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Abstract

In this work we address the problem of capturing human
body motion under changing lighting conditions in a multi-
view setup. In order to account for changing lighting condi-
tions we propose to use an intermediate image representa-
tion that is invariant to the scene lighting. In our approach
this is achieved by solving time-varying segmentation prob-
lems that use frame- and view-dependent appearance costs
that are able to adjust to the present conditions. Moreover,
we use an adaptive combination of our lighting-invariant
segmentation with CNN-based joint detectors in order to in-
crease the robustness to segmentation errors. In our exper-
imental validation we demonstrate that our method is able
to handle difficult conditions better than existing works.

1. Introduction
Image-based marker-less human motion capture is an

important and long-standing problem in computer vision.
In the past decades, there has been a constantly growing de-
mand on robust human motion capture algorithms from a
wide range of application fields, such as computer anima-
tion, video effects (VFX) and biomechanical analysis.

Most of the existing methods for human motion capture
rely on a controlled environment, which typically means a
uniformly illuminated studio [8, 17, 9, 16, 35, 38]. Some
of them even require a studio covered with green screen. In
recent years, several methods have proven their effective-
ness in general outdoor scenarios [12, 31, 13]. However,
since these methods are not robust to complicated lighting
conditions, drastic changes of illumination and harsh shad-
ows easily lead to tracking failures. Furthermore, most of
the generative methods require consistent appearance of the
captured images for tracking, which does not allow for re-
constructing the model and tracking the motion in notice-
ably varying lighting conditions. While recent data-driven
methods have been shown to be more robust to difficult
lighting conditions due to the strong generalization ability
of deep neural networks [26], these methods alone cannot
achieve as high accuracy as generative methods [46].

Figure 1. Our method estimates 3D human pose from multiview
image sequences. Even under extreme lighting conditions, our
method is still able to track the motion successfully.

In this paper, we address the problem of consecutively
tracking the articulated motion of a human body through a
given image sequence. In order to do so, we introduce a
novel human motion capture approach that fits a parame-
terized human body model to a combination of an abstract
intermediate image representation that is robust to lighting
changes and joint detections based on a convolutional neu-
ral network (CNN). Similar to [12, 31, 13], our method re-
lies on a human body model and multiview image sequences
captured with calibrated cameras. The main insight of our
work is to factor out the lighting influence from the images
by extracting the reflectance (or albedo) component of the
image, and then perform motion tracking using the albedo
channel. To this end, for each frame of the multiview se-
quence, the proposed method estimates the albedo chan-
nel by solving a lighting-invariant segmentation problem.
Our segmentation problem is phrased as a multi-labeling
problem based on a pairwise Markov Random Field (MRF)
[7], where each “material” of the human body is assigned
a unique label that corresponds to its albedo. Lighting-
invariance is achieved by dynamically updating the MRF



data term to reflect the changing lighting conditions. This
is implemented by combining the image appearance and a
pose prediction prior in a suitable way. In order to increase
the overall robustness, we additionally employ CNN-based
joint position detections, which have been shown to have re-
markable generalization ability [11, 49, 23, 39, 25, 28, 26].
Nevertheless, we have found that the CNN detector alone
may be noisy and struggles under some conditions. In an
attempt to combine the advantages of both worlds, we use
an adaptive strategy for setting the relative weighting be-
tween the segmentation and the detectors, which are then
embedded into a model-based tracking method that is based
on a Gaussian blob tracker [38].

Contributions: In summary, in this paper we introduce
a novel approach for human motion capture under compli-
cated lighting conditions. Our main technical contributions
to achieve this goal are:

1. the formulation of suitable time-varying segmentation
problems that use frame- and view-dependent appear-
ance costs in order to obtain lighting-invariant repre-
sentations of the individual images,

2. the adaptive combination of an abstract intermediate
image representation with CNN-based joint detectors,
and

3. the integration of this combined information into a ro-
bust model-based tracker.

Moreover, we demonstrate the effectiveness of our ap-
proach on several challenging sequences, including drastic
lighting changes as well as harsh shadows. Our quantitative
and qualitative results evidence that our approach accurately
tracks the human pose and outperforms the existing meth-
ods in such challenging scenarios. We make our multiview
sequences publicly available1.

2. Related Works
3D human motion capture has received a lot of attention

in recent decades. Many vision-based marker-less methods
have been proposed to address this problem. A large portion
of the literature focused on generative model-based multi-
view motion capture, where the goal is to optimize the over-
lap of the projected 3D body model with multiview images.
In this context, many methods rely on the silhouette input
obtained by background subtraction [38, 4, 21, 15, 24, 3].
As the silhouette cue provides a strong constraint and dras-
tically reduces the difficulty of the problem, those methods
yield accurate motion capture results. Multiple character
tracking, even with complex interaction, has also been en-
abled [24]. To this end, they first segment the provided fore-
ground image region into different characters based on the
color models and the pose prior. Then the different char-
acters are tracked independently. In our method, the pose

1http://gvv.mpi-inf.mpg.de/projects/
IntrinsicMoCap/index.html

term for material segmentation is inspired by this work.
However, our method segments the images with respect
to different materials instead of different characters, and
does not rely on the silhouette input. This allows for auto-
matic tracking as well as better estimation of the correspon-
dences between the body model and the images. Although
plausible results have been achieved by multiple character
tracking methods, their application scenario is restricted to
static backgrounds, since the background subtraction does
not work on dynamic background.

There also exist several approaches that do not require
explicit silhouette input [8, 17, 9, 16, 35, 38]. Even real time
3D tracking is achieved using a Gaussian representation of
the images and the body model [38]. However, only the
results in a well-controlled studio have been demonstrated.
Cluttered background in a general outdoor scenario typi-
cally leads to tracking failures.

Recently, two variants of [38] have shown their effec-
tiveness on outdoor human motion capture [13, 32]. Specif-
ically, the occlusion problem is better handled with a novel
translucent medium shape representation as used in [32].
However, the varying illumination problem in outdoor mo-
tion capture is not addressed. In contrast, Elhayek et al.
proposed an improved model-to-image consistency energy
in weighted HSV color space, which is more resistant to in-
tensity changes [13]. Although the tracking failure due to
illumination changes is alleviated to some extent, we have
found in our experiments that using the color consistency
energy in HSV space alone is not enough to handle uncon-
strained complex lighting conditions for outdoor tracking.
To handle varying illumination, Wu et al. proposed to si-
multaneously estimate the illumination and track the motion
in a joint optimization framework [44]. However, since the
illumination estimation and motion tracking is performed in
an alternating manner, and each step relies on the previous
step being correct, their method is not able to recover from
errors. Besides, it is also worth mentioning that the com-
putational complexity of their method is rather high due the
illumination estimation.

In contrast to generative model-based methods, data-
driven methods address the 3D pose estimation problem
from the perspective of image feature extraction, regression
or classification [1, 19, 34, 27, 36]. With the enormous suc-
cess of deep learning methods and the thus resulting grow-
ing popularity, many CNN-based approaches have recently
been proposed to predict 3D human pose from monocular
images. A common approach is to lift the 2D joint pre-
diction to 3D using temporal constraints and/or pose pri-
ors [50, 47, 48], while many other methods directly estimate
the 3D pose from single images [11, 49, 23, 39, 25, 28, 26].
Even real-time 3D pose estimation has been achieved [26].
The CNN-based methods are typically more robust to il-
lumination changes in the outdoor scenario than genera-



Figure 2. Pipeline of our method.

tive methods due to the strong generalization ability of the
deep neural network, but those monocular-based methods
are usually less accurate since they suffer from the inher-
ent depth ambiguity. To address such problems, multiview-
based discriminative methods [37, 10, 2, 40] have been pro-
posed. However, they typically have lower temporal stabil-
ity than generative methods and, more importantly, they use
a simplified body model with only few degrees of freedom.

Several recent methods combine the generative model
and the discriminative approach to benefit from the beauty
of both sides [31, 14, 30, 5]. In particular, the methods
in [31] and [14] share a similar outdoor multiview mo-
tion capture setting with our method. In contrast to their
methods, our approach alternatively tracks the skeletal mo-
tion and estimates the intrinsic segmentation to factor out
the illumination changes. Our experimental results demon-
strate that our approach significantly outperforms the exist-
ing methods under varying illumination.

3. Methods

We now describe our model-based motion capture ap-
proach, which is summarised in Fig. 2. Given a sequence
of multiview images capturing the action of a single ac-
tor, our goal is to consecutively track the human body pose
in each frame, resulting in the temporally coherent skeletal
motion across the entire sequence. Similar to existing meth-
ods (e.g. [31]), our approach leverages a parameterized hu-
man body model. To handle complex lighting condition, for
each frame, we estimate a lighting-invariant segmentation
of the images, and then incorporate the segmentation into
the skeleton tracking. Since the focus of this paper is on
the tracking part, we assume that the model is aligned to the
image in the first frame of a sequence, similar to [38, 33].

In the rest of this section, we first discuss our method for
parameterized appearance model acquisition, then describe
our segmentation approach, and finally present the skeleton
tracking method.

3.1. Actor Model

Our approach relies on a person-specific human body
model, which consists of a triangulated mesh model with
associated texture segmentation, see Fig. 2. To obtain the
actor model, we capture images of the actor from different
view points. Then the textured mesh model is reconstructed
using the image-based 3D reconstruction software Agisoft
PhotoScan2. Afterwards, the texture is semi-automatically
segmented into different regions according to the albedos
of different materials (such as skin, shirt, etc.). To this end,
we first apply the image smoothing method of [45] on the
texture image to remove the high frequency shading com-
ponents while preserving features in the image. Then we
manually annotate the smoothed texture image, resulting in
the material texture segmentation that assigns a unique label
to each material. Note that while we assume that each ma-
terial is homogeneous, non-homogeneous parts (e.g. a shirt
with a logo) can be modelled by introducing sub-materials.

The articulated motion of the actor is represented based
on a kinematic skeleton (see Fig. 2), as done in [22]. The
skeleton has 24 joints and is parameterized with a 48-
dimensional vector S containing translation and rotation of
the root joint, and 42 joint angles (each joint has between 1
and 3 degrees of freedom). The used actor mesh is rigged to
the skeleton based on dual quaternion skinning [20] where
the skinning weights are computed automatically.

2http://www.agisoft.com



Figure 3. Examples of our segmentation.

3.2. Lighting-invariant Segmentation

We now describe how to obtain a lighting-invariant rep-
resentation of a multiview frame (I1,t, . . . , IV,t) at time
t>0.

Problem statement: The objective of the lighting-
invariant segmentation (Fig. 3) is to assign to each pixel i
(with position xi ∈ Ω) of image I a label `i ∈ L that in-
dicates which material is seen in that pixel (for the sake of
simplicity we consider the background to be a material). By
L := |L| we denote the total number of labels. A labelling
` ∈ L|I| for image I is obtained by minimizing an energy
of the form

E(`) =

|I|∑
i=1

Ei(`i) +
∑
i∼j

Eij(`i, `j) , (1)

where Ei(`) is the data term that measures the cost for as-
signing label ` to pixel i, and Eij is the smoothness term
that penalizes neighboring pixels i and j that are assigned
different labels (i ∼ j indicates that i and j are neighbors).

3.2.1 Data term

The data term Ei(`) measures the cost of assigning the ma-
terial ` ∈ L to pixel i. It is defined by weighting the appear-
ance cost Ea

i (`) with the pose cost Ep
i (`), i.e.

Ei(`) = Ea
i (`) · E

p
i (`) , (2)

which are to be introduced below.
Pose costs: In order to define the pose costs, we make

use of pose preditions. To this end, for each material ` ∈ L
we estimate a pose probability image H` : Ω → [0, 1],
where H`(xi) denotes the probability that pixel i belongs
to material ` (note that

∑
`∈LH`(x) = 1 for each x). In

order to estimate the pose probability image for the current
frame, we sample 50 random pose parameters from a Gaus-
sian distribution around the current pose parameter predic-
tion St at time t, which is obtained based on the acceler-
ation computed from the pose parameters of the previous
two frames, i.e. St−1 and St−2. For each of the 50 mesh
samples, we project the mesh onto the image plane. Com-
bining the projection and the material texture of the mesh,
we compute the 2D pose probability image from these 50

projections, which are normalized so that they sum up to
one for each pixel. By thresholding H`, we extract a pose
prediction mask J` : Ω→ {0, 1}, where J`(xi) = 1 means
that the pose prediction at time t based on the pose at times
t−1 and t−2 would allow that pixel i belongs to material `.

With that, we define the predicted pose cost as

Ep
i (`) := 1−H`(xi) . (3)

Image features: In order to (partially) factor out global
illumination, instead of using the RGB color space we em-
ploy the hue and saturation components in HSV color space
and ignore the value component. Moreover, since the hue
component is represented as angle, by using its sine and
cosine we deal with the periodicity in order to ease fur-
ther processing. With that, we obtain the feature image
Φ : Ω → [0, 1]3, where the first and second components
are the sine and cosine of the hue, respectively, and the
third component is the saturation. Since the same material
may have a different appearance when viewed from differ-
ent cameras we treat each view v independently, and thus
assume in the remainder of this section that the view v and
the time t are fixed. Hence, for notational convenience we
write Φ or I in place of Φv,t or Iv,t.

Frame-dependent appearance costs: In order to im-
prove upon the (limited) lighting-invariance that we gain
when considering the feature image Φ in place of the RGB
image I , we consider a (frame-dependent) robustified ver-
sion of the Mahalanobis distance to measure the discrep-
ancy between the observed feature vector Φ(xi) of a given
pixel i and the expected feature vector µ` for material `. By
dynamically updating µ` in each frame we take the (possi-
bly changing) lighting conditions implicitly into account.

Using the mask J`, we extract all feature vectors for ma-
terial `, which we denote asX` := {Φ(x) : J`(x) = 1}. We
use the geometric median µ` ∈ [0, 1]3 as robust represen-
tation of the “typical” feature vector in X`. The geometric
median is given by

µ` := µ(X`) = arg min
y

∑
x∈X`

‖x− y‖2 , (4)

which admits an efficient solution [43, 18]. Note that when
the `2-norm in (4) is replaced by the squared `2-norm, one
obtains the mean, whereas using the `1-norm results in the
coordinate-wise median. In addition to µ`, we estimate a
robust “covariance matrix” of X` based on the geometric
median µ`, which is given by

C` :=
1

N−1

∑
x∈X`

(x− µ`)(x− µ`)
T . (5)

Using the dynamically updated geometric median µ`

and the “covariance” C`, for all foreground materials
`1, . . . , `L−1 we define the appearance cost Ea, in the spirit



of the Mahalanobis distance, as

Ea
i (`) := (Φ(xi)− µ`)

TC−1` (Φ(xi)− µ`) . (6)

Since the background (having label `L) is in general inho-
mogeneous, a single-modal model in the Φ-feature space as
assumed in (6) is inappropriate. Instead of using a multi-
modal model, for the background we consider a lifted fea-
ture vector Φbg by augmenting Φ with the already predicted
foreground costs, i.e.

Φbg(xi) = [Φ(x)T , Ea
i (`1), . . . , Ea

i (`L−1)]T . (7)

By embedding the computed foreground costs into the
(3+(L−1))-dimensional background feature vector Φbg,
we have found that a single-modal model in this higher-
dimensional feature space is able to provide sufficient dis-
criminability for the background. The background appear-
ance costs are then computed as in (6) with Φbg in place
of Φ, and µL and CL being computed from the predicted
background mask using XL = {Φbg(x) : JL(x) = 1}.

3.2.2 Smoothness term

In order to achieve a piecewise constant labelling ` of im-
age I , we use a smoothness term that penalizes neighboring
pixels that are assigned different labels. The Potts model
[29] is a robust discontinuity-preserving interaction poten-
tial that is given by

E(`, `′) := min(1, |`− `′|) . (8)

The pairwise term used in (1) is now given by the general-
ized Potts model [6]

Eij(`, `) := λsωijE(`, `′) ∀ i ∼ j . (9)

The scalar λs > 0 is a fixed weight, ωij ≥ 0 is a weight that
depends on neighboring pixels i, j and is defined as

ωij = exp

(
‖I(xi)− I(xj)‖22

2

)
. (10)

The purpose of the weight ωij is to increase the cost for
assigning different labels to neighboring pixels that have
similar color appearance, and to decrease the cost if the
color appearance is different.

3.2.3 Minimization of the MRF energy (1)

In order to minimize (1) we use the alpha-expansion algo-
rithm [7] that has appealing properties both from a theo-
retical and from a practical point-of-view. On the one hand,
when minimizing energy (1) with a generalized Potts model
as smoothness term as in (9), the alpha-expansion algorithm
has the guarantee that the so-obtained local optimum lies
within a factor of the global optimum [41]. Moreover, the
alpha-expansion algorithm is very efficient and is known to
produce good solutions in practice.

3.3. Pose Tracking

Given the material segmentation of the multiview images
in the current frame, our task is now to estimate the pose
parameters S.

Gaussian blob tracker: In order to perform tracking,
we adopt the SoG-based skeleton tracking method of [38].
To be more specific, we attach a sum of 3D spatial Gaus-
sians (SoG) to the skeleton in order to approximate the ac-
tor’s body model (cf. Fig. 2). The 3D SoG body model can
be expressed as:

M(x) =

N∑
i=1

exp(−‖x− x̄i‖
2
2

2σ2
i

), (11)

where x is a 3D coordinate, N is the number of spatial
Gaussians, and x̄i and σ2

i are the mean and the variance
of the i-th Gaussian blob, respectively. Then, the 2D im-
ages and the 3D body model are approximated as 2D and
3D SoG respectively, and the skeleton parameters are ob-
tained by maximizing the overlap of the 2D image SoG and
the projected 3D body model SoG. For further details on
this approach we refer the reader to [38].

In addition to the blobs that represent the human body
shape, we create 14 special detection Gaussians placed at
the 14 most prominent joints (cf. Fig. 2), which are used
to match the skeleton pose with CNN-based 2D detections
obtained by the convolutional pose machine approach [42].

In contrast to the original tracking method [38], instead
of the raw images we use the segmented material images (as
described in section 3.2) in combination with the heatmaps
of the 14 CNN-based joint position detections.

Adaptive weighting: In order to improve upon the ro-
bustness and to prevent that wrong segmentations lead to
error propagation, we employ an adaptive weighting strat-
egy to set the relative importance between the material seg-
mentation image and the CNN-based joint detections. Let
ws and wd be the weights of the segmentation and joint
detections that are used in the blob tracker. Initially, the
weights are set to ws=0.8 and wd=0.2. In order to check
for unreliable segmentations, we compute for each material
`1, . . . `L the norm of the difference s` of the geometric me-
dian µ` and its value of the previous frame µt−1

` , i.e. s` =
‖µ` − µt−1

` ‖2. If any of the s` for ` = `1, . . . `L is larger
than the threshold θ, where we used θ ≈ 0.08, we consider
the segmentation as failure. In the case of a failure, we up-
date ws = ws

2 to decrease the relative importance of the
segmentation, otherwise we set ws = max(0.8, ws + 0.1).
The weight wd is obtained as wd = 1− ws.

4. Experimental Results
We evaluated our proposed approach on 5 outdoor and

2 indoor sequences. The outdoor sequences include harsh
(e.g. walk1 outdoor) and soft shadow, while the indoor light



Figure 4. Qualitative results. The figure shows tracking results obtained with our approach on both indoor and outdoor sequences (columns)
and different frames (rows). From the top to the bottom: girl indoor, boy outdoor, girl1 outdoor, boy indoor, walk1 outdoor.

changes are simulated by randomly switching on and off a
subset of the studio lights.

Runtime: Our current implementation typically takes
around half a minute per multiview frame when using 8
views. The biggest overhead is the estimation of color and
pose costs for each camera and pixel. While runtime was
not a key concern for us, we believe that it can be drasti-
cally improved using parallel computing techniques.

Qualitative results: In Fig. 4, we provide some exam-
ples of the motion capture results obtained with our method.
We can see from these results that our method accurately
tracked the skeletal motion of the actors in both outdoor and
indoor scenarios. Note that, in the outdoor sequences of row
2 and 3, although the illumination changes significantly as

the actors walk into or out of the shadow, our method is still
able to track the motion stably. In the sequence of row 5,
there is a harsh shadow casted on the actor, but our method
still yields successful tracking results. The benefit of our
approach is further evidenced in the simulated varying il-
lumination scenarios of row 1 and 4. Even in the extreme
case of row 1, where the actor is hardly visible for a human
observer, our method still works in such a challenging sce-
nario. The complete results on all sequences are provided
in our supplementary video.

Furthermore, we compare our approach with the method
by Rhodin et al. [31] and the Gaussian blob tracker [38] on
the boy outdoor sequence, for which we provide the ground
truth. For the latter, we evaluated two different scenar-



Figure 5. Comparison of estimated poses in the boy outdoor se-
quence for different methods. From left to right: ours, BT+Det,
Rhodin et al. and BT. The circles point to tracking failures.

ios. In the first scenario, we apply the blob tracker to the
raw RGB images, which we denote as BT. In the second
scenario, we use the CNN-based joint detection blobs only
(cf. section 3.3) without considering the material segmenta-
tion, which we denote by BT+Det in the results. The qual-
itative comparison is shown in Fig. 5. From these results,
we can see that our method yields more accurate tracking
results than the existing methods.

Quantitative results: Quantitative results evaluating
those methods on the boy outdoor sequence are shown in
Fig. 6, as well as in Tables 1 and 2. In Fig. 6 we show
the percentage of correct keypoints (3DPCK [25]) for four
end-effector joints across the entire sequence comprising
400 frames from 8 different views, with Table 1 summariz-
ing the corresponding area under the curve (AUC). In Ta-
ble 2 we summarise the 3D ground truth error (in cm) for
the four methods for five end-effector joints. Overall, our
method and the BT+Det method significantly outperform
the other two approaches. While results of our method and

Rhodin et al. BT BT+Det ours
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Figure 6. 3DPCK values of end-effector joint positions for
boy outdoor sequence when using 8 cameras. The value on the
vertical axis shows the percentage of frames where the error is
smaller than or equal to the value on the horizontal axis. The cor-
responding AUC values are shown in Table 1.

Table 1. Area under curve (AUC) values of 3DPCK curves in
Fig. 6.

Rhodin et al. BT BT+Det ours

LW 0.9249 0.6858 0.9295 0.9428
RW 0.9298 0.6023 0.9326 0.9451
LA 0.8839 0.7979 0.9075 0.9114
RA 0.8279 0.7003 0.9061 0.9105

Table 2. Numerical summary of average ground truth errors (in
cm) and standard deviation for five different joints (LW: left wrist,
RW: right wrist, LA: left ankle, RA: right ankle, N: neck).

Rhodin et al. BT BT+Det ours

LW 7.35±9.68 30.92±26.18 6.89±8.77 5.59±4.91
RW 7.20±11.39 41.02±35.09 6.91±9.73 5.61±6.32
LA 7.28±3.05 12.69±14.35 5.79±1.28 5.55±1.33
RA 9.60±3.34 16.73±16.82 5.22±1.14 4.98±1.25
N 3.23±1.45 8.34±5.71 2.91±1.18 2.86±1.26

BT+Det are comparable in Fig. 6, Tables 1 and 2 reveal
that our method results in a higher AUC and reduced er-
rors, respectively. In addition, in Fig. 7 we also evaluate the
performance of our method and BT+Det depending on the
number of views.

5. Discussion & Limitations

Our segmentation method is robust thanks to the dy-
namic appearance term. Moreover, since the blob tracker
is based on (smooth) Gaussian blobs, it does not consider
sharp object boundaries/edges, so that non-perfect bound-
ary segmentations are very likely to still lead to good track-
ing results. In addition, due to the adaptive weighting
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Figure 7. Ground truth error (vertical axis) of our method (solid
lines) and BT+Det (dashed lines) depending on the used number
of views (horizontal axis).

Figure 8. The image shows a tracking failure during a challenging
motion in the boy outdoor sequence. Our method recovers in the
next frames. The white circle points to tracking failures.

scheme our method is designed such that it can recover from
segmentation errors, even in presence of strong initial skele-
ton pose misalignments, as shown in Fig. 9. Please refer to
the supplementary video for animated results.

The initial model acquisition and material segmentation
have a direct impact on the quality of the results, as poorly
estimated texture information results in tracking failures. A
way to further automatize this required pre-processing step
is to employ existing methods (e.g. Rhodin et al. [32]) for
the shape approximation. The corresponding texture can
be back-projected from the multi-camera images account-
ing for self-occlusions and coherence. A simple color clus-
tering might suffice to automatically identify the actor mate-
rials. Automatic identification of the materials could how-
ever produce poor quality segmentations, e.g. in presence
of highly textured apparel. Our method cannot directly han-
dle non-homogeneous as well as highly specular foreground
materials. A multi-modal color term (e.g. Gaussian mix-
ture models) could help in improving segmentation of such
materials. Our method is in general robust in cases where
the foreground and the background appearance coincide,

Figure 9. The image shows skeleton tracking resulting from bad
pose initialization in the boy outdoor sequence. Our method is
able to successfully recover the correct pose after few frames.

thanks to the pose prediction term accounting for plausible
motions. Typically, in a multiview setting the background
varies a lot and the combination of the segmentations of all
the views suffices to converge to the right pose.

6. Conclusion

In this work we have presented a novel approach for
illumination-invariant human motion capture in a multiview
setup. Our key idea is to employ an intermediate image
representation that factors out variations in lightings across
the sequence in time, or variations in appearance across the
views. In order to obtain this invariant representation, for
each frame and each view we solve a segmentation problem
that uses the previous tracking result in order to infer cues
about the individual materials’ appearances in the current
frame. By fusing this approach with CNN-based joint de-
tectors as well as with a model-based tracker we are able to
demonstrate superior performance compared to other meth-
ods, even under difficult conditions. Using a dynamical
weighting strategy for determining the relative importance
between the image segmentation and the joint detections,
the method is less prone to errors due to bad segmentations
and is able to recover from tracking failures (cf. Fig. 8).
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