

INFORMATIK

IsMo-GAN: Adversarial Learning for Monocular Non-Rigid 3D Reconstruction

Soshi Shimada 1,2, Vladislav Golyanik 2,3, Christian Theobalt 3 , and Didier Stricker 1,21. Augmented Vision, DFKI2. University of Kaiserslautern3. MPI for Informatics

Motivation

Motivation

- 3D reconstruction of a deformable object from monocular 2D image sequences is still a challenging problem

Motivation

- 3D reconstruction of a deformable object from monocular 2D image sequences is still a challenging problem

2D RGB image

3D point clouds

• Non Rigid Structure from Motion (NRSfM)

Figure 1. NRSfM technique (Golyanik et al., 2017)

- Non Rigid Structure from Motion (NRSfM)
 - input: point tracks on 2D frames

Figure 1. NRSfM technique (Golyanik et al., 2017)

- Non Rigid Structure from Motion (NRSfM)
 - input: point tracks on 2D frames
 - basically no limitation regarding target objects

Figure 1. NRSfM technique (Golyanik et al., 2017)

- Non Rigid Structure from Motion (NRSfM)
 - input: point tracks on 2D frames
 - basically no limitation regarding target objects
 - multiple frames are required

Figure 1. NRSfM technique (Golyanik et al., 2017)

- Non Rigid Structure from Motion (NRSfM)
 - input: point tracks on 2D frames
 - basically no limitation regarding target objects
 - multiple frames are required
 - difficulty to apply on non-textured objects

Figure 1. NRSfM technique (Golyanik et al., 2017)

• Template based

Figure 2. 3D reconstruction from a sequence of images (Yu et al, 2015)

- Template based
 - input: 3D template & 2D images

Figure 2. 3D reconstruction from a sequence of images (Yu et al, 2015)

• Neural network based

- Neural network based
 - Input: a single/sequence of images

- Neural network based
 - Input: a single/sequence of images
 - Output: 3D geometry (Voxel/Point Set/Mesh)

- Neural network based
 - Input: a single/sequence of images
 - Output: 3D geometry (Voxel/Point Set/Mesh)
 - E.g. HDM-Net

- Neural network based
 - Input: a single/sequence of images
 - Output: 3D geometry (Voxel/Point Set/Mesh)
 - E.g. HDM-Net

- Neural network based
 - Input: a single/sequence of images
 - Output: 3D geometry (Voxel/Point Set/Mesh)
 - E.g. HDM-Net

Figure3. HDM-Net (Golyanik, 2018)

- 3D Reconstruction from a single RGB image

- Neural network based
 - Input: a single/sequence of images
 - Output: 3D geometry (Voxel/Point Set/Mesh)
 - E.g. HDM-Net

Figure3. HDM-Net (Golyanik, 2018)

- 3D Reconstruction from a single RGB image
- Regress 3D coordinates (xyz geometry)

- Neural network based
 - Input: a single/sequence of images
 - Output: 3D geometry (Voxel/Point Set/Mesh)
 - E.g. HDM-Net

Figure3. HDM-Net (Golyanik, 2018)

- 3D Reconstruction from a single RGB image
- Regress 3D coordinates (xyz geometry)
- Apply 2D conv. not 3D conv.

• In a real-world scenario, our architecture has difficulty to reconstruct geometries especially when

- In a real-world scenario, our architecture has difficulty to reconstruct geometries especially when
 - 1) the deformation states in the scene is quite different from the ones in the training dataset

- In a real-world scenario, our architecture has difficulty to reconstruct geometries especially when
 - 1) the deformation states in the scene is quite different from the ones in the training dataset
 - 2) the scene has a complicated background

Input 2D Image

IsMo-GAN (Point Cloud Generator)

Overview

• In order to penalize the network output critically, three kinds of loss functions were incorporated.

• In order to penalize the network output critically, three kinds of loss functions were incorporated.

1) 3D error

1) 3D error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{X}_i - X_i \right)^2$$

• Main loss component for 3D coordinates regression

1) 3D error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{X}_i - X_i \right)^2$$

- Main loss component for 3D coordinates regression
- Penalize difference between 3D coordinates of output and GT

2) Isometry prior

2) Isometry prior

• Idea: since we assume our target object is isometric, a vertex position has to be close to neighboring vertices.

2) Isometry prior

• Idea: since we assume our target object is isometric, a vertex position has to be close to neighboring vertices.

2) Isometry prior

• Idea: since we assume our target object is isometric, a vertex position has to be close to neighboring vertices.

2) Isometry prior

• Idea: since we assume our target object is isometric, a vertex position has to be close to neighboring vertices.

• Apply gaussian smoothing on the output and compute the difference between XG and X.

2) Isometry prior

• Idea: since we assume our target object is isometric, a vertex position has to be close to neighboring vertices.

• Apply gaussian smoothing on the output and compute the difference between XG and X.

51

3) Adversarial loss

3) Adversarial loss

3) Adversarial loss

• For further generalisability, the network is trained in an adversarial manner

• Generated 4648 deformation states on blender game engine

- Generated 4648 deformation states on blender game engine
- Took 5 images for each state.

- Generated 4648 deformation states on blender game engine
- Took 5 images for each state.

• 4 different textures(Organ, Flag, Cloth, Carpet)

- Generated 4648 deformation states on blender game engine
- Took 5 images for each state.

- 4 different textures(Organ, Flag, Cloth, Carpet)
- 5 different illumination positions

- Generated 4648 deformation states on blender game engine
- Took 5 images for each state.

- 4 different textures(Organ, Flag, Cloth, Carpet)
- 5 different illumination positions
- 4648 ply file and 330K images in total(4648x5x4x3 + 4648x5 + 4648x5)

Evaluation and Visualization

Quantitative Results

	Yu et al. [71]	Liu-Yin et al. [38]	AMP [18]	VA [15]	HDM-Net [17]	IsMo-GAN
t, sec.	3.305	5.42	0.035	0.39	0.005	0.004
e _{3D}	1.3258	1.0049	1.6189	0.46	0.0251	0.0175
σ	0.007	0.0176	1.23	0.0334	0.03	0.01

Table 1: Reconstruction times per frame t in seconds, e_{3D} and standard deviation σ for Yu *et al.* [71], Liu-Yin *et al.* [38], AMP [18], VA [15], HDM-Net [17] and our IsMo-GAN method, for the test interval of 400 frames.

		illum. 1	illum. 2	illum. 3	illum. 4	illum. 5
HDM-Net [17]	$e_{3D} \sigma$	0.07952 0.0525	0.0801 0.0742	0.07942 0.0888	0.07845 0.1009	0.07827 0.1123
IsMo-GAN	$e_{3D} \sigma$	0.06803 0.0499	0.06908 0.0696	0.06737 0.0824	0.06754 0.093	0.06685 0.102

Table 2: Comparison of 3D error for different illuminations. The *illuminations* 1-4 are known, and the *illumination* 5 is unknown.

Different textures

		endoscopy	graffiti	clothes	carpet
HDM-Net [17]	$\frac{e_{3D}}{\sigma}$	0.0485 0.0135	0.0499 0.022	0.0489 0.0264	0.1442 0.0269
IsMo-GAN	$\frac{e_{3D}}{\sigma}$	0.0336 0.0148	0.0333 0.0208	0.0353 0.0242	0.1105 0.0268

Table 3: e_{3D} comparison for differently textured surfaces under the same illumination (*illumination* 1).

Real-world images

Origami sequences

Real texture-less cloth

Texture less dataset (Bednarik et al., 2018)

Real texture-less cloth

Conclusion

Conclusion

• IsMo-GAN excels other model-based approaches in accuracy and inference time (250 HZ)

Conclusion

- IsMo-GAN excels other model-based approaches in accuracy and inference time (250 HZ)
- Robust to illumination position changes
Conclusion

- IsMo-GAN excels other model-based approaches in accuracy and inference time (250 HZ)
- Robust to illumination position changes
- Thanks to OD-Net, IsMo-GAN shows better generalizability in a texture-less and real-world scenario comparing with HDM-Net

Conclusion

- IsMo-GAN excels other model-based approaches in accuracy and inference time (250 HZ).
- Robust to illumination position changes.
- Thanks to OD-Net, IsMo-GAN shows better generalizability in a texture-less and real-world scenario comparing with HDM-Net.
- (Limitation) Training data (deformation state) is limited.

References

- 1. Bednarik, J., & Fua, P., & Salzmann, M. (2018). Learning to Reconstruct Texture-Less Deformable Surfaces from a Single View. In *International Conference on 3D Vision* (pp. 606-615).
- 2. Garg, R., Roussos, A., & Agapito, L. (2013). Dense variational reconstruction of non-rigid surfaces from monocular video. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 1272-1279).
- **3.** Golyanik, V., Shimada, S., Varanasi, K., & Stricker, D. (2018, October). HDM-Net: Monocular Non-rigid 3D Reconstruction with Learned Deformation Model. In *International Conference on Virtual Reality and Augmented Reality* (pp. 51-72). Springer, Cham.
- 4. Golyanik, V., & Stricker, D. (2017, March). Dense batch non-rigid structure from motion in a second. In 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 254-263). IEEE.
- 5. Liu-Yin, Q., Yu, R., Agapito, L., Fitzgibbon, A., & Russell, C. (2016). Better together: Joint reasoning for non-rigid 3d reconstruction with specularities and shading. In *Proceedings of the British Machine Vision Conference* (pp. 42.1-42.12.).
- 6. Yu, R., Russell, C., Campbell, N. D., & Agapito, L. (2015). Direct, dense, and deformable: Template-based non-rigid 3d reconstruction from rgb video. In *Proceedings of the IEEE International Conference on Computer Vision* (pp. 918-926).

Thank you for your attention!

Texture-less dataset

Datasets

- Extract 20 sequential deformation from each 100 states as a test dataset
- Training:Test = 8 : 2

External Occlusion

