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Abstract

3D generative models of objects enable photorealistic
image synthesis with 3D control. Existing methods model
the scene as a global scene representation, ignoring the
compositional aspect of the scene. Compositional reason-
ing can enable a wide variety of editing applications, in
addition to enabling generalizable 3D reasoning. In this
paper, we present a compositional generative model, where
each semantic part of the object is represented as an inde-
pendent 3D representation learnt from only in-the-wild 2D
data. We start with a global generative model (GAN) and
learn to decompose it into different semantic parts using
supervision from 2D segmentation masks. We then learn
to composite independently sampled parts in order to cre-
ate coherent global scenes. Different parts can be indepen-
dently sampled, while keeping rest of the object fixed. We
evaluate our method on a wide variety of objects and parts,
and demonstrate editing applications.

1. Introduction

3D GANs are generative models capable of producing
3D representations as output that can then be rendered
into RGB images. These models produce high-quality real
images with explicit control over the camera parameters.
While these models reason about the 3D scene as a whole,
objects in the real world is made up of many different se-
mantic components composed together. Compositional rea-
soning is thus very useful for scene understanding and syn-
thesis. Compositional models allow for independent con-
trol of the different parts, while keeping rest of the sam-
ple fixed. For example, even though real world portrait
datasets mostly contain images of male subjects with short
hair, compositional reasoning of the face and hair regions
allows for generalization to images of male subjects with
long hair. While compositional models have been studied
in 2D [47, 3, 19, 36], they have been underexplored for 3D
learning. The approach of Yang et al. [41] learns composi-
tional object-centric NeRF models from supervised multi-
view videos of a scene. While this approach is scene spe-
cific, our goal instead is to learn from monocular and static

image collections. GIRAFFE [24] trains a compositional
3D GAN which uses a NeRF-like volumetric representa-
tion to model the scene and separates the scene into multi-
ple components in an unsupervised manner. However, GI-
RAFFE only models composition of multiple intact objects,
but cannot model semantic parts within each object, which
is our main focus in this work.

Thus, we present gCoRF, Generative Compositional Ra-
diance Fields for synthesizing 3D volumes of objects rep-
resented as a composition of semantic parts. We train our
models on datasets of just monocular in-the-wild image col-
lections. In addition, we use an automatically computed
segmentation map for each image to define the semantic
parts. Thus, unlike existing methods like GIRAFFE [24],
the definition of parts is well-defined in our case. Our
method learns to represent each object instance in 3D using
multiple volumetric models, each representing one semantic
part. The parts are composited using volumetric blending.
We initialize all the part models with a global object model,
and then learn to decouple it in a supervised manner. We
also train a blending network which learns to align these
sampled parts into a coherent scene, which can be rendered
from any viewpoint. At test time, each semantic part can
be independently changed while keeping rest of the volume
fixed. In summary, we make the following contributions:

1. A method to learn decoupled semantic part 3D GANs
of an object category using monocular image collec-
tions and corresponding semantic segmentation maps.

2. Given decoupled part 3D GANs, we learn a blending
network which can composite independently sampled
parts to synthesize a coherent object volume.

3. We show applications such as volumetric editing of
various face parts (including eyes, eyebrows, nose and
hair style), keeping rest of the face fixed. Here, we
process both human faces and cat faces.

2. Related Works
2.1. 3D Generative Adversarial Networks

Generative Adversarial Networks (GANs) [8] have wit-
nessed great success in synthesizing 2D images [15, 16,



14], but cannot fully model the 3D nature of the visual
world. Recently, to enable 3D-aware image synthesis that
allows explicit viewpoint control, there is a surge of inter-
est to develop 3D GANs.While some works use 3D super-
vision [38, 6, 7, 42], we focus on approaches trained on
monocular image collection only as images are easy to col-
lect in large scale. The methods [22, 23, 18] combine vox-
elized feature grid with 2D convolutional neural renderer
for 3D-aware image synthesis. While achieving promising
results, the 3D consistency is limited. Henzler et al. [11]
and Szabo et al. [33] learn to directly generate voxels and
meshes respectively, but show artifacts due to the diffi-
culty in training. Recently, the prosperous of NeRF [21]
has motivate researchers to use coordinate-based implicit
functions as the representation for 3D GANs. In particu-
lar, GRAF [30] and pi-GAN [4] have shown large poten-
tial of NeRF-based GAN for 3D aware image synthesis.
They are then extended to learn more accurate 3D object
shapes [27, 40, 25, 5] and more photorealistic image syn-
thesis [24, 9, 25, 5]. These advances have largely pushed
forward the boundary of 3D-aware image synthesis.

Among these works, some of them also study composi-
tional image synthesis [24, 23, 18]. All these works model
composition in the object level (e.g., shifting or inserting
an intact object) but cannot edit a part of an object without
changing other parts. In contrast, our method can model the
compositionality within an object, allowing 3D object syn-
thesis with more fine-grained control. For instance, for any
face volume generated by our model, we can edit one part
like hair or eyes while keeping other parts fixed.

Recently proposed FENeRF [32] is the closest related
concurrent work to our method. While this method enables
editing of parts, this requires a 2D segmentation mask for
the edit. In contrast, our method enables one to choose
any sample from the part generator. And it is also not pos-
sible to have different texture for parts using FENeRF as
they have single color latent vector to define the whole face.
For example, they cannot have different hair color for the
edited hair. While there are many 2D face editing meth-
ods [34, 29, 48] exist in the literature, none of the methods
work without segmentation mask as input at test time with
a trained model. Also, these methods expect the segmen-
tation mask to align well with the input image with similar
pose. Since we model objects in 3D, we can account for
these variations better.

2.2. Compositional Scene Representation

Many works have studied compositional model in the 2D
image level [47, 3, 19, 36, 12, 20]. Some works learn to
composite images in a harmonized way [47, 3, 19, 36] while
others sythesize images from given scene graphs [12]. Lo-
catello et al. [20] proposed a slot attention architecture that
can learn object composition in an unsupervised manner.

However, these 2D approaches cannot model complex oc-
clusions in the 3D space.

Recently, several attempts have been made to model
compositional scene in the 3D space using volumetric neu-
ral fields [21]. Specifically, Guo et al. [10] learns the NeRF
for each object independently, which naturally allows com-
position. The approaches of Ost et al. [26] and Yang et
al. [41] can decomposite a scene into objects given the su-
pervision of object masks or bounding boxes. uORF [44] is
an unsupervised approach to discover individual objects in
a scene, but is only applied to synthetic data. Wang et al.
[37] proposed a compositional representation that models
coarse structure with voxel grid and fine detials with NeRF.
Stelzner et al. [31] proposed a method which decomposes a
scene into a set of NeRFs, with each NeRF corresponding to
a different object. All these method requires either videos,
RGB-D or multi-view images as supervision. Besides, they
are designed for reconstructing scenes from existing images
or videos, but cannot synthesize new objects. In this work,
we propose a compositional 3D generative model that learns
from only monocular images and their corresponding seg-
mentation maps. Our approach not only allows editing of
existing images, but also can synthesize new samples with
fine-grained control over object parts.

3. Method

Our method learns a compositional GAN model from
just monocular in-the-wild images. The compositional
model is part-based, where each part is represented using its
own MLP network as shown in Fig. 1. This enables novel-
view synthesis, as well as independent control over differ-
ent parts of the object. Our method consists of three stages.
First, we learn a non-compositional global-scene GAN fol-
lowing existing methods [4]. Second, we learn to disentan-
gle this global model into multiple models each represent-
ing a different part (Stage 1 of Fig. 1). Finally, we learn a
blending network that blends the different parts into a co-
herent scene for synthesis (Stage 2 of Fig. 1).

3.1. Compositional Model

Our compositional model consists of several parts, each
represented using a different 3D volume. Thus, we have
MLPs Ni, i = 1, . . . , P , corresponding to P parts in the ob-
ject. The MLPs are defined as Ni : (zi, x) → σi, ci. Here,
zi are the latent vectors for each part, which can be inde-
pendently randomly sampled from a Gaussian distribution.
We use volumetric integration to render each part indepen-
dently as R(zi, C) for a camera with parameters C. The
output of this function is the rendered image for the part.
For each pixel, we cast a camera ray r(t) = o + td with
near and far bounds tn and tf , origin o and direction d, and
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Figure 1. Overview of our method. We first decompose a global GAN into several part models using supervised losses guided by segmen-
tation masks. We then train a blending network which learns to composite the independently sampled parts into a coherent scene. This
network modifies the intermediate latent vectors of the part models. At test time, our model enables independent sampling of the different
parts in order to create photorealistic images.

compute the pixel color as:

C(r) =

∫ tf

tn

T (t)σi(r(t))ci(r(t))dt

where T (t) = exp(−
∫ t

tn

σi(r(s))ds). (1)

In practice, we use a discretized version of this equation, as
explained in NeRF [21]. A complete image of the scene can
be rendered as a composition of all the individual parts. We
first define the global volume as a composition of the indi-
vidual parts, denoted with function comp: (σ1, . . . , σP ,×
c1, . . . , cP ) → (σ, c). The density σ at each point of
the global volume is a simple summation of the densities
of each individual part. The color c at point x is com-
puted as a weighted linear interpolation of the colors ×
ci, where the weights are the coefficients (T (t)σi(r(t)) for
the ray r(t)) at point x computed in the rendering func-
tion R(zi, C), see eq. 1. These coefficients are normal-
ized over all parts. We can render the composite volume
as R(comp(z1, . . . , zP , c1, . . . , cP ), C).

3.2. Decoupling Parts

Learning a Global Model We use the π-GAN [4] frame-
work to learn the global GAN. Here, a single MLP network

takes a randomly sampled latent code z as input along with
3D coordinates x. The output of the network is a scalar
density σ and color c ∈ R3 at point x of object instance
z. An image can be renderered from this 3D representa-
tion using volumetric rendering. During training, images
from the model are synthesized from a random distribution
of cameras around the object. The network is trained in a
generative adversarial framework using a discriminator, and
a non-saturating adversarial loss [4].

Ladv = f
(
D(R(z, C)

)
+f(−D(I)) + λ∥∇D(I)∥2.

(2)

Here, R(·) is the rendering function as explained in eq. 1,
D is the discriminator, I are real images sampled from the
training dataset, f(u) = − log(1 + exp(−u)), and λ is the
coefficient for R1 regularization.

Generator Network The generator networks in our case
are parameterized as MLPs. The randomly sampled latent
vector z is first mapped to an intermediate space w using
a ReLU MLP, following [15, 4]. We use a SIREN MLP
with FiLM conditioning on w and linear conditioning on the
input points to compute the density and color values at the



point. The same design is used for all part-based networks,
where zi is first mapped into wi.

Training The second stage of our training is supervised
on segmentation maps for the different parts, computed
using off-the-shelf segmentation models [43, 46]. The
weights of each part network Ni is initialized with the pre-
trained global network N . The mapping network that maps
zi to wi for each part i is fixed during training, and only the
SIREN MLP is finetuned. We sample a dataset of latents
z, map them into w, and compute images I from the global
model using randomly distributed cameras. Additionally,
we compute segmentation maps Si, i = 1, . . . , P , where Si

is one for pixels where part i is present in the image I , and
zero elsewhere. Then, we fix zi = z, ∀i. The goal of this
stage is to learn to separate the global model into the differ-
ent parts. We use the following loss function for training:

Lpart =

P∑
i=0

||Si ⊙ (Ri(z, C)− I)||2

+

P∑
i=0

||Si ⊙ (R(comp(z, . . . , z, c′1, . . . , c
′
P ), C)− I)||2

+ ||R(comp(z, . . . , z, c1, . . . , cP ), C)− I)||2 .

Here, the first term compares the image difference of the
rendered parts to the ground truth image in the segmented
region for the part. The second term also compares each
part to the image, while each part is rendered to also take
the occlusions from other parts into account. This is done
by setting the color of all other parts to white, i.e., for part
i, c′j = 1, ∀j ̸= i, and c′i = ci. This encourages the density
predictions for the other parts to be zero. The third term
evaluates the rendering of the composited volume with the
complete input image. This training strategy allows us to
decouple the different parts of the object in a supervised
manner. We use hyperparameters to balance the different
terms. Please refer to supplementary document for ablative
analysis of each loss term.

3.3. Blending Network

The decoupling stage allows us to train the individual
part generative models. However, so far, the networks were
trained with coupled latent vectors, i.e., identical latent vec-
tors for each part. Independently sampling the latent vectors
at test time can lead to artifacts at this point. For example,
for a model with independent face region and hair parts,
the face shape learned in the second stage could be depen-
dent on the hairstyle. To enable independent sampling with
photorealistic output, we introduce a blending network as
B : (w1, . . . , wP ) → (d1, . . . , dP ). The output vectors are
computed as w′

i = wi + di,∀i. This network is param-
eterized as a ReLU MLP. The goal is to update the latent

vectors of the individual parts in order to compose a realis-
tic and coherent global volume. We use the following loss
function to train the blending network:

Lblend = Ladv +

P∑
i=0

||di||2

+ ||Rw(compw(w
′
1, . . . , w

′
P , c1, . . . , cP ), C)−

Rw(compw(w1, . . . , wP , c1, . . . , cP ), C))||2 .

Here, Ladv is the adversarial loss introduced in eq. 2, and
the second term encourages the latent differences to be
small. The third term is similar to the second term, where
Rw(·) and compw(·) are the equivalent functions of R(·)
and comp(·) where the input latents are the output of the
mapping network. This term encourages the blending net-
work to not change the latents too drastically. We use hy-
perparameters to balance the different terms. With this, our
method enables independent sampling of the different parts
of an object while being able to generate coherent volumes.

4. Results
We evaluate our method on human portraits [13] and

cats [45] datasets. We model different semantic parts of
the portraits like hair, eyes, eyebrows and nose using our
method. We used BiSeNet [43] trained on CelebAHQ-
Mask [17] dataset to obtain semantic map for portrait im-
ages, and DatasetGAN [46] to obtain semantic map for Cats
category. We compare to several baselines and related ap-
proaches, both qualitatively and quantitatively, and demon-
strate the advantages of our method. We provide detailed
explanation of network architecture, training curriculum,
hyperparamters in the supplementary document. As our
method requires separate Generator backbone for each part,
because of memory and computational expense, we train
our networks at 64 × 64 resolution, following the settings
of π-GAN [4]. All results are rendered at 128 × 128 res-
olution. Please refer to supplementary document for more
results and ablative analysis.

4.1. Datasets

We use the CelebAHQ [13] dataset for portrait images
and Cats dataset [45] for cat faces. Human portrait images
are very suitable for the proposed task of compositional
learning with semantically well-defined parts such as hair,
eyes, eyebrows and nose. For cat faces, we show how we
can learn independent models of cat eyes and the rest of the
face. As our main objective is to learn independent models
for each of the face parts, we do not model the background
and train on foreground segmented images.

4.2. Qualitative Results

We show results of independent hair and face region
models for portrait images in Fig. 2. Each row shows sam-



Figure 2. Independent sampling of hair and face region. Each row
shows a fixed face region sample, while each column shows a fixed
hair sample. We can independently sample from these models to
create photorealistic images. We also have explicit control over the
head pose because of the underlying 3D representation.

Figure 3. Independent sampling of eyes and the rest of the per-
son. Each row shows a fixed non-eyes sample, while each column
shows a fixed eyes sample. We can independently sample from
these models to create photorealistic images.

ples of the model with the same face but different hair in
different poses. Each column shows samples with the same
hair but different faces in a fixed pose. Please note the di-
versity of hairstyles we can synthesize for any face. We
show disentangled eye and the rest of the person in Fig. 3,
eyebrows and the rest of the person in Fig. 4, and nose

Figure 4. Independent sampling of eyebrows and the non-eyebrow
region. Each row shows a fixed non-eyebrow sample, while each
column shows a fixed eyebrows sample. We can independently
sample from these models to create photorealistic images.

Figure 5. Independent sampling of nose and the non-nose region.
Each row shows a fixed non-nose sample, while each column
shows a fixed nose sample. We can independently sample from
these models to create photorealistic images.

and the rest of the person in Fig. 5. Further, we show re-
sults of eyes vs rest of the scene disentanglement for cats
in Fig. 6. These results demonstrate that our method works
across different parts with different levels of occlusions and
sizes. Note that we have explicit control over the head pose
as our method produces a 3D representation as output. We
request the reader to check our supplemental video, where



Figure 6. Independent sampling of eyes and the non-eyes region.
Each row shows a fixed non-eyes sample, while each column
shows a fixed eyes sample. We can independently sample from
these models to create photorealistic images.

Figure 7. Results of baseline with the models for each part trained
independently from each other. Without the constraints between
parts, such a baseline leads to artifacts due to incorrect separation.

we show renderings of smooth interpolation of view points,
part samples for many cases.

Control over the different parts of the object can be very
useful for various applications ranging from image editing
to image analysis. For example, a facial recognition sys-
tem trained on images could learn to distinguish between
male and female subjects by looking at the hairstyle. Our
method could potentially enable data augmentations which,
while being photorealistic, ensures a balanced distribution
of hairstyles for training regardless of gender. Please note
that the contributions of this paper are to enable a rich set
of control in generative models. We leave explorations in
downstream tasks for future work.

Comparisons to Baselines We design a baseline where
each part model is independently trained from scratch, i.e.,
we train a π-GAN model for each part on the correspond-
ing segmented part images. Once trained, we define a
model which simply composite the independently sampled

Figure 8. Here we show editing results in comparison with FEN-
eRF [32]. Our method can edit not just the shape of the part,
but also color independently of other parts. In contrast, FENeRF
can edit the shape of the part, while keeping the part’s color fixed
(Geo). Editing the part color also changes the color of the whole
face, as it relies on single appearance latent vector for the whole
face (Geo+App). Here, ”Geo” refers to ”Geometry” and ”App”
refers to ”Appearance”.

Figure 9. Top row shows results without using the blending net-
work. Without the blending network, the rendered results can have
artifacts around the boundary between the parts.

volumes using the compositional operation defined in Sec-
tion 3.1, denoted as π-GAN-ind. Fig. 7 shows the results
of the composited volumes. This baseline does not learn
a reasonable volume, as the constraints between the differ-
ent parts are not modeled. For example, the hair model can
learn arbitrary depth for the face region with the color of the
background. This geometry can be in front of the sampled
face region, and can thus occlude the face. Our design mod-
els occlusions between the different parts and thus does not
face this limitation.

We also compare to a baseline without using a blending
network in Fig. 9. We note that, blending network helps
in synthesizing texture of the part similar to that of rest of
the face, while keeping the shape of the sampled part (Nose
column in Fig. 9). Without the blending network (top row),
there can often be artifacts in the boundary between the dif-
ferent parts (check the artifact between hair and face region
in first row, first column in Fig. 9 ).



Metric π-GAN Hair Eyes Eyebrows Nose
FID ↓ 16.246 14.8738 14.0873 13.9845 14.2577
KID ↓ 0.012 0.0095 0.0091 0.0093 0.0094
IS ↑ 2.479 2.5371 2.5068 2.4455 2.4778

Table 1. Here we show quantitative comparison with π-GAN for portrait datset [13]. To have fair comparison, we tie the sampling vectors
for all the parts to synthesize images for evaluation, as π-GAN is not capable of synthesizing different semantic parts.

π-GAN Hair Eyes Eyebrows Nose
π-GAN-ind

FID ↓ x 143.184 87.6181 52.924 86.131
KID ↓ x 0.14530 0.10107 0.0580 0.0981
IS ↑ x 3.689 2.19169 2.4125 2.334

Ours(w/o BN)
FID ↓ x 20.8340 15.2308 15.1184 18.2041
KID ↓ x 0.0145 0.0100 0.0099 0.01284
IS ↑ x 2.1991 2.3435 2.3080 2.3069

x Ours
FID ↓ x 18.3422 13.9916 13.9293 15.1478
KID ↓ x 0.01280 0.0092 0.0093 0.0102
IS ↑ x 2.3293 2.4680 2.4069 2.4436

Table 2. Here we show quantitative comparison with baseline (π-GAN-ind) and ablative study of blending network for portrait datset [13].
As the baseline models do not explicitly account for occlusion by other parts in the object, they end up learning some parts of the rest of the
object with segmented color. As a result, the composited volume of different parts result in artifacts, which are reflected in bad numbers.

Comparison to FENeRF We show qualitative compari-
son with FENeRF [32] in Fig 8. For a given input image,
we can edit both the shape and color of the part independent
of rest of the face. In the Fig 8, we take the fit our model
to input image and take the corresponding part latent code
from reference image to edit individual parts. FENeRF can
only edit the shape while keeping the part color fixed. Edit-
ing the color of the part also changes the color of the rest of
the face as they have only a global appearance vector.

4.3. Quantitative Results

We evaluate our model quantitatively using FID, KID,
and IS scores, commonly used to evaluate generative mod-
els. In Table 1, we compare against π-GAN on both face
and cats datasets. Since π-GAN does not model indepen-
dent sampling of parts, to have a fair comparison to our
method, we tie the latent vectors (i.e., latents for all parts are
identical) when we randomly sample images. This evalua-
tion also show that our training (Sec. 3.2, Sec. 3.3) does not
negatively impact the quality of the model. Our decoupled
model performs almost similar or slightly better to π-GAN
for all categories. As the baseline models (π-GAN-ind) are
trained independently, it can not be used for this evaluation.

In Table 2, 3, we compare our method against the π-
GAN-ind baseline. In this table, we do not tie the latent vec-
tors of the parts, but rather independently sample the latents.
As can be seen qualitatively as well in Fig. 7, naively train-
ing independent part models can not be used to composite

multiple parts together. Even though the missing parts in
the image set is segmented with white color (same as back-
ground), the network accounts it as part of the model and
paints that region the segmented color. Therefore, when
composited with other parts, using our composite operator,
it results in such white artifacts. This can be observed quan-
titatively for all the categories. Note that, the quantitative
results for our method with random sampling and coupled
sampling are in the similar range.

In Table 2, 3, we provide ablative analysis of our blend-
ing network. In our experiments, we used blending net-
work for all part categories, including hair, nose, eyes and
eyebrows. The blending network helps in overcoming cer-
tain artifacts pertaining to texture harmonization and arti-
facts near the boundary of composited parts in some cases,
leading to better quantitative scores as verified in Table 2, 3.

5. Application - Editing Real Images

Our model can enable many exciting applications. Here,
we demonstrate the application of editing real images. This
requires us to embed the real images into the latent space
of the learned GAN. Projecting real images onto the latent
space of GANs is a well-studied problem [39]. Methods
either use optimization-based techniques [35, 1], or learn
an encoder to regress the latent vectors [2, 28]. We design
an optimization-based technique, since it tends to result in
higher-quality images, however, at the cost of the speed of



Metric π-GAN Ours (tied) π-GAN-ind Ours(w/o BN) Ours
FID ↓ 13.3387 13.6265 47.384 16.0410 14.6521
KID ↓ 0.0079 0.0066 0.0420 0.0084 0.0075
IS ↑ 2.0481 2.0354 2.0534 2.0537 2.0457

Table 3. Here we show results for Cats dataset. The first two quantitative columns (before vertical line) show results for samples with tiedt
latent vectors between parts. The last 3 columns show numbers for samples with independent part sampling.

Figure 10. Results on real images. We embed the input images into the latent space of our model. This enables editing of semantic parts
by sampling different components independently.

Figure 11. Limitations of our method. In some cases, the inde-
pendently sampled parts can be very different, which introduces
artifacts in the global rendering.

projection. We use several energy terms to optimize for the
latent vector. We use a combination of L1 loss, perceptual
loss, and facial recognition loss on the complete image. In
addition, we use an L1 loss between the renderings of each
part with the corresponding segmented out part of the input
image. Finally, we use regularizers encouraging the opti-
mized latent vectors to be close to their average values via
L2 losses. Please refer to the supplemental for more de-
tails on the optimization and for all hyperparameters used.
The real image editing results are shown in Fig. 10, where
several semantic parts of the portrait images are edited in-
dependently.

6. Limitations
While we demonstrated high-quality results for our com-

positional scene representation, several limitations remain.
Fig. 11 show that when composing independently sampled
hair and face regions which are quite apart, our methods
sometimes struggles to synthesize coherent volume at the

boundaries. Similar to existing 3D GANs, we can only learn
our models at relatively low resolutions. Concurrent work
has shown ways to improve the resolution and quality of 3D
GANs [9, 5], and our framework could potentially be used
with newer 3D GANs. This is left this exploration for fu-
ture work. Although our method works well for the object
categories as shown in this paper, we believe it might not
hold true for other categories like articulated objects (For
example, human bodies, hands etc.). But our method could
be extended by explicitly accounting for geometric articu-
lation of the parts, as we can already decouple part in 3D
explicitly. We leave this for future work.

7. Conclusion
We present a compositional 3D generative model of ob-

jects, where different semantically meaningful parts of ob-
jects are represented as independent 3D models. Different
parts can be independently sampled to create photorealistic
images. The disentanglement of a global model into parts is
achieved using losses in image space, defined with the help
of segmentation masks. Unlike many existing approaches,
our parts are semantically well-defined. We validate our
method using several experiments on portrait images and
cat face images, and compare to several baseline and com-
peting methods. Compositional models have a lot of appli-
cations in Computer Vision and Computer Graphics, and we
hope that our method inspires follow-up work in this area.
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