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Experimental Evaluation
1. Solving Real Problems on D-Wave Advantage 1.1 | Wecan match the state-of-

Introduction Our Approach: QuantumSync

Our Problem: Permutation Synchronization

Matching not just two, but n different sets of objects to each other, jointly [1]. In other words, a
multi-way matching. In the scenario where correspondences are bijective, the problem converts to
ensuring cycle consistency in the graph of permutations [2]:

the-art methods in small
problems (n=4, m=4).
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(a) Effect of Constraints on Energy (b) Accuracy vs. Noise
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and the extent that For different number of points n and number of views m:

qubits can be scaled. (@) number of qubits required,
(b) maximum chain length required on Advantage 1.1,

(c) average number of measured optimal solutions.

Hence, for all variables
we would like to solve for

>15 minutes
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Contributions 3. Incorporating Linear Constraints into QUBO
Proposition 2. The constrained problem can be formulated into an unconstrained 1 Our forward-looking experiments demonstrate that quantum hardware has reached the level that
(a) Formulating a QUBO for permutation synchronization QUBO: — . it can be applied to real-world problems.
with permutation-ness as a linear constraint Q- al"ge 1;311111 x Qx+s x Q=Q +)ATA O We hope to inspire and foster new and exciting research in quantum computer vision.
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