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In this supplementary document, we first provide the im-
plementation details, followed by a comparison with the
state-of-the-art methods on a synthetic dataset. Then, we
demonstrate the robustness of our method to MANO fitting
inaccuracies. Finally, we show an additional application
where the hand geometry can be edited at inference time
without any additional retraining.

1. Implementation Details
We use the same positional encoder as [3], with a maxi-

mum frequency of L = 10 for the canonicalized sampling
point (u, v, h) and L = 4 for the viewing direction d. Our
network is parameterized with a 6 layer-deep MLP as shown
in Fig. 1. We use a similar CNN network architecture as in
EG3D [1] for our super-resolution network, with an upsam-
pling factor of 2. We empirically choose 16 as the number
of samples to draw per ray as it best trades off image qual-
ity and rendering speed. Our radiance field module Hα,
super-resolution module Sϕ, and color calibration parame-
ters gj , bj are learnt with learning rates of 0.0025, 0.0025,
and 0.0001 respectively using Adam optimizer [2] with a
decay rate of 0.1. All models are trained for 200K itera-
tions.

To run SMPLpix, we assign gradually varying color val-
ues to the posed MANO mesh and render it from the camera
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Figure 1. MLP architecture of our model. The uvh mapping
simplifies learning the radiance field, allowing us to reduce the
network size compared to Mildenhall et al. [3].

Figure 2. Data for running SMPLpix. We use renderings of
colored MANO meshed as input to the SMPLpix model to predict
the ground truth hand image.

view. This colored image is used as an input to the image
translation network, which predicts the actual hand image.
These input-output pairs are visualized in Figure 2.

For the naive pose-conditioning ablation (‘xyz’ in Table
3 of the main paper), we use the original MLP architec-
ture described in [3], while also concatenating hand pose to
the positionally encoded input. For the sampling ablation
(‘w.o. mesh-guided samp.’ in Table 4 of the main paper),
we first draw 64 stratified samples in the 3D bounding box
surrounding the hand, and then use 16 importance samples.

2. Comparison on Simulated Dataset

For additional benchmarking, we generate a synthetic
dataset by applying one of the ground truth texture maps
from HTML [4] on the InterHand2.6M MANO meshes and
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Figure 3. Comparison on our synthetic dataset. Our method significantly outperforms the other two volumetric approaches (i.e. A-
NeRF and LISA) which struggle in getting the geometry and the appearance right. While SMPLpix performs well on this synthetic dataset
because of the availability of perfect annotations, we can still observe some ringing artifacts, as shown in the first row.

render it with the provided hand poses and camera parame-
ters. This dataset is then used to train our method, as well as
the other state-of-the-art methods. The results are presented
in Tab. 1 and Fig. 3.

It is evident that our method outperforms the other two
volumetric approaches (i.e. A-NeRF and LISA). On the
other hand, SMPLpix performs better than our method on
this simulated dataset. This is expected because this syn-
thetic setting of perfect MANO annotations reduces SM-
PLpix’s task to a simple one-to-one 2D mapping. But in real
datasets, MANO fitting is challenging and it also does not
allow capturing identity-specific details in the mesh because
of limited PCA space. As a result, input to the neural ren-
derer and ground truth will have pixel-level misalignments.
This results in poor multi-view consistency and generaliza-
tion, which can also be observed in Tab. 2 and Fig. 5 in the
main paper. Moreover, this simulated data does not contain
pose and view-dependent effects, which can be modeled by
our method but not SMPLpix. All of these factors help SM-
PLpix achieve better results for the synthetic dataset.

Also, note that we do not show a comparison against
‘Mesh wrapping’ here as a similar technique is used in the
first place to generate the synthetic dataset.

PSNR ↑ LPIPS(x1000) ↓ FID ↓ FPS ↑
SMPLpix 36.66 6.84 23.95 58.82
A-NeRF* 29.47 38.61 68.15 0.83
LISA* 30.95 32.17 63.07 3.70
Ours 32.59 9.36 26.03 45.45

Table 1. Comparison on our synthetic dataset.

3. Robustness to MANO inaccuracies

Our method does not require perfect MANO fitting and
is robust to some misalignment. The ground truth meshes
provided in InterHand2.6M dataset are in fact noisy as the
authors report a 5mm average error between the MANO
joints and the annotated 3D keypoints. For a more thorough
analysis, we introduce pose noise in the accurate MANO
fittings of our simulated dataset and report the findings in
Table 2. It is evident that our approach can handle tracking
errors in the MANO fittings during training. The same can
also be observed in Figure 4. Multiple factors in our design
lead to this increased robustness: 1) our volume rendering
does not rely on exact surface tracking and we only lever-
age the mesh for sampling and space canonicalization; 2)
the perceptual loss does not penalize per-pixel mismatch in



Avg. mesh error PSNR ↑ LPIPS (x1000) ↓ FID ↓
0 mm 32.59 9.36 26.03

2.99 mm 30.53 14.41 35.04
6.64 mm 29.97 18.24 41.98
10.63 mm 29.99 21.85 56.68

Table 2. Impact of MANO fittings inaccuracies on reconstruc-
tion. We observe that an average mesh error as high as 10.63 mm
does not deteriorate the results significantly, as also observed in
the qualitative results in Fig. 4.

the image space, thus avoiding blurred results common in
case of poor tracking.

4. Application: Shape Editing
Our uvd encoding and the mesh-guided sampling for-

mulation are not only advantageous in terms of rendering
speed and quality, but they also enable easy editing of the
hand-avatar geometry. Given the original hand parameter
ψinit : {θ, βinit, t, R}, we can modify the shape parameter
to obtain ψnew : {θ, βnew, t, R}. By using the correspond-
ing mesh M(ψnew) in the canonicalization procedure, the
rendered hand appearance will change accordingly. This
allows the geometry of the hand avatar to be modified with-
out retraining. We show the results of this application in
Fig. 5, where we modified the first principal component of
the MANO shape parameter β.

Figure 5. Application: Shape Editing. The hand geometry can
be edited without any additional retraining of the model.
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Figure 4. Robustness to MANO fitting errors. We analyze the impact of inaccurate MANO fittings on our method. Our use of perceptual
loss, as well as mesh-based sampling and canonicalization strategies make the method robust to inaccurate MANO meshes and preserves
the details in the learned model.
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