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1. Goal & Motivation

- Estimating material (BRDF/reflectance) of general-shape objects from a single RGB

image in real time

- AR applications impose new contraints on the problem of material estimation

, Virtual Object
» Real-time

 Uncontrolled lighting
» In-the-wild setting

- Limited sensor input

- General shape objects

Real Material

Augmented Reality Application: Material Cloning

2. Model

- We decompose the input image into its physical constituents, in-
spired by the rendering equation

L(X, (1)0) — [Q f(xr Wi, wO)(wi' n)E(wi)dwi

- Surface radiance (L) is given by the integral over the product of sur-
face reflectance (f) and the incident illumination (E)

- The blinn-phong reflection model is used to simplify the rendering
equation

- The incident lighting is parameterized by an environment map
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Blinn-Phong Reflection Model

- Here 'I'is the input RGB image, ‘n’is surface normal, '[’is light direc-
tion, ‘h’is the Blinn-Phong half vector and ‘a’is the specular shininess

» The Blinn-Phong model allows us to decompose the input image into
linear components of diffuse and specular Albedos and Shadings

'"Max-Planck-Institute for Informatics “Saarland Informatics Campus >Stanford University “University of Bath

4. Training Data

Diffuse Diffuse Specular Environment

- Synthetically rendered training da  _Rresimage Nomais  _ Mask  Rendering  _Shading _Shading __Miror _ __Nap
taset with 100,000 samples

« 55 synthetic 3D models augmented
with random scaling, orientation

and position

- Rendered with uniformly sampled albedo parameters from YUV color space
- 45 indoor environment maps captured in varying lighting conditions - homes, offices,
classrooms, auditoriums — randomly rotated before rendering

- Input images augmented with gaussian noise and random background textures

- Entire training dataset available on our website — gvv.mpi-inf.mpg.de/projects/LIME
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Environment Map

- We use 5 CNN’s that are tailored to perform specific sub-tasks on the input image
- All the networks are trained jointly in an end-to-end fashion by combining a ground-truth loss with a

novel perceptual rendering loss:

| (ap - Diffuse Shading + ag - Specular Shading) — I ||5

- Novel strategy to estimate the non-linear shininess exponent — our proposed ‘mirror image’representation

(perfectly specular version of the object), acts as an absolute reference for the specular shading image, al
lowing for a more accurate estimation

- When object normals are available from a depth sensor, the ‘mirror image’can be unwrapped to also esti

mate the environment map
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5. Results & Evaluation
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Diffuse-Specular decomposition
and Material & Environment Map estimation results

Object segmentation and material estimation results
on objects of increasing specularity

Average Error

(correct bin + adjacent bin)  Diffuse Albedo  Specular Albedo  Shininess (log)
45.07% + 40.12% 0.0674 0.2158 0.3073
45.15% + 40.96% 0.1406 0.2368 0.3038
36.29% + 40.28% 0.0759 0.2449 0.3913
44.09% + 41.28% 0.0683 0.2723 0.2974
13.57% + 25.29% 0.0408 0.1758 0.7243

Shininess Exponent

Our full approach

without perceptual loss
without MirrorNet

with exponent regression (1og10)

Reflectance Map Based Estimation

Qualitative Evaluation: In the ablation study our full method achieves best performance. In comparison to a reflectance-map-based approach,
our albedo estimation is slightly worse but the shininess exponent is much more accurate.

Material Transfer
Liu et al.
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Material retargeting results - We estimate materials from source objects and transfer them to target shapes with consistent lighting
by estimating a high-frequency environment map for target shapes from our mirror image layer.
We also compare against other state-of-the-art methods and obtain more accurate retargeting results.

[1] Liu et al., “Material Editing Using a Physically Based Rendering Network”, ICCV 2017
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