocular vs. Multi-frame Reconstruction
2. Parametric Face Representation

* Shared identity network to enfore consistent identity parameters across frames Geometric reconstruction error on the BU-3DFE dataset
e Siamese network to regress per-frame parameters | earned Models
® Deformation graph to constrain the problem Comparison to Tran18
® Orthogonality between the learned geometry
model and the expression model

® The parameters define the complete appearance of faces in 3D , ,
P P PP e Trained using a self-supervised loss function

e The geometry and reflectance models are learned from videos Template Mesh 521 vs. 60k vertices

3. Background / Challenges 5. Loss Function

e Construction of current 3D face models: E(P)=w
- high-quality scans are required

E (P)+w (P)+w_ E_(P) Comparisons to Tewari17, Richardson17, Sela17, Tewari18
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Input Overlay Reflectance = Geometry lllumination
- not generalizable to in-the-wild faces 7 N

® Building a model from 2D data: : e —

- can capture more general faces

. ill-posed problem -+ + -+ 4+ Stabilization
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® Training on videos using multi-frame constraints . G
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