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10Figure1. NRSfM technique (Golyanik et al. , 2017)

• Non Rigid Structure from Motion (NRSfM)
- input: point tracks on 2D frames
- basically no limitation regarding target objects
- multiple frames are required
- difficulty to apply on non-textured objects

Related works
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Figure2. 3D reconstruction from a sequence of images (Yu et al,2015)
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Figure2. 3D reconstruction from a sequence of images (Yu et al,2015)
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- input: 3D template & 2D images
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Related works
• Neural network based 

- Input: a single/sequence of images
- Output: 3D geometry (Voxel/Point Set/Mesh)
- E.g. HDM-Net 

- 3D Reconstruction from a single RGB image
- Regress 3D coordinates (xyz geometry)
- Apply 2D conv. not 3D conv.

Figure3. HDM-Net (Golyanik, 2018)
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Limitations of HDM-Net

Template-based(Yu,2015)

Ours GT

• In a real-world scenario, our architecture has difficulty to reconstruct geometries 
especially when

1) the deformation states in the scene is quite different from the ones 
in the training dataset

2) the scene has a complicated background
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• In order to penalize the network output critically, three kinds of loss 
functions were incorporated.

2) Isometry prior 3) Adversarial loss
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1) 3D error

• Main loss component for 3D coordinates regression
• Penalize difference between 3D coordinates of output and GT
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Loss functions

3) Adversarial loss

• For further generalisability, the network is trained in an adversarial 
manner 
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Truth
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• Generated 4648 deformation states on blender game engine
• Took 5 images for each state.

• 4 different textures(Organ, Flag, Cloth, Carpet)
• 5 different illumination positions
• 4648 ply file and 330K images in total(4648x5x4x3 + 4648x5 + 4648x5)

state0 state1282 state3426 state4648

・・・ ・・・ ・・・
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Evaluation and Visualization
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Quantitative Results
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Different textures
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Real-world images
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Origami sequences
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Real texture-less cloth
Texture less dataset (Bednarik et al. , 2018)



Real texture-less cloth

https://docs.google.com/file/d/1YfHm1TEg_F8FAtamn8u9c_QFNI9_hWYF/preview
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Conclusion

• IsMo-GAN excels other model-based approaches in accuracy and 
inference time (250 HZ).

• Robust to illumination position changes.
• Thanks to OD-Net, IsMo-GAN shows better generalizability in a 

texture-less and real-world scenario comparing with HDM-Net.
• (Limitation) Training data (deformation state) is limited.
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Thank you for your attention!



Texture-less dataset



• Extract 20 sequential deformation from each 100 states as a test dataset

• Training:Test = 8 : 2
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External Occlusion

Template-based(Yu,2015) Ours GT


