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Figure 1. Example visualizations of 3D object manipulation synthesized by our method MACS. Conditioning object mass values of 0.2kg
(left) and 5.0kg (right) are given to the model for the action type ”passing from one hand to another”. MACS plausibly reflects the mass
value in the synthesized 3D motions.

Abstract

The physical properties of an object, such as mass, sig-
nificantly affect how we manipulate it with our hands. Sur-
prisingly, this aspect has so far been neglected in prior
work on 3D motion synthesis. To improve the naturalness
of the synthesized 3D hand-object motions, this work pro-
poses MACS–the first MAss Conditioned 3D hand and ob-
ject motion Synthesis approach. Our approach is based on
cascaded diffusion models and generates interactions that
plausibly adjust based on the object’s mass and interac-
tion type. MACS also accepts a manually drawn 3D ob-
ject trajectory as input and synthesizes the natural 3D hand
motions conditioned by the object’s mass. This flexibility
enables MACS to be used for various downstream appli-
cations, such as generating synthetic training data for ML
tasks, fast animation of hands for graphics workflows, and
generating character interactions for computer games. We
show experimentally that a small-scale dataset is sufficient
for MACS to reasonably generalize across interpolated and
extrapolated object masses unseen during the training. Fur-
thermore, MACS shows moderate generalization to unseen
objects, thanks to the mass-conditioned contact labels gen-
erated by our surface contact synthesis model ConNet. Our
comprehensive user study confirms that the synthesized 3D
hand-object interactions are highly plausible and realistic.

*Work done while at Google.

Project page link: https://vcai.mpi-inf.mpg.
de/projects/MACS/

1. Introduction
Hand-object interaction plays an important role in our daily
lives, involving the use of our hands in a variety of ways
such as grasping, lifting, and throwing. It is crucial for
graphics applications (e.g. AR/VR, avatar communication
and character animation) to synthesize or capture physically
plausible interactions for their enhanced realism. Therefore,
there has been a growing interest in this field of research,
and a significant amount of work has been proposed in grasp
synthesis [11, 15, 18, 19, 31], object manipulation [4, 9, 22,
38, 41], 3D reconstruction [6, 14, 20, 23, 28, 33, 36], graph
refinement [8, 24, 44] and contact prediction [3].

Because of the high-dimensionality of the hand models
and inconsistent object shape and topology, synthesizing
plausible 3D hand-object interaction is challenging. Fur-
thermore, errors of even a few millimeters can cause col-
lisions or floating-object artefacts that immediately con-
vey an unnatural impression to the viewer. Some works
tackle the static grasp synthesis task using an explicit hand
model [11, 18, 31] or an implicit representation [15]. How-
ever, considering the static frame alone is not sufficient to
integrate the method into real-world applications such as
AR/VR as it lacks information of the inherent scene dy-
namics. Recently, several works have been proposed to syn-
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thesize the hand and object interactions as a continuous se-
quence [4, 41, 44]. However, none of the state-of-the-art
work explicitly considers an object’s mass when generat-
ing hand-object interactions. Real-life object manipulation,
however, is substantially influenced by the mass of the ob-
jects we are interacting with. For example, we tend to grab
light objects using our fingertips, whereas with heavy ob-
jects oftentimes the entire palm is in contact with the ob-
ject. Manually creating such animations is tedious work re-
quiring artistic skills. In this work, we propose MACS, i.e.,
the first learning-based mass conditioned object manipula-
tion synthesis method. The generated object manipulation
naturally adopts its behavior depending on the object mass
value. MACS can synthesize such mass conditioned inter-
actions given a trajectory plus action label (e.g., throw or
move). The trajectory itself may also be generated condi-
tioned on the action label and mass using the proposed cas-
caded diffusion model, or alternatively manually specified.

Specifically, given the action label and mass value as
conditions, our cascaded diffusion model synthesizes the
object trajectories as the first step. The synthesized object
trajectory and mass value further condition a second dif-
fusion model that synthesizes 3D hand motions and hand
contact labels. After the final optimization step, MACS re-
turns diverse and physically plausible object manipulation
animations. We also demonstrate a simple but effective data
capture set-up to produce a 3D object manipulation dataset
with corresponding mass values. The contributions of our
work are as follows:
• The first approach to synthesize mass-conditioned object

manipulations in 3D. Our setting includes two hands and
a single object of varying mass.

• A cascaded denoising diffusion model for generating tra-
jectories of hands and objects allowing different types of
conditioning inputs. Our approach can both synthesize
new object trajectories and operate on user-provided tra-
jectories (in this case, the object trajectory synthesis part
is skipped).

• A new component for introducing plausible dynamics
into user-provided trajectories.
Our experiments confirm that MACS synthesizes quali-

tatively and quantitatively more plausible 3D object manip-
ulations compared with other baselines. MACS shows plau-
sible manipulative interactions even for mass values vastly
different from those seen during the training.

2. Related Work
There has been a significant amount of research in the
field of 3D hand-object interaction motion synthesis. Here,
we will review some of the most relevant works in this
area. Grasp synthesis works are discussed in Sec. 2.1 and
works that generate hand-object manipulation sequences in
Sec. 2.2. Lastly, closely related recent diffusion model

based synthesis approaches are discussed in Sec. 2.3.

2.1. Grasp Synthesis

Synthesising physically plausible and natural grasps bears
a lot of potential downstream applications. Thus, many
works in this field have been proposed in computer graph-
ics and vision [9, 19, 24, 38, 41], and robotics community
[18, 35]. ContactOpt [11] utilizes a differentiable contact
model to obtain a plausible grasp from a hand and object
mesh. Karunratanakul et al. [15] proposed a grasping field
for a grasp synthesis where hand and object surfaces are
implicitly represented using a signed distance field. Zhou
et al. [44] proposed a learning-based object grasp refine-
ment method given noisy hand grasping poses. GOAL [32]
synthesizes a whole human body motion with grasps along
with plausible head directions. These works synthesize nat-
ural hand grasp on a variety of objects. However, unlike the
methods in this class, we synthesize a sequential object ma-
nipulation, changing not only the hand pose but also object
positions bearing plausible hand-object interactions.

2.2. Object Manipulation

Synthesising a sequence for object manipulation is chal-
lenging since the synthesized motions have to contain tem-
poral consistency and plausible dynamics considering the
continuous interactions. Ghosh et al. [9] proposed a human-
object interaction synthesis algorithm associating the inten-
tions and text inputs. ManipNet [41] predicts dexterous
object manipulations with one/two hands given 6 DoF of
hands and object trajectory from a motion tracker. CAMS
[43] synthesizes hand articulations given a sequence of in-
teracting object positions. Unlike these approaches, our al-
gorithm synthesizes the 6 DoF of the hands and objects as
well as the finger articulations affected by the conditioned
mass values. D-Grasp [4] is a reinforcement learning-based
method that leverages a physics simulation to synthesize
a dynamic grasping motion that consists of approaching,
grasping and moving a target object. In contrast to D-Grasp,
our method consists of a cascaded diffusion model archi-
tecture and has explicit control over the object mass value
that influences the synthesized interactions. Furthermore,
D-Grasp uses a predetermined target grasp pose and there-
fore does not faithfully adjust its grasp based on the mass
value in the simulator unlike ours.

2.3. Diffusion Model based Synthesis

Recently, diffusion model [29] based synthesis approaches
have been receiving growing attention due to their promis-
ing results in a variety of research fields e.g. image genera-
tion tasks [13, 26, 27], audio synthesis [17], motion synthe-
sis [7, 34, 40, 42] and 3D character generation from texts
[25]. MDM [34] shows the 3D human motion synthesis
and inpainting tasks from conditional action or text inputs
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utilizing a transformer-based architecture allowing the inte-
gration of the geometric loss terms during the training. Our
method is the first diffusion model based approach that syn-
thesizes hand-object interactions. Furthermore, unlike the
existing works in the literature, we condition the synthe-
sized motions on a physical property, i.e., object mass.

3. Method
Our goal is to synthesize 3D motion sequences of two hands
interacting with an object whose mass affects both the tra-
jectory of the object and the way the hands grasp it. The in-
puts of this method are a conditional scalar mass value and
optionally a one-hot coded action label and/or a manually
drawn object trajectory. Our method synthesizes a motion
represented as N successive pairs of 3D hands and object
poses. To this end, we employ denoising diffusion mod-
els (DDM) [29] for 3D hand motion and object trajectory
synthesis; see Fig. 2 for the overview. We first describe
our mathematical modeling and assumptions in Sec. 3.1.
In Secs. 3.2 and 3.3, we provide details of our hand mo-
tion synthesis network HandDiff and trajectory synthesis
algorithm TrajDiff, respectively. We describe the method
to synthesize the 3D motions given user input trajectory in
Sec. 3.3.2. The details of network architectures and training
are elaborated in our supplementary material.

3.1. Assumptions, Modelling and Preliminaries

In this work, we assume that the target object is represented
as a mesh. 3D hands are represented with a consistent topol-
ogy, which is described in the following paragraph.

Hand and Object Modelling To represent 3D hands, we
employ the hand model from GHUM [37] which is a non-
linear parametric model learned from large-scale 3D human
scans. The hand model from GHUM defines the 3D hand
mesh as a differentiable function M(τ ,ϕ,θ,β) of global
root translation τ ∈R3, global root orientation ϕ∈R6 rep-
resented in 6D rotation representation [45], pose parame-
ters θ∈R90 and shape parameters β ∈R16. We employ
two GHUM hand models to represent left and right hands,
which return hand vertices v∈R3l (l = 1882 = 941 · 2)
and 3D hand joints j∈R3K (K = 42 = 21 · 2). The
object pose is represented by its 3D translation τ obj. ∈R3

and rotation ϕobj. ∈R6. Our method MACS synthesizes
N successive (i) 3D hand motions represented by the
hand vertices V= {v1, ...,vN}∈RN×3l and hand joints
J= {j1, ..., jN}∈RN×3K , and (ii) optionally object poses

Φ= {Φ1, ...,ΦN}∈RN×(3+6), (1)

where Φi = [τ obj.,i,ϕobj.,i]. The object pose is defined in
a fixed world frame F , and the global hand translations are
represented relative to the object center position. The global
hand rotations are represented relative to F .

Denoising Diffusion Model The recently proposed De-
noising Diffusion Probabilistic Model (DDPM) [13] has
shown compelling results both in image synthesis tasks and
in motion generation tasks [34]. Compared to other exist-
ing generative models (e.g., VAE [30] or GAN [10]) that
are often employed for motion synthesis tasks, the train-
ing of DDPM is simple, as it is not subject to the notorious
mode collapse while generating motions of high quality and
diversity.

Following the formulation by Ho et al. [13], the forward
diffusion process is defined as a Markov process adding
Gaussian noise in each step. The noise injection is repeated
T times. Next, let X(0) be the original ground-truth (GT)
data (without noise). Then, the forward diffusion process is
defined by a distribution q(·):

q
(
X(1:T ) | X(0)

)
=

T∏
t=1

q
(
X(t) | X(t−1)

)
, (2)

q
(
X(t) | X(t−1)

)
= N

(
X(t) |

√
1− βtX

(t−1), βtI
)
, (3)

where βt are constant hyperparameters (scalars) that are
fixed per each diffusion time step t. Using a reparametriza-
tion technique, we can sample X(t) using the original data
X(0) and standard Gaussian noise ϵ∼N (0, I):

X(t) =
√
αtX

(0) +
√
1− αtϵ, (4)

where αt =
∏t

i=1(1−βi). The network is trained to reverse
this process by denoising on each diffusion time step start-
ing from a standard normal distribution X(T )∼N (0, I):

p
(
X(0:T )

)
= p

(
X(T )

) T∏
t=1

p
(
X(t−1) | X(t)

)
, (5)

where p
(
X(t−1) | X(t)

)
denotes the conditional probabil-

ity distribution estimated from the network output. From
Eq. (5), we obtain the meaningful generated result X∗ after
T times of denoising process. that follows the data distribu-
tion of the training dataset.

In the formulation of DDPM [13], the network is trained
to predict the added noises on the data for the reverse diffu-
sion process. The simple loss term is formulated as

Lsimple = Eϵ,t∼[1,T ]

[∥∥∥ϵ− ϵθ

(
X(t), t, c

)∥∥∥2
2

]
, (6)

where c denotes an optional conditioning vector. The loss
term of Eq. (6) drives the network ϵθ towards predicting
the added noise. Training the network with Eq. (6) alone
already generates highly diverse motions.

In our case X∗ represents sequences of 3D points corre-
sponding to the synthesized motion trajectories (for hands
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Figure 2. The proposed framework. The object trajectory synthesis stage accepts as input the conditional mass value m and action label
a along with a Gaussian noise sampled from N (0, I), and outputs an object trajectory. The hand motion synthesis stage accepts a, m and
the synthesized trajectory as conditions along with a gaussian noise sampled from N (0, I). ConNet in this stage estimates the per-vertex
hand contacts from the synthesized hand joints, object trajectory and conditioning values a, m. The final fitting optimization step returns
a set of 3D hand meshes that plausibly interact with the target object.

and objects). Unfortunately, Eq. (6) alone often leads to ar-
tifacts in the generated sequences such as joint jitters and
varying bone length when applied to motion synthesis. To
improve the plausibility of the generated results, Dabral
et al. [7] proposed an algorithm to integrate the explicit geo-
metric loss terms into the training of DDPM. At an arbitrary
diffusion time step t, we can obtain the approximated origi-
nal data X̂(0) using the estimated noise from ϵθ instead of ϵ
in Eq. (4) and solving for X̂(0):

X̂(0) =
1√
α
X(t) −

(√
1

α
− 1

)
ϵθ

(
X(t), t, c

)
. (7)

During the training, geometric penalties can be applied on
X̂(0) so as to prevent the aforementioned artifacts. In the
following sections, we follow the mathematical notations of
DDPM literature [7, 13] as much as possible. The approx-
imated set of hand joints and object poses obtained from

Eq. (7) are denoted Ĵ(0) and Φ̂
(0)

, respectively. Similarly,
the synthesized set of meaningful hand joints and object
poses obtained from the reverse diffusion process Eq. (5)
are denoted J∗ and Φ∗, respectively.

3.2. Hand 3D Motion Synthesis

Our DDPM-based architectures HandDiff H(·) and Tra-
jDiff T (·) are based on the stable diffusion architecture
[26] with simple 1D and 2D convolution layers (see our
supplementary for more details). During the training, we
follow the formulation of Dabral et al. [7] described in
Sec. 3.1 to introduce geometric penalties on Ĵ(0) ∈RN×3K

and Φ̂
(0)

∈RN×9 combined with the simple loss described
in Eq. (6).

Hand Keypoints Synthesis In this stage, we synthesize a
set of 3D hand joints and per-vertex hand contact probabil-
ities. Knowing the contact positions on hands substantially
helps to reduce the implausible ”floating object” artifacts of
the object manipulation (see Sec.4 for the ablations). The
synthesized 3D hand joints and contact information are fur-
ther sent to the final fitting optimization stage where we ob-
tain the final hand meshes considering the plausible interac-
tions between the hands and the object.

Our diffusion model based HandDiff H(·) accepts as in-
puts a 3D trajectory Φ∈RN×(3+6) and mass scalar value
m where N is the number of frames of the sequence. From
the reverse diffusion process of H(·), we obtain the synthe-
sized set of 3D joints J∗ ∈RN×3K . Φ can be either syn-
thesized by TrajDiff T (·) (Sec. 3.3.1) or manually provided
(Sec. 3.3.2).

Along with the set of 3D hand joint positions, our 1D
convolution-based ConNet f(·) also estimates the contact
probabilities b∈RN×l on the hand vertices from the hand
joint and object pose sequence with a conditioning vector c
that consists of a mass value m and an action label a.

ConNet f(·) is trained using a binary cross entropy
(BCE) loss with the GT hand contact labels lcon.:

Lcon. = BCE(f(J(0),Φ(0), c), lcon.), (8)

where J(0) and Φ(0) denotes a set of GT 3D hand joints
and GT object poses, respectively. At test time, ConNet es-
timates the contact probabilities from the synthesized 3D
hand joints and object positions conditioned on c. The es-
timated contact probabilities b are used in the subsequent
fitting optimization step, to increase the plausibility of the
hand and object interactions.
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The objective LH for the training of HandDiff reads:

LH = Lsimple + λgeoLgeo, (9)

where Lsimple is computed following Eq. (6) and

Lgeo = λrec.Lrec. + λvel.Lvel. + λaccLacc. + λblenLblen.. (10)

Lrec., Lvel. and Lacc. are loss terms to penalize the positions,
velocities, and accelerations of the synthesized hand joints,
respectively:

Lrec. = ∥Ĵ(0) − J(0)∥22, (11)

Lvel. = ∥Ĵ(0)
vel. − J

(0)
vel.∥

2
2, (12)

Lacc. = ∥Ĵ(0)
acc. − J(0)

acc.∥22, (13)

where Ĵ(0) is an approximated set of hand joints from
Eq. (7) and J(0) denotes a set of GT hand joints. Ĵ(0) and
J0 with the subscripts “vel.” and “acc.” represent the veloc-
ities and accelerations computed from their positions, re-
spectively.

Lblen. penalizes incorrect bone lengths of the hand joints
using the function dblen : RN×3K → RN×K that computes
bone lengths of hands given a sequence 3D hand joints of
N frames:

Lblen. = ∥dblen(Ĵ
(0))− dblen(J

(0))∥22. (14)

At test time, we obtain a set of 3D hand joints J∗ using the
denoising process detailed in Eq. (5) given a Gaussian noise
∼ N (0, I).

Fitting Optimization Once the 3D hand joint sequence
J∗ is synthesized from the trained H, we solve an optimiza-
tion problem to fit GHUM hand models to J∗. We use a
threshold of b > 0.5 to select the effective contacts from
the per-vertex contact probability obtained in the previous
step. Let bn

idx ⊂ J1, LK be the subset of hand vertex indices
with effective contacts on the n-th frame. The objectives
are written as follows:

argmin
τ ,ϕ,θ

(λdataLdata+λtouchLtouch+λcol.Lcol.+λpriorLprior). (15)

Ldata is a data term to minimize the Euclidean distances be-
tween the GHUM (J) and the synthesized hand joint key
points (J∗):

Ldata = ∥J− J∗∥22. (16)

Ltouch is composed of two terms. The first term reduces
the distances between the contact hand vertices and their
nearest vertices P on the object to improve the plausibility
of the interactions. The second term takes into account the

normals of the object and hands which also enhances the
naturalness of the grasp by minimizing the cosine similarity
s(·) between the normals of the contact hand vertices n and
the normals of their nearest vertices of the object n̂.

Ltouch =

N∑
i=1

∑
j∈bi

idx

∥∥∥Vj
i −Pj

i

∥∥∥2

2
+

N∑
i=1

∑
i∈bidx

(1− s(nj
i , n̂

j
i )), (17)

where the subscript i denotes i-th sequence frame and the
superscript j denotes the index of the vertex with the effec-
tive contact. Lcol. reduces the collisions between the hand
and object by minimizing the penetration distances. Let
Pn ⊂ J1, UK be the subset of hand vertex indices with colli-
sions on n-th frame. Then we define

Lcol. =

N∑
i=1

∑
j∈Pn

∥∥∥Vj
i −Pj

i

∥∥∥2
2
. (18)

Lprior is a hand pose prior term that encourages the plau-
sibility of the GHUM hand pose by minimising the pose
vector θ of the GHUM parametric model

Lprior = ∥θ∥22. (19)

With all these loss terms combined, our final output shows a
highly plausible hand and object interaction sequence. The
effectiveness of the loss terms is shown in our ablative study
(Sec. 4.1). Note that only for the non-spherical objects,
which were not present in the training dataset, we apply a
Gaussian smoothing on the hand and object vertices along
the temporal direction with a sigma value of 3 after the fit-
ting optimization to obtain a smoother motion.

3.3. Object Trajectory Generation

The input object trajectory for HandDiff can be provided
in two ways, (1) synthesizing 3D trajectory by TrajDiff
(Sec.3.3.1) or (2) providing a manual trajectory (Sec. 3.3.2).
The former allows generating an arbitrary number of hands-
object interaction motions conditioned on mass values and
action labels, which can contribute to a large-scale dataset
generation for machine learning applications. The latter al-
lows for tighter control of the synthesized motions which
are still conditioned on an object’s mass value but restricted
to the provided trajectory.

3.3.1 Object Trajectory Synthesis

To provide a 3D object trajectory to HandDiff, we introduce
a diffusion model-based architecture TrajDiff that synthe-
sizes an object trajectory given a mass value m and an ac-
tion label a∈R6 encoded as a one-hot vector. We observed
that directly synthesizing a set of object rotation values
causes jitter artifacts. We hypothesize that this issue comes
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Figure 3. Definition of the
template vertices.

from simultaneously synthesiz-
ing two aspects of a pose, trans-
lation and rotation, each having
a different representation. As a
remedy, we propose to represent
both the translation and rotation
as 3D coordinates in a Cartesian
coordinate system. Specifically,
we first synthesize the reference vertex positions Pref on
the object surface defined in the object reference frame,
and register them to the predefined template vertex posi-
tions Ptemp to obtain the rotation of the object. We define 6
template vertices as shown in Fig. 3. TrajDiff thus synthe-
sizes a set of reference vertex positions Pref ∈RN×q where
q = 18(= 6× 3) that are defined in the object center frame
along with a set of global translations. We then apply Pro-
crustes alignment between Pref. and Ptemp. to obtain the ob-
ject rotations. The objective of TrajDiff is defined as fol-
lows:

LT = Lsimple + λgeo.(λrec.Lrec. + λvel.Lvel.

+λacc.Lacc. + λref.Lref.). (20)

Lrec., Lvel. and Lacc. follow the definitions given in
Eqs. (11), (12) and (13), where J(0) is replaced with GT
3D object poses whose rotation is represented by the refer-
ence vertex positions instead of 6D rotation. Lref is defined
as:

Lref = ∥P̂(0)
ref −P

(0)
ref ∥

2
2 + ∥drel(P̂

(0)
ref )− drel(P

(0)
ref )∥

2
2. (21)

The first term of Lref penalizes the Euclidean distances be-
tween the approximated reference vertex positions P̂

(0)
ref of

Eq. (7) and the GT reference vertex positions P(0)
ref . The sec-

ond term of Lref penalizes the incorrect Euclidean distances
of the approximated reference vertex positions relative to
each other. To this end, we use a function drel : RN×3q →
RN×q′ , where q′ =

(
q
2

)
, which computes the distances be-

tween all the input vertices pairs on each frame.
The generated object trajectory responds to the specified

masses. Thus, the motion range and the velocity of the ob-
ject tend to be larger for smaller masses. In contrast, with
a heavier object the trajectory shows slower motion and a
more regulated motion range.

3.3.2 User-Provided Object Trajectory

Giving the user control over the output in synthesis tasks is
crucial for downstream applications such as character ani-
mations or avatar generation. Thanks to the design of our ar-
chitecture that synthesizes 3D hand motions and hand con-
tacts from a mass value and an object trajectory, a manually
drawn object trajectory can also be provided to our frame-
work as an input.

However, manually drawing an input 3D trajectory is not
straightforward, as it must consider the object dynamics in-
fluenced by the mass. For instance, heavy objects will ac-
celerate and/or decelerate much slower than lighter ones.
Drawing such trajectories is tedious and often requires pro-
fessional manual labour. To tackle this issue, we introduce a
module that accepts a (user-specified) trajectory with an ar-
bitrary number of points along with the object’s mass, and
outputs a normalized target trajectory (NTT).

NTT is calculated from the input trajectory based on the
intermediate representation that we call vector of ratios, see
our supplementary for its overview. First, the input (user-
specified) trajectory is re-sampled uniformly to Nfix = 720
points and passed to RatioNet, which for each time step esti-
mates the distance traveled along the trajectory normalized
to the range [0, 1] (e.g. the value of 0.3 means that the ob-
ject traveled 30% of the full trajectory within the given time
step). The NTT from this stage is further sent to the Hand
Motion Synthesis stage to obtain the final hand and object
interaction motions. We next explain 1) the initial uniform
trajectory re-sampling and 2) the intermediate ratio updates.
Uniform Input Trajectory Re-sampling. To abstract away
the variability of the number of points in the user-provided
trajectory of Nuser points, we first interpolate it into a path
Φfix of length Nfix points. Note that Nuser is not fixed and
can vary. We also compute the total path length duser that
is used as one of the inputs to the RatioNet network (elabo-
rated in the next paragraph):

duser =

Nfix−1∑
i=1

∥Φi
fix −Φi+1

fix ∥2, (22)

where Φi
fix denotes the i-th object position in Φfix.

Intermediate Ratio Updates Estimation. From the normal-
ized object path Φfix, a total distance of the path duser, and
mass m, we obtain the information of the object location in
each time step using a learning-based approach. To this end,
we introduce a MLP-based network RatioNet R(·) that esti-
mates the location of the object along the path Φfix encoded
as a ratio starting from the beginning, see our supplemen-
tary for the schematic visualization. Specifically, RatioNet
accepts the residual of Φfix denoted as Φ̄fix, a mass scalar
value and duser and outputs a vector r∈RN that contains
the update of the ratios on the path for each time step:

r = R(Φ̄fix,m, duser). (23)

Next, we obtain the cumulative ratios rcuml from r starting
from the time step 0 to the end of the frame sequence. Fi-
nally, the NTT ΦNTT = [Φ0

NTT, ...,Φ
N
NTT] at time step t is

obtained as:

Φt
NTT = Φid

fix, with id = round(rtcum ·Nfix), (24)
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where id and “·” denote the index of Φfix, and multiplica-
tion, respectively. RatioNet is trained with the following
loss function Lratio:

Lratio=∥r−r̂∥22+∥rvel−r̂vel∥22+∥rac.−r̂acc∥22+Lone, (25)

Lone = ∥(
N∑
i=1

ri)− 1∥22, (26)

where r̂ denotes the GT ratio updates. Note that all terms in
Eq. (25) have the same weights. The subscripts “vel.” and
“acc.” represent the velocity and accelerations of r and r̂,
respectively. Lone encourages RatioNet to estimate the sum
of the ratio updates to be 1.0.

4. Experiments
To the best of our knowledge, there exists no other work
that addresses the hand object manipulation synthesis con-
ditioned on mass. Therefore, we compare our method
mainly with two baseline methods which, similarly to our
method, employ an encoder-decoder architecture, but which
are based on the popular methods VAE [16] and VAEGAN
[39]. Specifically, the VAE baseline uses the same diffu-
sion model architecture as our method, but we add a repa-
rameterization layer [16] and remove the skip connections
between the encoder and the decoder. The VAEGAN base-
line shares the same architecture of the generator, while the
discriminator network consists of three 1D convolution lay-
ers and two fully connected layers at the output of the net-
work, and we use ELU activation in the discriminator [5].
The generator and discriminator networks are conditioned
by the same conditioning vector. In all the following exper-
iments we will refer to our proposed method as Ours and to
the baselines as VAE and VAEGAN. We also compare with
ManipNet [41] qualitatively, while the quantitative compar-
ison is omitted due to the following limitations of Manip-
Net. (1) It requires a sequence of 6D hand and object poses
as inputs, whereas our approach only needs conditioning of
mass value and an optional action label, (2) certain evalua-
tion metrics (e.g., diversity, multimodality) cannot be fairly
computed on ManipNet due to its deterministic nature, and
(3) ManipNet lacks control over the object weight as it
does not support mass conditioning. Therefore, we com-
pare qualitatively with ManipNet by inputting the ground
truth 6D object and hand poses to the method. Please re-
fer to our supplementary material for additional quantitative
experiments (additional ablations, qualitative results, and a
user study).

4.1. Quantitative Results

In this section, we evaluate the motion quality of MACS
from various perspectives. We report a diversity and multi-
modality measurement as suggested by Guo et al. [12] in

Table 1. We also evaluate the physical plausibility by mea-
suring the following metrics:
Non-collision ratio (mcol) measures the ratio of frames
with no hand-object collisions. A higher value indicates
fewer collisions between the hand and the object.
Collision distance (mdist) measures the distance of hand
object penetration averaged over all the samples. A lower
value indicates low magnitude of the collisions.
Non-touching ratio (mtouch) measures the ratio of samples
over all the samples where there is no contact between the
hand and object. A lower value indicates fewer floating ob-
ject artifacts (i.e., spurious absence of contacts).

Note that to report mtouch, we discard throwing motion
action labels, as the assumption is that there should be con-
stant contact between the hands and the object. The hand
vertices whose nearest distances to the object are lower than
a threshold value of 5mm are considered contact vertices.
Similarly, to compute mcol and mdist, the interpenetrations
over 5mm are considered collisions. To compute the met-
rics, we generate 500 samples across 6 different action la-
bels.
Diversity and Multimodality Diversity measures the
motion variance over all the frames within each action
class, whereas multimodality measures the motion variance
across the action classes. High diversity and multimodal-
ity indicate that the generated samples contain diversified
motions. Please refer to Guo et al. [12] for more details.
We report the diversity and multimodality metrics for the
generated hand motions and the object trajectories in Table
1. It is clear that in both cases Ours generates much more
diversified motions when compared to the baselines, which
we attribute to our diffusion model-based architecture. No-
tably, the generated trajectory samples contain more diver-
sified motions compared with the metrics computed on the
GT data.
Physical plausibility We report the physical plausibility
measurements in Table 2. Ours shows the highest per-
formance across all three metrics mcol, mdist and mtouch.
VAE yields mcol and mdist comparable to Ours, however, its
mtouch is substantially higher with 42% error increase com-
pared to Ours. VAEGAN shows mtouch similar to Ours but
it underperforms in terms of the collision-related metrics.
Ablation study Here, we motivate the use of the impor-
tant loss terms of our fitting optimization and training loss
functions. In Table 2, we show the results of the fitting op-
timization without Ltouch and without Lcol.. When omit-
ting the contact term Ltouch, the generated hands are not in
contact with the object in most of the frames. This results
in substantially higher metric mtouch and manifests through
undesirable floating object artifacts. Omitting the collision
term Lcol. leads to frequent interpenetrations, lower mcol
and higher mdist. Therefore, it is essential to employ both
the loss terms to generate sequences with higher physical
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Figure 4. Grasp synthesis with different object masses. Our method can generate sequences influenced by masses close (in black) and far
(in red) from the training dataset. Note that in the case of small masses, hands can support the object with fingertips and release the object
for some time; the hands are generally more mobile. The situation is different for moderate and large masses: A larger area supporting the
object is necessary, and the hands are less mobile.

Hand synthesis Trajectory synthesis

Diversity ↑ Multimodality ↑ Diversity ↑ Multimodality ↑

GT 9.984±0.36 7.255±0.32 10.041±0.28 7.374±0.29

Ours 9.606±0.33 7.07±0.30 11.01±0.37 8.05±0.33

VAE 8.350±0.42 6.0465±0.34 9.584±0.47 7.696±0.43

VAEGAN 7.821±0.27 5.887±0.26 8.428±0.29 6.285±0.30

Table 1. Diversity and multimodality for the hand and trajectory
synthesis compared to the ground truth.

plausibility. For more ablations for the loss terms Lvel.

and Lacc. for the network training, also for ablation on Ra-
tioNet, please refer to our supplementary material.

4.2. Qualitative Results

Hand-Object Interaction Synthesis In our supplemen-
tary video, we show the synthesized hand and object inter-
action sequence conditioned by the action labels and mass
of the object. The synthesized motions show realistic and
dynamic interactions between the hands and the object. Fur-
thermore, thanks to our cascaded diffusion models, the gen-
erated motions show high diversity. The results thus visu-
ally clearly complement the quantitative findings listed in
Table 1. Furthermore, our method shows a more robust and
plausible synthesis that faithfully responds to the condition-
ing mass value compared to ManipNet [41].

Grasp Synthesis We show 5 samples of grasps for dif-
ferent conditioning mass values in Fig. 4. To generate this
visualization, we trained HandDiff without providing the
action labels. In order to synthesize the graphs, we pro-
vide an object trajectory with position and rotations set to
0. Our method shows diverse grasps faithfully reflecting
the conditional mass values. Most notably, the synthesized
hands tend to support the heavy object at its bottom us-
ing the whole palm, whereas the light object tends to be
supported using the fingertips only. Furthermore, the syn-
thesized grasps show reasonable results even with unseen
interpolated (2.5kg) and extrapolated (0.05kg and 10.0kg)
mass values (highlighted in red).

mcol [%] ↑ mdist [mm] ↓ mtouch [%] ↓
Ours 97.84 0.041 1.97

Ours w/o Ltouch 100.0 0.0 63.3
Ours w/o Lcol. 38.41 0.296 1.88

VAE 97.2 0.055 2.80
VAE-GAN 96.03 0.058 2.03

Table 2. Physical plausibility measurement of our full model and
its trimmed versions vs VAE and VAE-GAN.

5. Conclusion

This paper introduces the first approach to synthesize real-
istic 3D object manipulations with two hands faithfully re-
sponding to conditional mass. Our diffusion-model-based
MACS approach produces plausible and diverse object ma-
nipulations, as verified quantitatively and qualitatively.

Since this topic has so far been completely neglected in
the literature, the focus of this paper is to demonstrate the
impact of mass onto manipulation and hence we opted to
use a single shape with uniform static mass distribution.
As such there are several limitations that open up to ex-
citing future work; for example the effect of shape diver-
sity, non-uniform mass distribution (i.e. one side of the ob-
ject is heavier than the other), or dynamic mass distribu-
tion (e.g., a bottle of water). Furthermore, we would like to
highlight that other physical factors, such as friction or indi-
vidual muscle strength, also impact object manipulation and
could be addressed in future works. Lastly, while this work
focused on synthesis with applications for ML data gener-
ation, entertainment and mixed reality experiences, we be-
lieve that weight analysis is another interesting avenue to
explore, i.e. predicting the weight based on observed ma-
nipulation. This could be valuable in supervision scenarios
to identify if an object changed its weight over time.
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Appendices
This supplementary document provides the details of our

dataset acquisition (Sec. A), network architectures (Sec.
B), and implementations (Sec. C). We also provide further
ablations (1) for the loss terms Lvel. and Lacc. for the net-
work training, (2) for the mass conditioning and (3) for abla-
tion on RatioNet and (4) user-study on the synthesized mo-
tions. We also show additional qualitative results for (5) the
objects unseen during the training, (6) visualizations of the
synthesized contacts and (7) the synthesized motions given
a user-provided trajectory (Sec. D).

A. Dataset

Figure 5. Image of our
markered sphere and
recording example.

Since there exists no 3D hand
and object interaction motion
dataset with corresponding ob-
ject mass values of the objects,
we reconstruct such motions us-
ing 8 synchronized Z-CAM E2
cameras of 4K resolution and 50
fps. As target objects, we use
five plastic spheres of the same
radius 0.1[m]. We fill them
with different materials of dif-
ferent densities to prepare the
objects of the same volume and different weights i.e.
0.175, 2.0, 3.6, 3.9, 4.9 kg. Each sphere is filled entirely so
that its center of mass does not shift as the object is moved
around. Five different subjects are asked to perform five
different actions manipulating the object: (1) vertical throw
and catch, (2) passing from one hand to another, (3) lift-
ing up and down, (4) moving the object horizontally, and
(5) drawing a circle. The subjects perform each action us-
ing both their hands while standing in front of the cameras
and wearing colored wristbands (green for the right wrist
and yellow for the left wrist), which are later used to clas-
sify handedness. The recordings from the multi-view setup
were further used to reconstruct the 3D hand and object mo-
tions, totaling 110k frames. The details of the capture and
reconstruction processes are described in the following text.

Hand Motion Reconstruction To reconstruct 3D hand
motions, we first obtain 2D hand key points from all the
camera views using MediaPipe [21]. We then fit GHUM
hand models [37] for both hands on each frame by solv-
ing 2D keypoint reprojection-based optimization with the
known camera intrinsics and extrinsic combining with a col-
lision loss term (Eq.(18)), a pose prior loss (Eq.(19)) in our
main paper and a shape regularizer term that minimizes the
norm of the shape parameter β of the GHUM hand para-
metric model.

User input 
path

Re-sampled 
path 

Total length 
of the path

Cumulative value computation

Mass: Residual 
computation

End

Start

Start

End

. . . . 0.03 0.10 0.2 0.3 0.99 1.0 1.0 1.0. . . . 

0.03 0.07 0.1 0.1 0.02 0.01 00. . . . 

Vector of ratios representation

: Normalized target trajectory

: Uniformly re-sampled  user-specified 
  trajectory

: Update of the ratios on the path for
  each time step

: Cumulative values of 

Notations

Figure 6. Schematic visualization of the user input trajectory pro-
cessing stage.
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Ours Ours w/o Lvel Ours w/o Lacc

acc. dist. ↓ 7.35 26.4 11.2

Table 3. Wasserstein distances between the acceleration distribu-
tions (“acc. dist”) of the generated motions and ground-truth mo-
tions. Combining both Lvel and Lacc shows the highest plausibility
in terms of the accelerations.

0.175 [kg] 2.0 [kg] 3.6 [kg] 3.9 [kg] 4.9 [kg]

ours 0.006 0.010 0.012 0.011 0.011
ours w/o cond. 0.089 0.070 0.081 0.061 0.074

Table 4. Wasserstein distances between the acceleration distribu-
tions (“acc. dist”) of the generated and ground-truth motions.

Object Trajectory Reconstruction We place around 50
ArUco markers of the size 1.67 × 1.67 cm on each sphere
for the tracking optimization (see Fig. 5 for the example
of our tracking object). The marker positions in the image
space are tracked using the OpenCV [2] library. The 3D
object positions on each frame are obtained by solving the
multi-view 2D reprojection-based optimization.

B. Network Architecture
We employ the Unet-based diffusion model networks from
Ho et al. [13] for our TrajDiff and HandDiff. HandDiff uses
four sets of 2D convolutional residual blocks for the encoder
and decoder architecture. TrajDiff is composed of two sets
of residual blocks of 1D convolution layers instead of 2D
convolutions. The number of kernels at its output 1D con-
volutional layer is set to 21 which corresponds to the dimen-
sionality of the object pose. ConNet consists of three-1D
convolutional layers with ELU and a sigmoid activation for
its hidden layers and output layer, respectively. Similarly,
RatioNet is composed of three-layer MLP with ELU and a
sigmoid activation functions in the hidden and output lay-
ers, respectively. Starting from the input layer, the output
layer dimensions are 1024, 512 and 180. See Fig. 6 for the
overview of the user input trajectory processing stage (Sec.
3.3.2 in the main paper) that utilizes RatioNet.

C. Training and Implementation Details
All the networks are implemented in TensorFlow [1] and
trained with 1 GPU Nvidia Tesla V100 until convergence.
The training of HandDiff, TrajDiff, ConNet and RatioNet
takes 5 hours, 3 hours, 2 hours and 2 hours, respectively. We
set the loss term weights of Eq. (10) and (20) to λrec. = 1.0,
λvel. = 5.0 and λacc. = 5.0. λblen. of Eq. (10) and λref
of Eq. (20) are set to 10.0 and 1.0, respectively. For the
fitting optimization defined in Eq. (15), we set λdata = 1.0,
λtouch = 0.7, λcol. = 0.8 and λprior = 0.001. As in Dabral

Ours Interpolation

acc. dist. ↓ 0.379 0.447

Table 5. Wasserstein distances between the acceleration distri-
butions (“acc. dist”) of ground-truth trajectory and the generated
from RatioNet (Ours). We also show the same metric computed
on the interpolated subdivided trajectory with an equal length.

GT Ours VAE VAEGAN

reality score ↑ 7.10±2.09 6.01±2.08 5.10±2.24 4.54±2.39

Table 6. Results of the user study (perceptual motion quality).

et al. [7], λgeo. of Eq. (10) and (20) are set such that larger
penalties are applied with smaller diffusion steps t:

λgeo. =
10

exp 10t
T

, (27)

where T is the maximum diffusion step. We empirically set
the maximum diffusion step T for HandDiff and TrajDiff to
150 and 300, respectively.

D. Further Evaluations
In this section, we show further ablative studies to evaluate
the significance of the components in our method.
Temporal loss terms Lvel. and Lacc.: to report the ablative
study of the loss terms Lvel. and Lacc. for the network train-
ing, we compute the Wasserstein distance between the ac-
celerations of the sampled data and the GT data denoted as
“acc. dist.” in Table 3. Combining the two loss terms Lvel.

and Lacc., our method shows the shortest distance from the
GT acceleration distributions.
Plausibility of the conditioning mass value effect: can
be evaluated by measuring the similarity between the GT
object accelerations and the sampled ones. In Table 4, we
show the “acc. dist.” between the accelerations of the
ground truth object motions and the sampled motions with
and without mass conditioning. With the conditioning mass
value, our network synthesizes the motions with more phys-
ically plausible accelerations on each mass value compared
with the network without mass conditioning.
Effect of RatioNet on the user-provided trajectories: The
goal of RatioNet is to provide plausible dynamics on the
user-provided trajectories given conditioning mass values
e.g. higher object motion speed appears with lighter mass
and the object is moved slower with heavier mass value. For
the ablative study of RatioNet, we report the “acc. dist.”
with and without RatioNet comparing with the accelera-
tion distributions of our GT trajectories. For the component
without RatioNet, we simply apply uniform sampling on the
provided trajectories, denoted as “Interpolation” in Table 5.
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Figure 7. (left) Example visualizations of the contacts synthesized by ConNet, given conditioning mass values of 0.18 kg (top) and 4.9 kg
(bottom). With heavier mass, the contact region spans the entire palm region whereas contacts concentrate around the fingertips for a light
object. (right) Example visualizations of 3D object manipulation given user input trajectories of S curve (top) and infinity curve (bottom).
Thanks to the RatioNet, the object manipulation speed matches our intuition i.e. slower manipulation speed with heavier objects, and vice
versa. See our supplementary video for the sequential visualizations.

Figure 8. Example visualizations of 3D manipulations of the ob-
jects unseen during the training, given conditioning mass value of
0.2kg (top) and 5.0kg (bottom). MACS adapts to unseen shapes
thanks to its mass-conditioned synthesized hand contacts.

Thanks to our RatioNet, the object acceleration shows much
more plausible values than without the network, faithfully
responding to the conditioning mass values. The qualitative
results of RatioNet can be seen in our supplementary video.

User Study The realism of 3D motions can be perceived
differently depending on individuals. To quantitatively
measure the plausibility of the synthesized motions, we per-
form an online user study. We prepared 26 questions with
videos and gathered 42 participants in total. The videos for
the study were randomly selected from the sampled results
of VAE and VAEGAN baselines, MACS and the GT mo-
tions. In the first section, the subjects were asked to select
the naturalness of the motions on a scale of 1 to 10 reality
score (1 for completely unnatural and 10 for very natural).
Table 6 shows the mean scores. MACS clearly outperforms
other benchmarks in this perceptual user study, thanks to
our diffusion-based networks that synthesize 3D manipu-
lations with high-frequency details. In the additional sec-
tion, we further evaluated our method regarding how faith-
fully the synthesized motions are affected by the conditional
mass value. We show two videos of motions at once where
the network is conditioned by mass values of 1.0 and 5.0,
respectively. The participants were instructed to determine
which sequence appeared to depict the manipulation of a
heavier object. On average, the participants selected the
correct answer with 92.8% accuracy, which suggests that
MACS plausibly reflects the conditioning mass value in its
motion.

Qualitative Results In Fig. 7 - (left), we provide visual
examples of synthesized contacts with different mass val-
ues (0.18kg and 4.9kg). The synthesized contacts are dis-
tributed across the palm region when a heavier mass is
given, whereas they concentrate around the fingertips with
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a lighter mass, which follows our intuition. Addition-
ally, Fig. 7 - (right) displays example synthesis results with
user-provided input trajectories (S-curve and infinity curve).
Thanks to the RatioNet, the object speed reflects the condi-
tioning mass value, i.e. faster speed for lighter mass and
vice versa. See our supplementary video for its sequential
visualizations.

Unseen Objects In Fig. 8, we show the synthesized mo-
tions for objects that were not seen during the training,
specifically a cone, the Stanford bunny and a cube. Thanks
to the synthesized hand contact labels conditioned by a mass
value, MACS shows modest adaptations to different shapes
while still correctly reflecting the provided mass values.

14


	. Introduction
	. Related Work
	. Grasp Synthesis
	. Object Manipulation
	. Diffusion Model based Synthesis

	. Method
	. Assumptions, Modelling and Preliminaries
	. Hand 3D Motion Synthesis
	. Object Trajectory Generation
	Object Trajectory Synthesis
	User-Provided Object Trajectory


	. Experiments
	. Quantitative Results
	. Qualitative Results

	. Conclusion
	. Dataset
	. Network Architecture
	. Training and Implementation Details
	. Further Evaluations

