
Supplemental Document:
Generalizing Wave Gestures from Sparse Examples

for Real-time Character Control

Helge Rhodin1, James Tompkin2, Kwang In Kim3, Edilson de Aguiar4,
Hanspeter Pfister2, Hans-Peter Seidel1, Christian Theobalt1

1MPI for Informatics, 2Harvard Paulson SEAS, 3Lancaster University, 4Federal University of Espirito Santo

1 Overview

We detail the system implementation, animation synthesis (Sec. 2),
and experimental setup (Sec. 3). We also report additional user study
findings (Sec. 4) and present pseudo-code of our algorithm to aid
implementation (Sec. 5).

2 Animation synthesis

2.1 Background to parametrized motion graphs

Virtual characters often have their motion defined by an animation
database, as is typical in video games. We organize an animation
database into a parametrized motion graph. Motion graphs structure
animation databases: Nodes in the graph represent decision points,
and edges represent feasible transitions between motions. Rose
et al. [1998] and Heck and Gleicher [2007] extend this structure
where a node represents a motion class (e.g., walking) which is
parametrized by motion properties such as speed or style.

In the main paper, we provide a two-dimensional example slice of
the parametrized motion class of our dog character (frequency and
phase dimensions; Fig. 3 in the main paper). In addition, Figure 1 in
this document shows the emotion-frequency slice of the parameter
space. Together, these form a 3D space for interpolating within.

Given the motion graph, output animations are synthesized by in-
terpolating example motions at points within each parametrized
motion class (node) and between nodes (along an edge). Such
parametrized spaces are traditionally created by manual positioning
of examples [Igarashi et al. 2005], which may require artistic skill
or knowledge of the animation pipeline to produce good results.
Automatic extensions include parametrized transitions [Shin and Oh
2006], dense graphs where possible transitions are stored for each
database frame [Lee et al. 2010], statistical motion models [Min
and Chai 2012], and interpolation and transition for mesh characters
[Casas et al. 2012]. Graph construction has also been automated
[Kovar et al. 2002; Heck and Gleicher 2007]. Animations are com-
monly synthesized according to high-level task constraints such as
motion goals, and foot-plant and end-effector positions [Wiley and
Hahn 1997; Lee et al. 2010; Levine et al. 2012; Lockwood and Singh
2012], though we focus on real-time gestural motion control.

2.2 Time interpolation

The main paper introduces how weights wY for each example ani-
mation Y are inferred and how phase values ϕi for each segment i
are interpolated. The timeline in Figure 2 exemplifies this process
with three quadruped gaits of different foot placement beats. Feet
which are temporally aligned are unchanged; only those feet that
have different beat patterns are treated. This time interpolation pre-
vents strong artifacts in the subsequent mesh interpolation, such as
foot sliding and hanging limbs (Fig. 3).

Quick changes in weights (i.e., in user control) can cause very abrupt

Emotion

Frequency

Happy

Neutral

Sad

Stand Walk Run

Figure 1: Database character animations are structured into pa-
rameterized motion classes, such as this locomotion class for a dog.
In the main paper we visualized the phase-frequency slice through
the parametrized class, here we give the speed-emotion dimension.

Figure 2: Timeline example of the interpolation of three quadruped
gaits with different beats. Footplant timing differences of the four
limbs (red, blue, green, violet) are shown as shifts along the timeline.
Temporal interpolation is executed on the time offsets ϕi to the
reference gait with interpolation weights ωY for gait Y .

changes in phase, even going back in time, e.g., when switching
from a positive to a negative phase offset. To prevent this, we bound
the phase change of individual segments to the global animation
speed by enforcing (1 − 0.05)(ϕt − ϕt−1) < (ϕi,t − ϕi,t−1) <
(1 + 0.05)(ϕt − ϕt−1), where subscript t denotes time and i is the
segment index. This effectively prevents negative phase changes and
bounds the abruptness of changes to the current motion speed, i.e.,
during slow motions only slow changes in relative time differences
are permitted, while quick motions allow for quick adaption.

Figure 3: Mesh interpolation with and without time interpolation
of limb segments. Left: Without time interpolation, the front left
leg shows sliding and hanging limb artifacts, as mesh interpolation
requires roughly-aligned poses. This is violated by the front leg
moving forwards in one animation to interpolate and backwards
in the other in the global time-warp-aligned database animations.
Right: The proposed separate alignment and time interpolation
overcomes this limitation.

2.3 Mesh pose interpolation

In this section, we provide details of the mesh interpolation given
the previously-determined time offsets and interpolation weights
wY . The interpolation of meshes is performed in a deformation
space of per-triangle shear and rotation, with respect to a rest pose
reference frame. A mesh segment A with FA faces is represented by
the set of shear matrices {SA,i ∈ R3×3}i∈FA and rotation vectors
{RA,i ∈ R}i∈FA in axis-angle form.

Assume that two mesh segments A,B are interpolated based on
weights wA, wB . The triangle transformations are linearly inter-
polated by SC,i = wASA,i + wBSB,i and RC,i = wA, RA,i +
wBRB,i. From SC,i and RC,i, a connected mesh is reconstructed
from the differential coordinates of all segments by solving a Pois-
son system [Sumner and Popović 2004]. This established approach
is a non-linear interpolation in vertex coordinates space, which runs
in real-time for meshes of 10k triangles on a standard PC.

The individual mesh segments are masked by painting on the char-
acter’s mesh (Fig. 4). We use masks with smooth boundaries and
blend neighboring segments gradually to prevent seam artifacts. The
interpolation in per-triangle rotation and shear space requires that
rotations do not exceed ±180◦. In our experiments this was only
violated at sparse points on the shoulder of the dog character, and
originates from flipped triangles in the artist created database ani-
mation. For all other characters the example animations are without
flipped triangles and their interpolation shows no seam artifacts.

2.4 Global translation interpolation

Consistency between the global motion of the animated character
and the ground plane is important for realistic animation. To enable
this, we annotate each animation in the database that contains global
motion with the character velocity in the ground plane [u0, · · · ,uT].
We separate the character animation frames [y0, · · · ,yT] from their
global velocities [u0, · · · ,uT] automatically by orthogonal Pro-
crustes analysis [Sorkine 2009], which registers all frames against
each other. During animation synthesis, we interpolate the velocities
uY,ϕ of all animation examples Y by the weights wY as before. The
global position of the character is integrated from the interpolated
velocities: it is the sum of all previous velocities multiplied by the
respective changes in phase ϕ so as to accommodate for the current
control frequency.

Figure 4: From left to right; marked footplant constraint areas,
torso spine region, and segmented limbs for the dog character.

2.5 Foot plant constraints

The perceived realism of the synthesized animation also depends
strongly on character feet not skating or sliding along the ground
unexpectedly. To determine areas of the character that should be on
the ground during the locomotion cycles (i.e., vertices at the bottom
of each foot), these regions are manually marked in the character
mesh. By painting in 3D, this takes about 1 minute per character.
Further, a small area on the torso around the spine of the character
location is marked, see Figure 4. This acts as an opposite constraint
to maintain the character shape during mesh pose interpolation. Once
completed, the interface propagates these vertices throughout each
database sequence such that the ground contact can be annotated
subsequently. This process additionally takes around one minute.
For animations where the feet perfectly touch the ground during
stance, the manual segmentation and annotation can be automated;
however, this is usually not the case and the user must choose the
desired planting behaviour when the feet are half-way down.

In the live phase, a character animation is generated by interpolating
database animations in differential coordinates. This is performed
in two passes: In the first pass, the character mesh is reconstructed
from the interpolated differential coordinates, without any additional
constraints. Then, the second pass adds target locations for the
vertices which are marked in the preprocessing. The activation of
the contact constraints is determined for each foot by the voting
scheme as discussed in Section 7.3 in the main paper. In addition,
we activate the foot constraints if the foot is close to the floor and
has low velocity. This proximity heuristic triggers only in very few
cases and is not reliable enough to replace the voting scheme.

All constraint vertices are positioned as follows. If the vertex con-
straint was activated at the previous frame, the vertex target is set
to the previous location to pin the foot. If the constraint is newly
activated at the current frame, the vertex target is set to the previ-
ous position with the vertical position set to the ground height to
establish contact. The vertices of the feet which are in flight phase,
i.e., are unconstrained, are set to their respective position from the
first pass, unless they exhibit a large velocity due to a constraint
in the previous frames. We clamp the velocity v of each vertex to
0.5vfirst < v < 1.5vfirst, where vfirst is the velocity of the respec-
tive vertex in the unconstrained animation from the first pass. This
bounds the velocity to be similar to the unconstrained animation and
effectively prevents temporal jitter of the legs in situations where
the constrained foot strongly deviates from the unconstrained anima-
tion, e.g., due to rotation when running along an arc. To reduce the
influence of the foot plant enforcement on the body pose, the spine
segment is constrained to the first pass reconstruction at all times.

Each target position (for constrained vertices) is regarded as a hard
constraint. In our implementation, we included this as soft-constraint
into the Poisson solver, but with 10, 000 times higher weight than
other constraints, which effectively renders it as a hard constraint.

Figure 5: Camera Setup: Facial expressions are recorded by a
conventional webcam (1), full body motion by the Microsoft Kinect
(2), hand motion by the Leap Motion sensor (4). The live animation
is displayed on a LCD screen in front of the user (3,5).

3 System setup

Our system is simple to setup as it requires only cheap low-quality
motion capture sensors and is assembled within 5 minutes. In our
experiments, full body motion is captured by the Microsoft Kinect
sensor, hand articulation by the Leap Motion sensor, and facial mo-
tion by a conventional webcam with the Intraface software (Fig. 5).
To control a new character the following steps are necessary:

Character animation. The controllable character motions are
artist created and need to be acquired (we used 4-14 animations
per character). Several commercial services offer game characters
with basic motion cycles for free or low prices. As our system works
on mesh representations any character that can be exported to a
sequence of meshes can be used.

Database construction (takes 30-60 min.). Animations must be
assigned to motion graph nodes, transition edges must be defined,
and additive nodes must be marked (3 min.). Each animation needs
to be annotated by semantic amplitude and frequency parameters
(5 min., including refinement for novice users) and by foot-plant
timings (1-3 min.). The foot-ground contact regions must be marked
(2 min., once per character) and quadrupeds need to be segmented
into torso and limb segments by painting (5 min., once per character).

Control definition (takes 1-15 min). Only a single reference
control motion per motion graph node needs to be performed and
recorded with the motion capture sensor. The recording of all con-
trol motions takes about one minute. Typically, the set of control
motions is slightly refined to establish natural control for a specific
character and to avoid ambiguous motions (15 minutes). In a game
scenario the user could also select existing control motions out of a
dictionary of predefined control motions (1 min).

The configuration of our characters is documented in Table 1 and
database character animations are shown in a separate video.

4 User study tasks

The three game-like user study tasks are shown in Figure 7. In the
following we give the exact task descriptions and explain the applied
metrics. All results are reported in the main paper.

Task 1: Follow the shown path with the dog character without
leaving it.

Quantitative metric 1:

• Number of times the path was left by the controlled character
during completion of the course.

• Duration in seconds until the controlled character returns to
the path after first leaving the path.

Task 2: Control caterpillar through obstacles (stones), start crawl-
ing, move through small gap, switch to walk after first stone gate,
lift head fully after second stone gate, reduce head lift to half the
height, and finally jump three times in a row.

Quantitative metrics 2:

• Number of trials until successful transition.

• Number of unintentional activated motions.

• Number of missed gates.

• Success of lifting head completely, then to half height.

• Difference from 3 jumps.

Task 3: Follow the leading horse, try to mimic its gait rhythm/beat
and stride length as close as possible.

Quantitative metrics 3:

• Absolute difference between reference amplitude and user
controlled amplitude
(The reference was created by performance as well.)

• Absolute difference between reference gait frequency and user
controlled frequency.

4.1 All results

In the main paper, we reported only the most relevant results of the
user study. Figure 6 lists the complete results.

5 Pseudocode of the main components

To aid reproduction of the presented method, we provide pseudocode
for the core components in Algorithms 1–5 in the following pages.
We use the notation introduced in the main paper.

T
as

k
1:

 T
im

es
 C

ha
ra

ct
er

 O
ff

 P
at

h

#off-pathoccurrences

O
ur

 m
et

ho
d

G
am

ep
ad

012

T
as

k
2:

 C
at

er
pi

lla
r

O
bs

ta
cl

e
A

vo
id

an
ce

 a
nd

 A
ct

io
n

T
im

in
g

Occurrences

0.
00

0

0.
00

5

0.
01

0

0.
01

5

T
as

k
3:

 F
re

qu
en

cy
 M

at
ch

Frequencydifference(average)

0.
0

0.
1

0.
2

0.
3

0.
4

T
as

k
3:

 A
m

pl
itu

de
 M

at
ch

Amplitudedifference(average)

U
ns

uc
ce

sf
ul

 tr
an

si
tio

ns
M

is
ac

tiv
at

io
ns

M
is

se
d

ga
te

s
Im

pr
ec

is
e

he
ad

 c
on

tr
ol

ju

m
p

er
ro

rs

012

P
 v

al
ue

 =

0.
34

34
0.

19
34

0.
34

34
0.

01
87

0.
59

11
0.

05
18

0.
03

95
0.

02
39

05101520

N
A

SA
ET

as
kE

L
oa

dE
In

de
x

TLXScale

M
en

ta
lEd

em
an

d
P

hy
si

ca
lEd

em
an

d
T

im
eE

de
m

an
d

P
er

fo
rm

an
ce

E
ff

or
t

F
ru

st
ra

ti
on

In
tu

it
iv

e
co

nt
ro

l
A

cc
ur

at
e

co
nt

ro
l

In
tu

it
iv

eE
st

ri
de

Ele
ng

th
In

tu
it

iv
eE

st
ep

fr
eq

ue
nc

y
A

cc
ur

at
e

st
ri

de
Ele

ng
th

A
cc

ur
at

eE
st

ep
fr

eq
ue

nc
y

S
te

pE
fr

eq
9

de
la

y
S

tr
id

eE
le

ng
th

de
la

y
T

ra
ns

it
io

n
de

la
y

P
re

fe
re

nc
e

P
re

fe
re

nc
e

fo
rE

ga
m

es
P

re
fe

re
nc

e
fo

rE
an

im
at

io
n

05101520

Sp
ec

if
ic

EQ
ue

st
io

nn
ai

re

Scale

P
Ev

al
ue

E=
E

09
00

01
09

24
00

E
09

84
56

09
02

39
09

88
87

09
10

06
09

11
26

09
71

51
09

00
05

09
00

24
09

02
57

09
28

48
09

00
82

09
02

69
09

16
79

09
48

38
09

54
68

09
01

13

Fi
gu

re
6:

B
ox

an
d

w
hi

sk
er

pl
ot

s
fo

r
ou

r
ta

sk
an

d
qu

es
tio

nn
ai

re
ev

al
ua

tio
n

of
ou

r
ap

pr
oa

ch
ag

ai
ns

ta
fa

m
ili

ar
ga

m
ep

ad
co

nt
ro

lle
r.

Tw
o-

ta
ile

d
P

va
lu

es
ar

e
pr

ov
id

ed
fr

om
pa

ir
ed

St
ud

en
t’s

t-
te

st
an

al
ys

is
,w

hi
ch

si
gn

ifi
ca

nt
at

th
e

95
%

co
nfi

de
nc

e
le

ve
l(

P
<

0.
05

)m
ar

ke
d

w
ith

a
st

ar
.

Figure 7: User study tasks. Top: Task 1. Follow the path with the dog character, trying to stay within the path width. Bottom left: Task 2.
Move through the terrain and gates, and switch motions with the caterpillar character when moving through each one. Bottom right: Task 3.
Mimic the white horse by matching the step frequency, stride length, and dynamics (walk or trot or gallop).

References

CASAS, D., TEJERA, M., GUILLEMAUT, J.-Y., AND HILTON, A.
2012. 4D parametric motion graphs for interactive animation. In
Proc. I3D, 103–110.

HECK, R., AND GLEICHER, M. 2007. Parametric motion graphs.
In Proc. I3D, 129–136.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. Spatial
keyframing for performance-driven animation. Proc. SCA, 107–
115.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs.
ACM TOG (Proc. SIGGRAPH), 473–482.

LEE, Y., WAMPLER, K., BERNSTEIN, G., POPOVIĆ, J., AND
POPOVIĆ, Z. 2010. Motion fields for interactive character loco-
motion. ACM TOG (Proc. SIGGRAPH Asia) 29, 6, 138:1–138:8.

LEVINE, S., WANG, J. M., HARAUX, A., POPOVIĆ, Z., AND
KOLTUN, V. 2012. Continuous character control with low-
dimensional embeddings. ACM TOG (Proc. SIGGRAPH) 31, 4,
1–10.

LOCKWOOD, N., AND SINGH, K. 2012. Finger walking: motion
editing with contact-based hand performance. In Proc. SCA,
43–52.

MIN, J., AND CHAI, J. 2012. Motion graphs++: A compact
generative model for semantic motion analysis and synthesis.
ACM TOG 31, 6, 153–153.

ROSE, C., COHEN, M. F., AND BODENHEIMER, B. 1998. Verbs
and adverbs: multidimensional motion interpolation. IEEE
CG&A 18, 5, 32–40.

SHIN, H. J., AND OH, H. S. 2006. Fat graphs: Constructing an
interactive character with continuous controls. In Proc. SCA,
291–298.

SORKINE, O. 2009. Least-squares rigid motion using SVD. Techni-
cal notes, ETHZ.

SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer for
triangle meshes. ACM TOG (Proc. SIGGRAPH) 23, 3, 399–405.

WILEY, D., AND HAHN, J. 1997. Interpolation synthesis of articu-
lated figure motion. IEEE CG&A 17, 6, 39–45.

Table 1: Specification of the annotation of the database animations for all tested characters. The motion class column specifies the motion
graph node assignment, where each node is classified as cyclic or non-cyclic, and as primary or secondary.

Character and Amplitude Frequency Emotion Turn rate Motion class Is cyclic? Is secondary?
database motion

Dog (no emotions)
Stand 0.0 0.000 0 0 Locomotion 1 0
Walk neutral 0.7 0.020 0 0 Locomotion 1 0
Run neutral 0.8 0.040 0 0 Locomotion 1 0

Dog (with emotions)
Stand 0.0 0.000 0 0 All classes 0,1 0
Walk happy 0.7 0.025 1 0 Locomotion 1 0
Walk neutral 0.7 0.025 0 0 Locomotion 1 0
Walk sad 0.7 0.025 -1 0 Locomotion 1 0
Run happy 0.7 0.050 1 0 Locomotion 1 0
Run neutral 0.7 0.050 0 0 Locomotion 1 0
Run sad 0.7 0.050 -1 0 Locomotion 1 0
Sit down 1.0 / 0 0 Sit 0 0
Shake slow 0.7 0.041 0 0 Shake body 1 1
Shake fast 0.7 0.083 0 0 Shake body 1 1
Look to side 1.0 / 0 0 Head motion 0 1
Wave paw 1.0 0.04 0 0 Wave paw 1 1
Scratch paw 1.0 / 0 0 Scratch paw 0 1
Talk 1.0 0.05 0 0 Talk 1 1

Horse
Stand 0.0 0.000 0 0 Locomotion 1 0
Trot happy 0.5 0.025 1 0 Locomotion 1 0
Trot neutral 0.5 0.025 0 0 Locomotion 1 0
Trot sad 0.5 0.025 -1 0 Locomotion 1 0
Gallop happy 0.5 0.040 1 0 Locomotion 1 0
Gallop neutral 0.5 0.040 0 0 Locomotion 1 0
Gallop sad 0.5 0.040 -1 0 Locomotion 1 0

Caterpillar
Rest 0.0 0.000 0 0 All classes 0,1 0
Crawl 0.5 0.025 0 0 Locomotion 1 0
Loop walk 0.5 0.020 0 0 Locomotion 1 0
Loop walk excited 0.8 0.020 0 0 Locomotion 1 0
Loop walk watch out 1.0 0.020 0 0 Locomotion 1 0
Rise head 1.0 / 0 0 Rise head 0 0
Jump 1.0 0.020 0 0 Jump 1 0
Bend body left 0.0 / 0 1 Bend body 0 1
Bend body right 0.0 / 0 -1 Bend body 0 1

Humanoid
Stand 0.0 0.000 0 0 Locomotion 1 0
Walk slow 0.7 0.025 0 0 Locomotion 1 0
Walk normal 0.7 0.033 0 0 Locomotion 1 0
Walk fast 0.7 0.038 0 0 Locomotion 1 0
Run normal 0.7 0.420 0 0 Locomotion 1 0
Run fast 0.7 0.053 0 0 Locomotion 1 0

Dinosaur
Stand 0.0 0.000 0 0 All classes 0,1 0
Walk 0.9 0.032 0 0 Locomotion 1 0
Jump 0.4 0.048 0 0 Jump 1 0
Bend body up 0.3 / 0 0 Bend 0 0
Tail left 0.3 / 0 -1 Tail 0 1
Tail right 0.3 / 0 1 Tail 0 1

Algorithm 1 In the live phase, mapToIR (frame by frame) maps the stream V of current user poses xt to each of the intermediate
representations (one per reference control motion X , Sec. 6.1 of the main paper). In the live step, the stream V of current user poses xt is
mapped to each of the intermediate representations (one per reference control motion X) by the method mapToIR (frame by frame). This
step introduces independence of the control motions and reduces the dimensionality to simplify later filtering. It requires the current input
poses xt, as well as the mapping functions ΦX which are learned by ridge regression in the preprocessing step. The outputs are the individual
intermediate representations and their estimated variances for the current time step.

function MAPTOIR(xt)
/* Loop over all reference control motions*/
for all X ∈ X do

/* Linear prediction */
zX,t = ΦX(xt)

/* Variance prediction (non-Gaussian error model) */
nearestNeighbors = getNN(xt, X, 10) /*Get the 10 nearest neighbors of xt in the reference control motion X */

/* Get corresponding reference intermediate representation (those used for training) */
nearestReferenceIntermediateRep = getReferenceIntermediateRepresentations(nearestNeighbors)
zvX,t[1] = 1

|nearestReferenceIntermediateRep|2
∑

za∈NearestNeighbors
zb∈NearestNeighbors

|za[1], zb[1]| /* Average pairwise distance */

zvX,t[2] = 1
|nearestReferenceIntermediateRep|2

∑
za∈NearestNeighbors
zb∈NearestNeighbors

|za[2], zb[2]| /* Average pairwise distance */

end for

return zX1,t, zX2,t, ..., zvX1,t, zvX2,t, ...
end function

Algorithm 2 filterAmplitudeFrequencyAndPhase filters the intermediate representation. This improves the accuracy character control given
noisy control motion (Sec 6.2 of the main paper). For robust and accurate character control, the intermediate representation is filtered by the
method filterAmplitudeFrequencyAndPhase. It requires the stream of intermediate representations Z, represented as matrix with two rows
and F=150 columns (frames), and their estimated variances ZV . The outputs are amplitude, phase, and frequency scalars.

function FILTERAMPLITUDEFREQUENCYANDPHASE(t,Z,ZV)
τ = 150
µ = t

/* Loop over all frequency samples */
for all f ∈ [1/ft−1 − τ, 1/ft−1 + τ] do

windowWidth = λ/f

/* Compensate ambiguous estimates */
var1 = weightedAverageOverGaussWindow(ZV [1, ·],windowWidth)
var2 = weightedAverageOverGaussWindow(ZV [2, ·],windowWidth)
Znormalized[1, ·] = Z[1, ·]2(var1 + var2)/var1
Znormalized[2, ·] = Z[2, ·]2(var1 + var2)/var2

/* Gabor filter */
response[f] = 〈[g(t− τ ;µ, f), . . . , g(t;µ, f)], [zt−τ , . . . , zt]〉 /* Gives complex valued response */

end for

/* Return instantaneous frequency, amplitude, and phase */
instantaneousFrequency = argmaxf (|response[f]|2)

instantaneousAmplitude =
√
|response[instantaneousFrequency]|2 ∗ isSinusoidal

windowEnergy = 〈[N(t− τ ;µ, λ/f), . . . , N(t;µ, λ/f)], [|zt−τ |, . . . , |zt|]〉
isSinusoidal = instantaneousAmplitude/windowEnergy
instantaneousAmplitudeDamped = instantaneousAmplitude ∗ 2 max(0, isSinusoidal−1/3)
instantaneousPhase = atan2(response[instantaneousFrequency, 2], response[instantaneousFrequency, 1])

return instantaneousFrequency, instantaneousAmplitudeDamped, instantaneousPhase
end function

Algorithm 3 computeInterpolationWeights computes the interpolation weights in a single parametrized motion class (Sec. 7.2 of the main
paper) The interpolation weights for interpolation inside a single parametrized motion class are computed by computeInterpolationWeights.
The inputs to the method are the amplitude, frequency, phase, emotion, and heading direction parameters, as well as the predefined database
annotations of the same quantities. The output is one scalar weight per database animation.

function COMPUTEINTERPOLATIONWEIGHTS(θ, θY1 , θY2 , ...)
/* Loop over all database examples and compute weight by the inverse distance function */
for all Y ∈ Y do

wY = 1
‖W (θ−θY)‖2

(∑
Y

1
‖W (θ−θY)‖2

)
/* Normalized weight */

end for

return wY1 , wY2 , ...
end function

Algorithm 4 interpolatePhase interpolates the phase data (the animation progression index). This step is performed before the mesh
interpolation step (Sec. 7.2 of the main paper). Before pose interpolation, the phase, i.e., the animation progression index, is interpolated by
interpolatePhase. The method inputs are the current global phase, its previous value, and the interpolation weights. The outputs are separate
phase values per mesh segment (e.g., limbs).

function INTERPOLATEPHASE(ϕt, ϕt−1, wY1 , wY2 , ...)
/* Loop over all mesh segments */
for all i ∈ markedMeshSegments do

ϕt,i = ϕt +
∑
Y ∈Y wY,t∇ϕY,i

/* Bound phase velocities by whole character velocity */
ϕt,i = ϕt−1,i + max (0.95(ϕt − ϕt−1),min (1.05(ϕt − ϕt−1), (ϕt,i − ϕt−1,i)))

end for

return ϕt,1, ϕt,2, ...
end function

Algorithm 5 interpolateMesh interpolates each mesh segment after phase interpolation (Sec. 2.3 of the supplemental document). Each mesh
segment is interpolated individually by interpolateMesh. The input to the method are the separate phase values, as well as the interpolation
weights. The output is the deformation gradient representation (per triangle rotation and shear matrices) of each mesh segment.

function INTERPOLATEPOSE(wY1 , wY2 , ..., ϕt,1, ϕt,2, ...)
/* Loop over database animations and interpolate triangle transformations*/
for all Y ∈ Y do

S = 0 /* List of shear matrices, all elements set to zero */
r = 0 /* List of rotation vectors in axis angle form, all elements set to zero */

/* Loop over all mesh segments */
for all i ∈ markedMeshSegments do

/* Query deformation gradient rep. at time ϕti from mesh segment i from database animation Y */
defGrad = Y.getMeshSegment(i).getFrame(ϕt,i)
Si = defGrad.getShearMatrixList()
Ri = defGrad.getRotationList()

/* Interpolate */
S = S + wY Si
r = r + wYRi

end for
end for

return S1, S2, ..., R1, R2, ...
end function

Algorithm 6 reconstructConnectedMesh reconstructs a connected mesh by solving a Poisson system (Sec. 2.3 of the supplemental docu-
ment).The input to the method is the deformation gradient representation for each mesh segment and footplant activations. The output is a
single connected mesh represented by its vertex positions.

function RECONSTRUCTCONNECTEDMESH(S1, S2, ..., R1, R2, ..., footplantActivation)
/* Concatenate segment representations */
S = concat(S1, S2, ...)
r = concat(R1, R2, ...)

/* Construct differential coordinates from triangle transformations */
differentialCoord = MeshLaplacian(R(S(referenceMesh))

/* Solve linear system to obtain unique vertex positions from differential coordinates */
meshunconstrained = solve(MeshLaplacianx = differentialCoord)
differentialCoord2 = insertVertexConstraints(differentialCoord,meshunconstrained, footplantActivation)

/* Solve linear system with augmented Laplacian to enforce footplant constraints */
meshconstrained = solve(MeshLaplacianaugmented meshconstrained = differentialCoord2)

return meshconstrained
end function

