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Figure 1: Our MoFusion approach synthesises long sequences of human motions in 3D from textual and audio inputs
(e.g., by providing music samples; see the rightmost examples). Our model has significantly improved generalisability
and realism, and generates longer sequences than previous methods (“#N” denotes the number of generated frames for each
demonstrated motion). Moreover, the resulting dance movements match the rhythm of the conditioning music, even if the
latter is outside the training distribution. See the supplementary video for dynamic visualisations.

Abstract

Conventional methods for human motion synthesis are
either deterministic or struggle with the trade-off between
motion diversity and motion quality. In response to these
limitations, we introduce MoFusion, i.e., a new denoising-
diffusion-based framework for high-quality conditional hu-
man motion synthesis that can generate long, tempo-
rally plausible, and semantically accurate motions based
on a range of conditioning contexts (such as music and
text). We also present ways to introduce well-known kine-
matic losses for motion plausibility within the motion dif-
fusion framework through our scheduled weighting strat-
egy. The learned latent space can be used for several in-
teractive motion editing applications—like inbetweening,
seed conditioning, and text-based editing—thus, provid-
ing crucial abilities for virtual character animation and
robotics. Through comprehensive quantitative evaluations
and a perceptual user study, we demonstrate the effective-

ness of MoFusion compared to the state of the art on es-
tablished benchmarks in the literature. We urge the reader
to watch our supplementary video and visit https://
vcai.mpi-inf.mpg.de/projects/MoFusion .

1. Introduction

3D human motion synthesis is an important generative
computer vision problem that often arises in robotics, vir-
tual character animation and video games and movie pro-
duction (e.g., for crowd dynamics simulation). It saw im-
pressive progress over the last years; several works recently
tackled it with reinforcement learning [40, 59, 63], deep
generative models [2, 49, 42, 41] or using deterministic ap-
proaches [28, 12, 34]. Despite the progress, multiple open
challenges remain, such as improving motion variability,
enabling higher motion realism and enhancing synthesis fi-
delity under user-specified conditioning. Under condition-
ing, we understand influencing the model outputs according
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to a control signal (e.g., “walking counter-clockwise”).
The key goal of conditional human motion synthesis is

to generate motions that semantically agree with the con-
ditioning while exhibiting diversity for the same condition-
ing signal. To facilitate the same, the recent state-of-the-
art approaches have widely adopted generative techniques
like conditional variational auto-encoders (CVAE) [17, 42,
41, 31], normalizing flows [2, 3], as well as GANs [29, 19].
Naturally, each of them has strengths and limitations. GAN-
based synthesis methods suffer from mode-collapse, thus
resulting in insufficient fidelity of synthesis, especially for
less common input conditioning. On the other hand, meth-
ods using CVAEs and normalizing flows typically have to
deal with the trade-off between synthesis quality and the
richness of the latent space (i.e., diversity) [3, 49].

The seminal works of Sohl-Dickstein et al. [20] and
Ho et al. [21] recently demonstrated the ability of Denois-
ing Diffusion Models (DDM) to learn the underlying data
distribution while also allowing for diverse sampling. Re-
cent works [48, 51, 36] exhibited remarkable capabilities in
the conditional synthesis of images and audio with high-
frequency details while also allowing interactive applica-
tions like editing and inpainting. However, it has remained
unclear how DDM could be trained for such a problem with
the temporal component as human motion synthesis.

Motivated by the recent advances in DDM models, we
propose MoFusion, i.e., a new approach for human mo-
tion synthesis with DDM. This paper shows that DDM are
highly effective for this task; see Fig. 1 for an overview.
Our proposal includes a lightweight 1D U-Net network for
reverse diffusion to reduce the rather long inference times.
Furthermore, we demonstrate how domain-inspired kine-
matic losses can be introduced to diffusion framework dur-
ing training, thanks to our time-varying weight schedule,
which is our primary contribution. The result is a new ver-
satile framework for human motion synthesis that produces
diverse, temporally and kinematically plausible, and seman-
tically accurate results.

We analyse DDM for motion synthesis on two rele-
vant sub-tasks: music-conditioned choreography genera-
tion and text-conditioned motion synthesis. While most
existing choreography generation methods produce repeti-
tive (loopy) motions, and text-to-motion synthesis methods
struggle with left-right disambiguation, directional aware-
ness and kinematic implausibility, we show that MoFusion
barely suffers from these limitations. Finally, DDM also
afford us the ability to perform interactive editing of the
synthesised motion. To that end, we discuss the applica-
tions of a pre-trained MoFusion, like motion inbetweening
and forecasting (both are important applications for virtual
character animation). We show improvements in both the
sub-tasks through quantitative evaluations on AIST++ [28]
and HumanML3D [15] datasets as well as a user study. In

summary, our core technical contributions are as follows:

• The first method for conditional 3D human motion
synthesis using denoising diffusion models. Thanks to
the proposed time-varying weight schedule, the syn-
thesised outputs are temporally plausible and semanti-
cally accurate with the conditioning signal.

• Model conditioning on various signals, i.e., music and
text, which is reflected in our framework’s architec-
ture. For a music-to-choreography generation, our re-
sults generalise well to new music and do not suffer
from degenerate repetitiveness.

2. Related Works
We discuss the relevant literature from two vantage

points, i.e., prior methods for human motion synthesis and
literature on diffusion models.

2.1. Conditional Human Motion Synthesis

Traditionally, the problem of Human Motion Synthesis
has been approached either by statistical modelling [6, 11]
or sequence modelling techniques [10, 34]. Both ap-
proaches employed an initial seed sequence corresponding
to a starting pose or past motion, which helps guide fu-
ture motion prediction. However, synthesising motion se-
quences from scratch proves to be a harder task, where syn-
thesis is guided by a conditioning mechanism.

A common approach in conditioned human motion syn-
thesis is to guide the motion generation by using of class
descriptions corresponding to actions [41, 17]. These ap-
proaches typically employ generative models like condi-
tional VAEs [25] and learn a latent representation for mo-
tion based on action conditioning. Among such methods,
Action2Motion [17] uses a frame-level motion represen-
tation with temporal VAEs, while ACTOR [41] improves
results using a sequence-level motion representation with
transformer-VAEs to synthesise motions based on action in-
put. However, action conditioning does not provide a rich
description of the target motion.
Text-Conditioned Motion Synthesis: The methods dis-
cussed above were followed by text-conditioned motion
synthesis, developed on textually-annotated motion datasets
like KIT [43], BABEL [45] and HumanML3D [15]. Such
methods typically learn a shared latent space upon which
both text and motion signals are projected [64, 12]. Lin et
al. [30] use an LSTM encoder and a GRU decoder to predict
future pose sequences. Ahuja et al. [1] and Ghosh et al. [12]
focus on creating a joint language and pose representation
to synthesise the motions autoregressively. TEMOS [42]
builds upon the ideas by Ghosh et al. [12] and ACTOR [41]
by using a transformer-VAE-based generative model with
conditioning from a pre-trained language model. Finally,
Guo et al. [15] use a temporal VAE to synthesise motions
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by extracting text-based features and then auto-regressively
generating motion sequences.
Dance-Conditioned Motion Synthesis: Besides text, au-
dio has also been applied to guide human motion synthe-
sis. Speech is used to learn gesture animations to mimic
face, hand and body movements while speaking [18, 2].
Similarly, dance music has also been used extensively to
synthesise motions. Various works [58, 50, 24, 13, 62] for
music-conditioned motion synthesis tackle this problem by
predicting motion from audio without seed motion. How-
ever, they converge to a mean pose, as dance typically con-
sists of repetitive poses. Li et al. [27] address this prob-
lem by providing an initial pose and the audio as input to
a transformer-based architecture. DanceNet [72] proposes
an autoregressive generative model, while Dance Revolu-
tion [22] uses a curriculum learning approach and a seq2seq
architecture to synthesise dance motion. AI Choreogra-
pher [28] also approaches this problem by providing seed
motion alongwith music to a cross-modal transformer for
future dance motion prediction. Zhou et al. [70] enhance
dance motions with music-to-dance alignment, and Aristi-
dou et al. [4] enforce a global structure of the dance theme
over the motion synthesis pipeline. The recent Bailando
method [59] achieves impressive results in music-to-dance
generation through a two-stage generation process. Their
method learns to encode dance features into a codebook us-
ing a VQ-VAE [67] and then employs GPT [47] to predict
a future pose code sequence given input music and starting
seed pose. Finally, the pose code sequence is converted into
a dance sequence via the learned codebook and CNN de-
coder. Unlike Bailando [59], our motion generation does
not require multiple stages during inference.

Most of the existing methods depend on seed motion
as input and usually produce repetitive dance choreogra-
phy, and we differ from previous music-conditioned chore-
ography generation methods by producing non-repetitive
choreographies while also not requiring any seed motion
sequence. Moreover, earlier methods [27, 59, 28] use hand-
crafted music features (such as beats, chroma and onset
strength) along with MFCC representation of audio signals
for predicting music-aligned dance sequences. In contrast,
our method learns to predict dance sequences on raw Mel
spectrograms without auxiliary features like beats.

2.2. Diffusion Models

Diffusion models [60] have shown great promise in
terms of generative modelling by showing outstanding re-
sults in synthesis applications ranging from image genera-
tion [48, 53, 21, 51], speech synthesis [26, 44], to point-
cloud generation [32]. Introduced in the seminal work of
Sohl-Dickstein et al. [60], they comprise of gradually dif-
fusing Gaussian noise into a training sample and training a
neural network to reverse-diffuse the noise. Ho et al. [20]

M(t)M(t – 1) M(T)M(0)
Forward Diffusion

Reverse Diffusion

Figure 2: An illustration of our diffusion for 3D hu-
man motion synthesis. During forward diffusion, we itera-
tively add Gaussian noise q(M(t)|M(t−1)) = N (M(t)|(1−
βt)M

(t−1), βtI) to initial motion at t = 0. A neural net-
work fθ(·, ·) is trained to denoise the noisy motion M(t) at
time t based on the conditioning signal c.

apply the same modelling technique in DDPM to achieve
high-quality image synthesis, and Song et al. [61] improve
the efficiency of the generative process by introducing faster
sampling in the reverse process.

These models have been applied for various computer
vision tasks like text-to-image generation. Paradigms like
classifier guidance [9] and classifier-free guidance [21] for
the diffusion process have been introduced to improve im-
age synthesis quality. CLIP-based guidance strategies are
also used by GLIDE [36]. Ramesh et al. [48] also utilise
text-image embeddings by CLIP and a diffusion decoder
to achieve high-quality image synthesis. Other than text-
to-image generation tasks, diffusion models have also been
popular in other vision applications [7]. Besides image gen-
eration, diffusion models have also been applied to synthe-
sise audio. Grad-TTS [44] and DiffWave [26] apply the dif-
fusion paradigm to text-to-speech synthesis. Work by Luo
et al. [32] also uses diffusion models for 3D point cloud
generation tasks.

We note the presence of two concurrent works on arXiv
that are similar to our approach [65, 69]. However, all three
methods differ in their network design and loss functions.
While Tevet et al. [65] and Zhang et al. [69] use a trans-
former network, we instead choose a 1D U-Net with cross-
modal transformers to learn the denoising function. We also
train our network differently using a time-varying weight-
ing schedule on the kinematic losses. Finally, both con-
current works use diffusion models to synthesise motions
conditioned on text and action. On the other hand, we focus
not only on text-driven motion synthesis but also on dance
choreography generation using raw music.

3. Method
Given a conditioning signal, c ∈ Rk×d, our goal is to

synthesize human motion M(0) = {m1,m2, . . . ,mN}.
The pose at each timestep i is parameterised as mi ∈ R3J ,
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Figure 3: Illustration of the 1D U-Net architecture with cross-modal transformer blocks with multi-head attention
(bottom right). The network’s input is a noisy motion sample at timestep t, and the output is an estimate of the noise ϵ.
Additionally, it can be conditioned on either music or text prompts. In both cases, we learn a projection function to map the
conditioning features to 1D U-Net features.

which includes the root-relative 3D coordinates of each of
the J joints and the camera-relative translation of the root
joint. This representation is flexible and one could, if de-
sired, train for joint angles instead (see supplementary ma-
terials). The conditioning signal c, could either be an audio
clip or a text prompt. It is represented as a d-dimensional
embedding of k Mel spectrogram features (for audio) or
word tokens (for text).

In the following, we first discuss the basics of denoising
diffusion models (Sec. 3.1). Next, we discuss how our kine-
matic losses can be incorporated within the diffusion frame-
work (Sec. 3.2). Finally, the neural architecture design and
the modifications required for task-specific conditioning are
introduced (Sec. 3.3).

3.1. Diffusion for Motion Synthesis

The motion generation task is formulated as a reverse
diffusion process that requires sampling a random noise
vector, z ∈ RN×3J , from a noise distribution to generate
a meaningful motion sequence (see Fig. 2). While train-
ing, the forward diffusion process requires successively cor-
rupting motion sequence M(0) by adding Gaussian noise to
a motion sequence for T timesteps in a Markovian fash-
ion. This results in the conversion of a meaningful motion
sequence M(0) in the training set into a noise distribution
M(T ):

q
(
M(1:T )|M(0)

)
=

t=T∏
t=1

q
(
M(t)|M(t−1)

)
, (1)

where q(M(t)|M(t−1)) = N (M(t)|(1 − βt)M
(t−1), βtI)

is the Markov diffusion kernel that adds Gaussian noise to
the motion at time step t, and βt is a hyperparameter that

controls the rate of diffusion. In practice, there exists a re-
parameterisation trick that allows closed-form sampling at
any timestep t:

M(t) =
√
ᾱt M

(0) +
√
1− ᾱt ϵ, (2)

wherein ϵ is the random noise matrix and ᾱt =
∏t

s=0(1 −
βs). With sufficiently large T , one can assume M(T ) ≈ z.

To generate a motion sequence from a random noise
matrix z, we need to iteratively reverse-diffuse z for T
timesteps. The reverse-diffusion is formulated as [60]:

p
(
M(0:T )

)
= p

(
M(T )

) T∏
t=1

p
(
M(t−1)|M(t)

)
. (3)

The reverse transition probability p(M(t−1)|M(t)) is ap-
proximated using a neural network that learns the function
fθ(M

(t−1)|M(t), t). While several variations of fθ(·, ·) ex-
ist, we follow [21] and train the network to predict the orig-
inal noise ϵ. For the conditional synthesis setting, the net-
work is additionally subjected to the conditioning signal c
as fθ(M(t−1)|M(t), t, c).

3.2. Training Objectives

We now discuss how kinematic loss terms inspired by
domain knowledge can be introduced within the diffusion
framework. The overall loss for training MoFusion is a
weighted sum of two broad loss types:

Lt = Lda + λ
(t)
k Lk. (4)

The primary data term, Lda, is the commonly-used L2 dis-
tance between the noise ϵ used for forward diffusion (2) and
the estimated fθ(M

(t), t, c).
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While Lda is strong enough to approximate the underly-
ing data distribution, the synthesised motions are not guar-
anteed to be physically and anatomically plausible. Con-
sequently, it allows for artefacts like motion jitter, illegal
skeletons and foot-sliding. Fortunately, human motion cap-
ture literature consists of several kinematic and physical
constraints that can be used to regularize the synthesised
motion [71, 8, 49, 57]. These kinematic loss functions are
well established in the motion synthesis literature and have
been consistently used to avoid synthesis artefacts. How-
ever, since the denoising network is trained to estimate
the noise ϵ, it is not straightforward to apply such con-
straints. One workaround is to apply the losses to the final
reverse-diffused motion, which can be estimated using the
re-parameterisation trick:

M̂(0) =
1√
ᾱt

M(t) −
(√

1

ᾱ
− 1

)
fθ
(
M(t), t, c

)
. (5)

However, naı̈vely using M̂(0) to approximate the reverse-
diffusion outputs leads to unstable training because the gen-
erated motion is extremely noisy when t is close to T .

Therefore, we introduce a time-varying weight sched-
ule for Lk by varying the schedule as per λ

(t)
k = ᾱt.

This ensures that the motions at t≈T receive an expo-
nentially lower weight compared to t≈0. Within Lk =
Ls + λaLa + λmLm, we include three loss terms: First,
we use the skeleton-consistency loss, Ls, that ensures that
the bone lengths in the synthesised motion remain consis-
tent across time. To achieve this, we minimize the temporal
variance of the bone lengths, ln:

Ls =

∑
n(ln − l̄)2

n− 1
, (6)

where l̄ is the vector of mean bone lengths. Secondly, we
have an anatomical constraint, La, that penalizes left/right
asymmetry of the bone lengths. When using joint angle rep-
resentation instead of joint positions, it is possible to use
joint-angle limit regularisations as in [23] instead of bone
length constraints. Finally, we again add ground-truth su-
pervision on motion synthesis, this time with:

Lm =
∥∥∥M̂(0) −M(0)

∥∥∥
2
. (7)

It is worth noting that these kinematic loss terms are not
exhaustive and there exist several other loss terms that can
attend to different aspects of motion synthesis. For exam-
ple, it is possible to add the foot-sliding loss of [55], or
physics-based constraints of [57, 56, 49]. Through our for-
mulation, we demonstrate how such losses can be incorpo-
rated within the diffusion framework.

3.3. The MoFusion Architecture

Drawing inspiration from successful 1D-Convnet archi-
tectures for motion synthesis [39] and pose estimation [38],
we use a 1D U-Net [52] to approximate fθ(., .). This is also
consistent with several state-of-the-art diffusion-based im-
age generation methods [48, 51, 53] that use a U-Net archi-
tecture for the denoising network. The fully-convolutional
nature of the network allows us to train the network with
motions of various lengths. Fig. 3 illustrates the schema
of the network. The network consists of three downsam-
pling blocks that first successively reduce the feature length,
n, from N to ⌊N/8⌋ before being upsampled using cor-
responding upsampling blocks. Each 1D residual block
is followed by a cross-modal transformer that incorporates
the conditioning context, c, into the network. The time-
embedding is generated by passing the sinusoidal time em-
bedding through a two-layer MLP. For incorporating the
context, we treat the intermediate residual motion features,
x ∈ Rn×d, to get the query vector while using the condi-
tioning signal, c ∈ Rm×d, to compute the key and value
vectors. Specifically, we first estimate

Q = Wqx, K = Wkc, and V = Wvc, (8)

where Wq,Wk, and Wv are the Query, Key and Value ma-
trices, respectively. As in standard cross-attention [68], the
relevance scores are first computed with the softmax, and
then used to weigh the values V:

Attention(Q,K,V) = softmax

(
QK

′

√
d

)
V. (9)

In the case of unconditional generation, the formulation
switches to self-attention by also getting the query vector
Q from x. We now discuss the task-dependent processing
of the conditioning input.

Music-to-Dance Synthesis: For conditioning the network
to music signals, we choose to represent them using the
Mel spectrogram representation [44, 54]. This is unlike sev-
eral existing music-to-dance synthesis methods [28, 59] that
use MFCC features along with music-specific features like
beats or tempograms. Thus, we leave it up to the context-
embedding layer to learn an appropriate projection to the
feature space of U-Net. In theory, this also allows our
method to be trained on other audio (not necessarily mu-
sic) conditioning such as speech.

To extract the Mel spectrograms, we re-sample audio
signals to 16kHz and convert them to log-Mel spectrograms
with k=80 Mel bands by using hop-length of 512 and
the minimum and maximum frequencies of 0 and 8 kHz,
respectively. As a result, we obtain a conditioning signal
c ∈ R(m×k), where m=32 for one second of the audio
signal. We use a linear layer to project the input Mel
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spectrogram onto the context embedding c.

Text-to-Motion Synthesis: Text-conditioned Diffusion
Models [48, 51] have recently shown incredible generation
capabilities. For synthesizing motion from textual descrip-
tions, we use the pre-trained CLIP [46] token embeddings.
We first retrieve the tokenised embedding for each word
in the input prompt. Next, these token embeddings are
position-encoded and subjected to CLIP’s transformer. Fi-
nally, we project the token embeddings using an MLP that
maps the transformer embedding onto c.

4. Experiments
We next evaluate the proposed MoFusion framework

in two scenarios, i.e., conditioned by audio and text.
We first discuss music-to-choreography generation details
(Sec. 4.1), followed by text-conditioned motion generation
(Sec. 4.2) and, finally, show applications like seed-motion
forecasting, editing and inbetweening in Sec. 4.4.

4.1. Music-to-Dance Synthesis

Datasets: We train MoFusion for music-conditioned dance
synthesis on the AIST++ Dataset [28]. The dataset contains
1408 unique dance motion sequences with lengths ranging
from 7.4 to 48.0 seconds. There are ten different dance
motion genres with multiple dance choreographies for each
genre, which provides a rich diversity in terms of types of
dance motions. The data has been annotated using multi-
view capture and we use the provided 3D motion sequences
as the target motion and their corresponding music as our
conditioning input. More importantly, we use the dataset
split based on music choreography, which ensures that the
validation/test set contains unheard music and, correspond-
ingly, choreography vis-à-vis the training set.
Evaluation Metrics: We perform the quantitative evalua-
tion for music-conditioned synthesis by using Frechet In-
ception Distance (FID) score, Diversity (Div), Beat Align-
ment Score (BAS) and Multi-Modality. The FID score is
evaluated following the method used in Siyao et al. [59].
We measure and compare FID using a kinetic feature ex-
tractor [37], which includes hand-crafted features regard-
ing velocity and acceleration in its feature representation.
We use implementation by the fairmotion toolbox [14]
to measure FID. To measure the diversity of generated mo-
tions, the diversity metric (Div) computes the average pair-
wise Euclidean distance of the kinetic features of the mo-
tions synthesised from audios in the test set. We also mea-
sure Beat Alignment Score (BAS) [28], which expresses the
similarity between the kinematic and music beats. Here,
kinematic beats refer to the local minima of the kinetic ve-
locity of a motion sequence showing beats as the “stopping
points” during the motion. Moreover, music beats in the
audio signal are extracted using Librosa toolbox [35]. The

Quality Diversity
Method BAS ↑ FID ↓ Div ↑ M.-Modality ↑
Ground Truth 0.237 17.10 8.19 n/a
Li et al. [27] 0.160 86.43 6.85 n/a
DanceNet [72] 0.143 69.13 2.86 n/a
Dance Revolution [22] 0.195 73.42 3.52 n/a
AI Choreographer [28] 0.221 35.35 5.94 n/a
Bailando [59]† 0.233 28.16 7.83 n/a
MoFusion (Ours) 0.253 50.31 9.09 11.38

Table 1: Comparison of our method with the previous
methods. We achieve state-of-the-art performance on beat
alignment score as well as Diversity. “†”: Unlike Bai-
lando [59], we do not explicitly train our method using BAS
as a reward or a loss function.

score is defined as the mean distance between every kine-
matic beat and its nearest music beat:

BAS =
1

|Bm|
∑

bm∈Bm

exp

(
−

min∀bd∈Bd ∥ bd − bm ∥2

2σ2

)
,

(10)
where bd represents a kinematic beat with Bd being a set
of all kinematic beats and bm represents a music beat with
Bm being a set of all music beats. We follow [59, 28] and
keep σ = 3 in our experiments. Finally, we also measure
Multi-Modality for our approach by calculating the average
Euclidean distance between the kinetic features of K=50
generated motion sequences for the same music input. This
expresses the multi-modality of the dance generation.
Quantitative Results: The quantitative results are sum-
marised in Table 1. Our method improves upon the Di-
versity scores of the state of the art and achieves a multi-
modality score of 11.38. These results confirm the variabil-
ity claims of DDM for motion synthesis. In contrast, state-
of-the-art methods like Bailando and AI Choreographer are
deterministic and produce similar outputs given the same
input music. Therefore, measuring multi-modality is not
applicable to them. In addition, we observe a better beat
alignment score than Bailando [59] and the ground truth,
showing that MoFusion learns better motion alignment with
beats. It is also worth noting that Bailando explicitly uses
BAS in its reward formulation, whereas we do not. Fi-
nally, we observe subpar performance on FID compared
to [59, 28]. Upon visual inspection, we notice that both
Bailando and AI-Choreographer produce repetitive, loopy
dance motions which are very similar to the ground truth
(and the training set). On the other hand, our diffusion-
based model seldom produces repetitive or loopy motions
and, therefore, differs significantly from the hand-crafted
kinetic-feature profile used to compute the FID.
Analysis: Fig. 4 depicts the cross-modal attention weights
of the audio signal against the generated motion. Inter-
estingly, we observe that the transformer learns to asso-
ciate high attention with the occurrence of beats in the mu-
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Figure 4: Visualisation of cross-modal attention weights at
different levels of the U-Net. Notice the alignment of the
attention weights to the specific beats in the audio. Also,
while the shallower levels (top) have scattered attention, the
attention heads at the bottleneck layer (bottom) degenerate
to specific audio sections corresponding to the music beats.

sic. Here, the beats are not provided as input features,
and beat alignment is automatically learnt from the Mel
spectrogram by the network. This is in contrast to meth-
ods that either explicitly use music-specific hand-crafted
features [28] or train the network with a beat alignment
loss [59]. Upon qualitative inspection, we also notice that,
unlike other methods, our synthesised choreography rarely
repeats (see supplementary video). MoFusion manages to
avoid this phenomenon since we do not require a seed mo-
tion input that can bias the network towards loopy motion.

4.2. Text-to-Motion Synthesis

Datasets: For the sub-task of text-to-motion synthesis, we
train our method on HumanML3D [15] dataset. It consists
of ≈28k text-annotated motion sequences from AMASS
dataset [33]. Each sequence in the dataset is on average
7.1s long and has been annotated 3-4 times, thus providing
a rich corpus of textual annotation for motion data. We also
use the BABEL dataset [45] for qualitative evaluation that
contains shorter phrase-level motion annotations.
Evaluation Metrics: Similar to dance synthesis, we eval-
uate the synthesised motions using the conventionally used
evaluation metrics on HumanML3D dataset: Average Pair-
wise Euclidean Distance (Diversity) and Multi-Modality.
The multi-modality metric evaluates the per-prompt diver-
sity claims of the method by sampling the method N times
for the same text input and computing the average pairwise
Euclidean distance of the synthesised motions; a higher Eu-
clidean distance signifies higher variations. Similarly, di-
versity metric computes the average pairwise Euclidean dis-
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Figure 5: The results of the user study are based on metrics
of Realism and Semantics. As explained by Sec. 4.3, real-
ism measures how realistic is the motion shown as a prompt
and semantics measures how well a motion corresponds to
music/text. Each bar indicates the user preference for mo-
tion generated by MoFusion compared to another motion.

tance between random pairs in the dataset, irrespective of
the input prompt. Finally, the R-Precision score measures
the classification accuracy of the synthesised motions on a
pre-trained classifier [15]. However, our network represents
motion using joint positions, whereas the classifier network
requires an over-parameterised representation of motion in-
volving joint positions, 6D joint angles, local velocities and
root translation. To make our method compatible for eval-
uation, we derive the remaining inputs based on the joint
positions using inverse kinematics on the estimated joints.
See Fig. 1 for visualisations of music-to-dance and text-to-
motion synthesis results.
Quantitative Results: Table 2 illustrates the performance
of our method on the HumanML3D dataset. Similar to
the case of Music-to-Dance synthesis, our method achieves
state-of-the-art results in terms of synthesis variety. This is
exhibited by our performance on the multi-modality metric
(2.52 vs 2.09). Further, our diversity score of 8.82 is simi-
lar to ground-truth 9.5 and second only to Guo et al.’s [15]
9.18. Our performance, however, suffers on the R-Precision
metric in which we observe a score of 0.492 compared to
0.74 of the state of the art. We now discuss the perceptual
evaluation of our results through a user study.

4.3. User Study

It is worth noting that all the evaluation metrics discussed
above are imperfect performance indicators. Thus, Diver-
sity and Multi-modality can be fooled by an untrained net-
work that produces random, but meaningless, motion ev-
ery time it is sampled. Likewise, the FID metric used in
AI Choreographer [28] uses hand-crafted features and in-
correctly rewards overfitting. We, therefore, conduct a user
study wherein we invite participants to perceptually evalu-
ate the quality of our synthesis. To that end, we randomly
sample audio (or text) queries from the test set and present
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A person walks forward, then bends down. A person is punching in the air

Figure 6: Examples of diverse motion generation for a given text prompt. Notice the variations in terms of the direction
of movement as well as the difference in stances. More results, especially for choreography synthesis, can be found in the
supplementary video.

Methods Diversity → Multi-Modality↑ R-Precision ↑
Real Motions 9.503 n/a 0.797
Language2Pose [1] 7.676 n/a 0.486
Text2Gesture [5] 6.409 n/a 0.345
MoCoGAN [66] 0.462 0.019 0.106
Dance2Music [27] 0.725 0.043 0.097
Guo et al. [15] 9.188 2.090 0.740
MoFusion (Ours) 8.82 2.521 0.492

Table 2: Comparison of our method with the previous state
of the art on HumanML3D.

each participant with two options to choose from. One of
the two options shows our synthesis, and the other option
can come from either the ground truth or from other state-
of-the-art methods; Bailando [59] for audio and T2M [15],
MotionDiffuse [69] for text. After having seen the two mo-
tions, the users are asked to answer the following two ques-
tions: “Which motion best justifies the music/text prompt?”
and “Which motion looks more realistic?”. This way, we
evaluate the methods on their Semantic accuracy as well as
Realism. Fig. 5 informs the results of the user study. We
achieve better semantic accuracy than T2M and MotionDif-
fuse. It is interesting to note that our synthesis was consid-
ered more realistic than the ground-truth choreography on
51.4% of occasions. We also do well on semantics (52.3%),
primarily because the ground-truth choreography consists
of several basic motions in which not much dancing takes
place. More comparisons can be found in our video.

4.4. Interactive Motion Editing

Seed-Conditioned Motion Synthesis: In this setting, the
goal is to forecast future motion frames based on a user-
provided seed sequence of a few frames. For our analysis,
we consider a seed sequence of S = 40 frames (2s) and
synthesise the future N = 160 frames. To achieve this, we
first construct noise vectors by forward-diffusing the seed
frames to produce P (t) ∈ R(S+N)×3J for each time step
t wherein the remaining N frames are populated with ran-
dom noise. Then, at each denoising step, we use a mask δ

to ensure that the seed frames are not denoised. Thus, the
resulting motion looks at a snapshot of the diffused seed
sequence at every denoising step and generates a faithful
motion corresponding to this snapshot.
Motion Inbetweening: In a manner similar to seed-
conditioned synthesis, we perform motion inbetweening
by fixing a set of keyframes in the motion sequence and
reverse-diffusing the remaining frames. This application is
of significant utility for virtual character animation as it pro-
vides an easy way to in-fill the keyframes.

5. Discussion and Conclusion

Discussion: Through our analysis, we highlighted the abil-
ity of Denoising-Diffusion Models for conditional motion
synthesis. A less-discussed aspect of MoFusion is its ability
to avoid convergence to mean pose, especially since the mo-
tion is synthesised in a non-autoregressive manner. Thanks
to a large latent space, it also avoids motion flicker artefacts
that quantised codebook-based methods [16] are prone to.
Finally, two aspects of our model that could be improved
in future are 1) the inference time and 2) comparably re-
stricted vocabulary for textual conditioning. At the same
time, we foresee that MoFusion will benefit in future from
fundamental advances in diffusion models and more richly
annotated datasets.
Concluding Remarks: All in all, we introduced the first
approach for 3D human motion synthesis based on denois-
ing diffusion models. The proposed MoFusion method
accepts audio or textual conditioning signals and pro-
duces temporally-coherent human motion sequences that
are longer, more diverse and more expressive compared to
the outputs of previous approaches. Our claims are sup-
ported by thorough experiments and a user study. More-
over, MoFusion has direct applications in computer graph-
ics, such as virtual character animation and crowd simula-
tion. We interpret the obtained results as an encouraging
step forward in cross-modal generative synthesis in com-
puter vision.
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