
GAN2X: Non-Lambertian Inverse Rendering of Image GANs

Supplementary Material

Xingang Pan1 Ayush Tewari1,2 Lingjie Liu1 Christian Theobalt1

1Max Planck Institute for Informatics 2MIT
{xpan,lliu,theobalt}@mpi-inf.mpg.de ayusht@mit.edu

In this supplementary material, we provide the imple-
mentation details, discuss the limitations, and show more
qualitative results. We also recommend readers to refer to
the video demos at the project page.

1. Implementation Details
Model Architectures. Similar to the design of NeuS [7],

our shape MLP Fs has 8 hidden layers while the material
MLP Fm has 4 hidden layers. The number of channels for
each hidden layer is 256. Apart from the coordinate x, Fm

also takes the surface normal n and the last feature from
Fs as input. Positional encoding [3] is applied to x with
4 frequencies for Fs and 6 frequencies for Fm. In volume
rendering, the number of coarse and fine samples are 36 and
36 respectively.

The architecture for viewpoint encoder Ev and lighting
encoder El is described in Tab. 1. The architecture for im-
age encoderEI and GAN encoderEw is described in Tab. 2.
These architectures are based on 2562-resolution input im-
ages. In our experiments, we use 2562 resolution for most
datasets except CelebA [2], for which 1282 resolution is
used. For 1282-resolution input images, the second con-
volution layer in Tab. 1 and the first ResBlock in Tab. 2 are
removed while the output channel of the first convolution
layer is increased from 16 to 32. The abbreviations for the
network layers are described below:

• Conv(cin, cout, k, s, p): convolution with cin input
channels, cout output channels, kernel size k, stride s,
and padding p.

• Avg pool(s): average pooling with a stride of s.

• ResBlock(cin, cout): residual block as defined in
Tab.3.

Hyperparameters. The hyperparameters used in our ex-
periments are provided in Tab. 4, Tab. 5, and Tab. 6. For
clarity, we denote the material network optimization pro-
cess in Exploration as “step 1”, the GAN reconstruction

Encoder Output size
Conv(3, 16, 4, 2, 1) + ReLU 128
Conv(16, 32, 4, 2, 1) + ReLU 64
Conv(32, 64, 4, 2, 1) + ReLU 32
Conv(64, 128, 4, 2, 1) + ReLU 16
Conv(128, 256, 4, 2, 1) + ReLU 8
Conv(256, 512, 4, 2, 1) + ReLU 4
Conv(512, 512, 4, 1, 0) + ReLU 1
Conv(512, cout, 1, 1, 0) + Tanh 1

Table 1. Network architecture for viewpoint net Ev and lighting
net El. The output channel size cout is 6 for Ev and 4 or 5 for El

depending on whether the negative shading term is used.

Encoder Output size
Conv(3, 16, 4, 2, 1) + ReLU 128
ResBlock(16, 32) 64
ResBlock(32, 64) 32
ResBlock(64, 128) 16
ResBlock(128, 256) 8
ResBlock(256, 512) 4
Conv(512, 1024, 4, 1, 0) + ReLU 1
Conv(1024, 512, 1, 1, 0) 1

Table 2. Network architecture of image encoder EI and GAN en-
coder Ew.

Residual path
ReLU + Conv(cin, cout, 3, 2, 1)
ReLU + Conv(cout, cout, 3, 1, 1)
Identity path
Avg pool(2)
Conv(cin, cout, 1, 1, 0)

Table 3. Network architecture for the ResBlock(cin, cout) in Tab.2.
The output of Residual path and Identity path are added as the final
output.

process that trains Ew as “step 2”, and the Exploitation
process as “step 3”. “Number of stages” denotes how many
times the exploration-and-exploitation process are repeated.
For the chromaticity-based smoothness loss, we use differ-

1

https://vcai.mpi-inf.mpg.de/projects/GAN2X/

Parameter Value/Range
p (4, 100)
β 3e−5

λvl 1.0
λd 1.0
λm 0.2

lr for Fs and Fm 5e−4

lr for Fm in step1 2e−3

lr for all encoders 2e−4

Table 4. Hyper-parameters. lr denotes learning rate.

Joint Pre-training Value
Number of samples (1k/200/100)
Number of re-rendered samples m (32/80/160)
Number of stages 5
Step 1 iterations (1st stage) 50k
Step 1 iterations (other stages) 30k
Step 2 iterations 8k
Step 3 iterations 50k
(σmin, σmax) (0.3, 1.0)
(λreg1, λreg2) (0.2, 0.1)
Instance-specific fine-tuning Value
Number of re-rendered samples m (800/400/400)
Number of stages 3
Step 1 iterations 6k
Step 2 iterations 2k
Step 3 iterations 15k
(σmin, σmax) (0.8, 1.0)
(λreg1, λreg2) (0.2, 0.1)
Shading-based refinement Value
Iterations 1k
(σmin, σmax) (1.0, 1.0)
(λreg1, λreg2) (0.5, 0.2)

Table 5. Hyper-parameters for CelebA, CelebA-HQ, and AFHQ
Cat datasets. (x/y/z) denote values for CelebA, CelebA-HQ, and
AFHQ Cat respectively.

ent λreg values for albedo and specularity maps, which are
denoted as λreg1 and λreg2 respectively.
Training Process. For CelebA, CelebA-HQ, and AFHQ
Cat datasets, we first pre-train our model on multiple sam-
ples jointly as mentioned in Sec. 3.2 of the main paper. We
then perform instance-specific training for any individual
sample. For LSUN car, we do not perform joint training,
but first train on 1282 resolution and then fine-tune on 2562

resolution for each instance. For all datasets, shading-based
refinement is finally applied to further refine the results.
Note that for the application of lifting 2D GAN to 3D GAN,
only joint pre-training is involved as there is no need for
instance-specific training. And for application on real im-
ages, only joint pre-training and shading-based refinement
are involved. This is because instance-specific fine-tuning
for real images would require GAN inversion, which harms
editability and thus does not perform very stable in practice.
Losses. Similar to [7, 9], we use an Eikonal term to regular-
ize the SDF of Fs by Leik = 1

n

∑
i(|∇Fs(xi)|−1)2, where

xi are the sampled points and the loss weight for this reg-

Pre-train on 128 resolution Value
Number of re-rendered samples m 800
Number of stages 4
Step 1 iterations (1st stage) 15k
Step 1 iterations (other stages) 10k
Step 2 iterations 4k
Step 3 iterations 25k
(σmin, σmax) (0.3, 1.0)
(λreg1, λreg2) (0.2, 0.1)
Fine-tune on 256 resolution Value
Number of re-rendered samples m 400
Number of stages 3
Step 1 iterations 6k
Step 2 iterations 2k
Step 3 iterations 15k
(σmin, σmax) (0.8, 1.0)
(λreg1, λreg2) (0.2, 0.1)
Shading-based refinement Value
Iterations 1k
(σmin, σmax) (1.0, 1.0)
(λreg1, λreg2) (0.5, 0.2)

Table 6. Hyper-parameters for LSUN car dataset.

ularization term is 0.1. For CelebA-HQ and LSUN car, we
also include a mask loss in the same way as [7], where the
masks are obtained from off-the-shelf segmentation models.

The training process of Eq. 7 in the main paper is typi-
cally done by randomly sampling 512 pixels on the image
and applying the losses with respect to these pixels. How-
ever, the perceptual loss [10] cannot by applied to these
scattered pixels and rendering the whole image is infeasi-
ble due to heavy memory consumption. To this end, for
each training iteration, we randomly choose from two pixel
sampling strategies, where the first is random sampling as
mentioned before and the second is to sample a 322 image
patch. The first pixel sampling strategy preserves the ran-
domness of sampled pixel positions while the second strat-
egy allows perceptual loss to be applied to the image patch.
The perceptual loss has a loss weight of 0.1.
Other Training Details. Our implementation is based on
PyTorch [6]. We use Adam optimizer [1] in all experiments.
The joint pre-training is run on 2 RTX 8000 GPUs, while
all other instance-specific trainings are run on 1 RTX 8000
GPU.

For CelebA, CelebA-HQ, and AFHQ Cat datasets, we
adopt a symmetry assumption on object shape and material
at step3 of the first stage in joint pre-training. This is done
by randomly flipping the shape and material during training,
which is similar to [8]. This symmetry assumption helps to
infer a canonical face pose.

Note that the exploration process of our method involves
randomly sampling multiple viewpoints and lighting condi-
tions. Here we follow [4], where the viewpoints are sam-
pled from a prior multi-variate normal distribution and the
lighting conditions are sampled from a prior uniform distri-
bution.

2

ShapeInput Normal Albedo Diffuse SpecularRendering

U
ns
up

3d
O
ur
s

GA
N
2S
ha
pe

Relighting

To
ta
l

Re
lig
ht
in
g

Rotate

U
ns
up

3d
O
ur
s

GA
N
2S
ha
pe

To
ta
l

Re
lig
ht
in
g

Figure 1. More qualitative comparison. This is an extension of Fig. 4 in the main paper.

2. Limitations

While our approach shows promising inverse rendering
results, it also has some limitations. First, we assume sim-
plified lighting to reduce ambiguity and to make the prob-
lem tractable, which may not be sufficient to well approx-
imate more complex lighting. Besides, as the exploration
step in our approach relies on a convex shape prior, it mainly
works for roughly convex objects and is hard to be applied
to more complex objects (e.g., bicycles). This might be al-
leviated via the recent advancement in 3D-aware GANs that
allow explicit camera pose control.

3. Qualitative Results

In this section, we provide more qualitative results of our
method. Fig. 1 provides more qualitative comparison with

Unsup3d [8] and GAN2Shape [4]. We also show the albedo
and normal of the supervised method Total Relighting [5]
as a reference. More qualitative results are shown in Fig. 2.

Note that our method repeats the exploration-and-
exploitation process for several stages. We show the ef-
fects of this progressive training in Fig. 3. It can be seen
that the results get more accurate with more training stages.
The shading-based refinement further refines the results to
be more precise. In Fig. 4, we provide some examples of
re-rendered images and projected images during training.
It can be observed that the projected images have similar
viewpoints and lighting conditions as the re-rendered im-
ages, but are more natural and thus provide useful informa-
tion to refine the object intrinsics.

3

ShapeInput Normal Albedo Diffuse Specular

Rotate Relighting

Rendering

Figure 2. More qualitative results. This is an extension of Fig. 5 in the main paper.

4

Input

Sh
ap
e

N
or
m
al

Al
be

do

Stage1 Stage2 Stage3 Stage4 SBR

Sh
ad
in
g

Re
nd

er
in
g

Figure 3. Effects of progressive training and shading-based refinement (SBR).

(a) Re-rendered images

(b) Projected images

Figure 4. Examples of (a) re-rendered images and (b) their corresponding projected images.

References

[1] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2

[2] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In ICCV, 2015.
1

[3] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1

[4] Xingang Pan, Bo Dai, Ziwei Liu, Chen Change Loy, and

Ping Luo. Do 2d gans know 3d shape? unsupervised 3d
shape reconstruction from 2d image gans. In ICLR, 2021. 2,
3

[5] Rohit Pandey, Sergio Orts Escolano, Chloe Legendre, Chris-
tian Haene, Sofien Bouaziz, Christoph Rhemann, Paul De-
bevec, and Sean Fanello. Total relighting: learning to relight
portraits for background replacement. ACM Transactions on
Graphics (TOG), 40(4):1–21, 2021. 3

[6] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 2

[7] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku

5

Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
In NeurIPS, 2021. 1, 2

[8] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi.
Unsupervised learning of probably symmetric deformable 3d
objects from images in the wild. In CVPR, 2020. 2, 3

[9] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. In NeurIPS, 2020. 2

[10] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 2

6

