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Abstract

Egocentric 3D human pose estimation using a single
fisheye camera has become popular recently as it allows
capturing a wide range of daily activities in unconstrained
environments, which is difficult for traditional outside-in
motion capture with external cameras. However, existing
methods have several limitations. A prominent problem
is that the estimated poses lie in the local coordinate sys-
tem of the fisheye camera, rather than in the world coor-
dinate system, which is restrictive for many applications.
Furthermore, these methods suffer from limited accuracy
and temporal instability due to ambiguities caused by the
monocular setup and the severe occlusion in a strongly
distorted egocentric perspective. To tackle these limita-
tions, we present a new method for egocentric global 3D
body pose estimation using a single head-mounted fish-
eye camera. To achieve accurate and temporally stable
global poses, a spatio-temporal optimization is performed
over a sequence of frames by minimizing heatmap repro-
jection errors and enforcing local and global body motion
priors learned from a mocap dataset. Experimental results
show that our approach outperforms state-of-the-art meth-
ods both quantitatively and qualitatively.

1. Introduction
Traditional optical motion capture system with external,

outside-in facing cameras is restrictive for many pose es-
timation applications that require the person to be able to
roam around in a larger space, beyond a fixed recording
volume. Examples are mobile interaction applications, pose
estimation in large-scale workplace environments, or many
AR/VR applications. To enable this, methods for egocentric
3D human pose estimation using head- or body-mounted
cameras were researched. These methods are mobile, flexi-
ble, and have the potential to capture a wide range of daily
human activities even in large-scale cluttered environments.

Some egocentric capture methods study the estimation
of face [9, 8, 21] and hand motions [38, 40, 27, 39], while
the estimation of the global full body pose has been less
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Figure 1. Given challenging egocentric videos, our method pro-
duces realistic and accurate 3D global pose sequence.

explored. Mo2Cap2 [45] and xR-egopose [43] use a sin-
gle head-mounted fisheye camera to capture the 3D skele-
tal body pose in a marker-less way. Both methods have
demonstrated compelling 3D pose estimation results while
still suffering from an important limitation: They estimate
the local 3D body pose in egocentric camera space, while
not being able to obtain the body pose with global position
and orientation in the world coordinate system. Henceforth,
we will refer to the former as “local pose”, in order to dis-
tinguish it from the “global pose” defined in the world co-
ordinate system. Local pose capture alone is insufficient for
many applications. For example, captured local body poses
are not enough to animate the locomotion of a virtual avatar
in xR environments, which requires global poses.

A straightforward solution is to simply project the lo-
cal pose into the world coordinate system with the egocen-
tric camera pose estimated by the SLAM. However, the ob-
tained global poses exhibit significant inaccuracies. First,
they show notable temporal jitters as the video frames are
processed independently without taking temporal frame co-
herence. Second, they often show tracking failure due to



the self-occlusion in the distorted view of the fisheye cam-
era. Third, the obtained global poses often show unrealis-
tic motions (such as foot sliding and global jitters) due to
the inconsistency between the local pose and the estimated
camera pose, which are independent of each other.

To tackle these challenges, we propose a novel approach
for accurate and temporally stable egocentric global 3D
pose estimation with a single head-mounted fisheye cam-
era, as illustrated in Fig. 1. In order to obtain temporally
smooth pose sequences, we resort to a spatio-temporal op-
timization framework where we leverage the 2D and 3D
keypoints from CNN detection as well as VAE-based mo-
tion priors learned from a large mocap dataset. The VAE-
based motion priors have been proven effective to produce
realistic and smooth motions in pose estimation methods
like VIBE [19] and MEVA[25]. However, the RNN-based
VAEs in these works are less efficient and unstable due to
the vanishing and exploding gradients during our optimiza-
tion process. Therefore, we propose a new convolutional
VAE-based motion prior, which enables faster optimization
speed and higher accuracy. Furthermore, to reduce the error
due to strong occlusion, we proposed a novel uncertainty-
aware reprojection energy term by summing up the proba-
bility values at the pixels on the heatmap occupied by the
projection of the 3D estimated joints rather than comparing
the projection of 3D estimated joints against the predicted
2D joint position. Finally, in order to make the local body
poses consistent with the camera poses estimated by SLAM,
we introduce a global pose optimizer with a separate VAE.

We evaluate our method on the dataset provided by
Mo2Cap2 [45] and also a new benchmark we collected with
2 subjects performing various motions. Our method outper-
forms the state-of-the-art methods both quantitatively and
qualitatively. Our ablative analysis confirms the efficacy of
our proposed optimization algorithm with learned motion
prior and uncertainty-aware reprojection loss for improved
local and global accuracy and temporal stability. To sum-
marize, our technical contributions are as follows:

• A novel framework for accurate and temporally stable
global 3D human pose estimation from a monocular ego-
centric video.

• A new optimization algorithm with the assistance of local
and global motion prior captured by an efficient convolu-
tional network based VAE.

• An uncertainty-aware reprojection loss to alleviate the in-
fluence of self-occlusions in the egocentric settings.

• Our method outperforms various baselines in terms of the
accuracy of the estimated global and local pose.

Our method works for a wide range of motions
in various environments. We recommend watch-
ing the video in http://gvv.mpi-inf.mpg.de/
projects/globalegomocap for better visualization.

2. Related Work

Egocentric 3D full body pose estimation Capturing full-
body motion from an egocentric camera perspective has at-
tracted more and more attention in recent years while it is
challenging as it is difficult to observe the whole body from
close proximity in the egocentric setting. Some works esti-
mate the full-body pose by analyzing the motion of the ob-
served environment. Shiratori et al. [37] attach 16 cameras
to the subject’s limbs and torso to recover the human pose
by performing SFM of the environment. Jiang and Grau-
man [13] reconstruct full-body pose by leveraging learned
dynamic and pose coupling over a long time span. Yuan and
Kitani [47, 48] use video-conditioned control techniques to
estimate and forecast physically-plausible human body mo-
tion. Rhodin et al. [36] are the first to propose a full-body
capture method with a helmet-mounted stereo fisheye cam-
era. Cha et al. [5] estimate the 3d body pose from two head-
mounted pinhole cameras with a recurrent neural network.
To avoid inconvenience of large setup, some researchers use
a single wide-view fisheye camera. Xu et al. [45] and Tome
et al. [43] use a compact monocular setting and developed
learning-based approaches to estimate ego-pose from a sin-
gle frame. Hwang et al. [11] mount an ultra-wide fisheye
camera on the user’s chest and estimate body pose, camera
rotation and head pose from a single fisheye image. How-
ever, these methods neither exploit temporal consistency,
nor ensure the reality of predicted motion. Our method,
on the contrary, leverages motion prior based optimization
approach to make the prediction consistent and accurate.

Leveraging learned prior in 3D pose estimation In or-
der to enhance the accuracy of pose estimation and make
predictions more realistic, a lot of recent methods leverage
the prior learned from the mocap dataset. Some of them
capture the prior in the Gaussian space. For example, Bogo
et al. [3] and Arnab et al. [2] captures the prior to opti-
mize the SMPL body model [24] by fitting a mixture of
Gaussians to CMU mocap dataset [1]. Pavlakos et al. [34]
train a VAE to learn priors of SMPL parameters on AMASS
dataset, which contains richer varieties of human motions.
Zanfir et al. [49] use normalizing flow in order to avoid
the compromise between KL divergence and reconstruction
loss in VAE. Some other methods incorporate the pose prior
by training a generative adversarial network (GAN). Yang
et al. [46] develop a adversarial learning framework with
multi-source discriminator. Kanazawa et al. [14, 15] and
Zhang et al. [51] train discriminators for each joint rota-
tion parameter to tell if these parameters are realistic. Ko-
cabas et al. [19] propose a temporal network architecture
with an RNN-based discriminator for the adversarial train-
ing on the sequence of SMPL parameters. Different from
previous methods, our method captures the global motion
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Figure 2. Overview of our method. Our method takes an egocentric video as input and processes it in segments. For each segment
consisting of a fixed number of consecutive frames, we first apply an egocentric pose estimation method to obtain initial 3D local poses
and 2D heatmaps which are then fed into the local pose optimization framework to get optimized local poses. Next, combined with the
camera poses estimated from ORB-SLAM2, the optimized 3D local poses are transformed from the local egocentric camera space to the
world coordinate space and then optimized via the global pose optimization to produce the final global poses.

prior learned with a light-weight sequential VAE, which en-
ables direct optimization in the global coordinate system.

Monocular 3D pose estimation in video Monocular 3D
pose estimation has been the focus of research for a long
time. Some methods predict 2D joints and perform 2D-to-
3D lifting separately [6, 12, 29], while some other methods
regress the 3D pose directly [22, 30, 41, 42, 20]. These
methods process single image and therefore exhibit notable
temporal jitter in a video sequence. To solve this, many re-
cent methods exploit temporal information from the video.
Zhou et al. [52] introduce EM method to estimate 3D pose
from 2D predictions over the entire sequence. Mehta et al.
[32] and Du et al. [7] apply temporal filtering across 2D
and 3D poses. Lin et al. [23], Hossain et al. [10], Kocabas
et al. [19] and Katircioglu et al. [16] use recurrent networks
to predict 3D pose sequences by leveraging previously pre-
dicted 2D and 3D poses. Pavllo et al. [35] generates 3D
poses with temporal-convolution, while Cai et al. [4] and
Wang et al. [44] leverage graph convolutional network to
capture the temploral information. Luo et al. [26] firstly get
coarse motion with a GRU based human motion VAE and
then refine the motion with a residual estimation network.
Different from all previous works, our method capture the
motion prior with a 1D convolution based sequential VAE,
and we use the VAE in our optimization framework.

3. Method

Our goal is to estimate the global body poses from a
video sequence captured by a head-mounted fisheye cam-
era. We provide an overview of our pipeline in Fig. 2.

The video frames are split into segments with B frames
each (B = 10 in our experiments). Our pipeline takes
one segment consisting of B consecutive frames, Iseq =
{I1, . . . , IB}, as inputs and outputs the global poses of
all the individual frames, Pg

seq = {Pg
1 , . . . ,P

g
B}. For

each segment, we first calculate the 3D local pose and 2D
heatmap of each frame using an egocentric local body pose
estimation method (Sec. 3.1). Next, we learn the local
motion prior from local motion sequences of the AMASS
dataset [28] with a sequential VAE [18] (Sec. 3.2.1), and
perform a spatio-temporal optimization with the local mo-
tion prior by minimizing the heatmap reprojection term and
several regularization terms (Sec. 3.2.2). Given the opti-
mized local poses, we transform them from local fisheye
camera space to the world coordinate system with camera
poses estimated by a SLAM method to get initial global
poses (Sec. 3.3.1). To improve global poses, we learn the
global pose prior by training a second sequential VAE on
the global motion sequences of the AMASS dataset, and im-
pose the global pose prior in a spatio-temporal global pose
optimization (Sec. 3.3.2). Please refer to the supplementary
materials for our implementation details.

3.1. Local Pose Estimation

Given a segment containing B consecutive frames Iseq ,
we estimate local poses represented by 15 joint locations
P̃seq = {P̃1, . . . , P̃B}, P̃i ∈ R15×3, and 2D heatmaps
Hseq = {H1, . . . ,HB} using an egocentric local pose esti-
mation method. Note that our approach can work with any
egocentric local pose estimation methods. In our experi-
ments, we evaluate our approach on the results of two state-
of-the-art methods: Mo2Cap2 [45] and xR-egopose [43].



3.2. Local Pose Optimization

Although Mo2Cap2 and xR-egopose can produce com-
pelling results, both approaches suffer from limited ac-
curacy and temporal instability, which is mainly due to
depth ambiguities caused by the monocular setup and se-
vere occlusions in a strongly distorted egocentric perspec-
tive. To improve local poses, we design an efficient spatio-
temporal optimization framework which first learns the lo-
cal pose prior as a latent space with a sequential VAE [18]
(Sec. 3.2.1) and then searches for a latent vector in the
learned latent space by minimizing a reprojection term and
some regularization terms (Sec. 3.2.2).

3.2.1 Learning Motion Prior

To construct a latent space encoding local motion prior, we
train a sequential VAE [18] on local motion sequences of the
AMASS dataset [28] which are split into segments for train-
ing. We denote a segment consisting of B consecutive poses
as Qseq = {Q1, . . . ,QB}(Qi ∈ R15×3). The sequential
VAE consists of an encoder fenc and a decoder fdec. The
encoder is used to map an input sequence of human local
poses Qseq to a latent vector z, and the decoder is used to
reconstruct a pose sequence, Q̂seq = {Q̂1, . . . , Q̂B}(Q̂i ∈
R15×3), from the latent vector. Following [18], the training
loss of VAE is formulated as:

Ltotal = c1

∥∥∥Q̂seq −Qseq

∥∥∥2
2

+ c2KL[q(z|Qseq)∥N (0, I)]
(1)

where z = fenc(Qseq), Q̂seq = fdec(z), q(z|Qseq) refers
to the projected distribution of Qseq in the latent space,
N (0, I) refers to the standard normal distribution, and
KL(.) refers to the Kullback–Leibler divergence.

Different from previous pose estimation methods [19,
25] which leverage RNN-based VAEs to capture the mo-
tion prior, both the encoder fenc and the decoder fdec of
our sequential VAE are designed as 5-layer 1D convolu-
tional networks. Comparing with RNN-based VAEs, the
convolutional networks in our sequential VAE is more ef-
ficient in the optimization iterations since it can be par-
allelized over time sequence. Moreover, the RNNs suffer
from vanishing and exploding gradients more easily, which
makes optimization process less stable. We have compared
the sequential VAE in our method with RNN-based VAEs
in VIBE [19] and MEVA [25] in Sec. 4.4. More details of
sequential VAE is shown in the supplementary materials.

3.2.2 Optimizing Local Poses with Local Motion Prior

With the learned latent space of local motion, the task of
optimizing local poses with the local motion prior can be
formulated as the problem of finding a latent vector z in the

learned latent space such that the reconstructed local pose
sequence Pseq = fdec(z) minimizes the following objective
function:

E(Pseq) = λRER(Pseq) + λJEJ(Pseq, P̃seq)

+ λTET (Pseq) + λBEB(Pseq)
(2)

where ER(.), EJ(.), ET (.), EB(.) are the reprojection
term, pose regularization term, motion smoothness regular-
ization term and bone length regularization term, respec-
tively, which we will describe in detail later. In our exper-
iment, we set the weights λR = 0.01, λJ = 0.01, λT = 1
and λB = 0.01, respectively.

Heatmap-based Reprojection: Previous works [2, 3, 34,
50] calculate the reprojection term by summing up the Eu-
clidean distance values between the projection of estimated
3D joints and detected 2D joints. However, this calculation
is sensitive to 2D joint detection errors due to the strong
self-occlusions caused by the egocentric perspective. To
tackle this issue, we define a heatmap-based reprojection er-
ror by leveraging the uncertainty captured in the predicted
2D heatmaps, where the value at each pixel describes the
probability of this pixel being a 2D joint. This new reprojec-
tion term is calculated by maximizing the summed heatmap
values at the reprojected 2D joint positions:

ER(Pseq) = −
B∑
i=1

∥HMi(Π(Pi))∥22 (3)

where HMi(.) returns the value at a pixel on Hi, the
heatmap of i-th frame. Π(.) refers to the projection of a 3D
point. Specifically, the projection of a 3D point [x, y, z]T

can be written as:

[u, v]T =
[x, y]T√
x2 + y2

× f(ρ) (4)

where ρ = arctan(z/
√

x2 + y2) and f(ρ) = α0 + α1ρ +
α2ρ

2 + α3ρ
3 + . . . is a polynomial obtained from camera

calibration.

Pose Regularization: To constrain the optimized pose Pi

to stay close to the initial pose P̃i, we define the pose regu-
larizer as:

EJ(Pseq, P̃seq) =

B∑
i=1

∥∥∥Pi − P̃i

∥∥∥2
2

(5)

Motion Smoothness Regularization: Same as [31], the
temporal smoothness regularizer (Eq. 6) is used to improve



Figure 3. Interpolation in the latent space. The leftmost and
rightmost pose sequences (waving hands and jumping) are recon-
structed from two randomly sampled latent vectors, and interme-
diate pose sequences are reconstructed from linear interpolation
between the left and right latent vectors.

the temporal stability of the estimated poses, which is calcu-
lated based on the acceleration of each joint over the whole
sequence:

ET (Pseq) =

B∑
i=2

∥∇Pi −∇Pi−1∥22 (6)

where ∇Pi = Pi − Pi−1.

Bone Length Regularization: To explicitly enforce the
constraint that each bone length stay fixed, we define the
bone length regularizer as the difference between the bone
length and the average bone length over the pose sequence.

EB(Pseq) =

B∑
i=1

∥∥∥∥∥∥LPi −
1

B

B∑
j=1

LPj

∥∥∥∥∥∥
2

2

(7)

where the LPi is a vector composed of the length of each
bone of 3D pose Pi.

3.3. Global Pose Estimation

Based on the pose optimized by the local pose optimizer,
we seek to get the 3D pose in the global coordinate system.
We firstly use the monocular SLAM to get the camera pose
sequence and project the local pose sequence to the global
space (Sec. 3.3.1), then we optimize the initial global pose
sequence with our global pose optimizer (Sec. 3.3.2).

3.3.1 Initialization

To obtain the initial global body poses, we first estimate the
camera poses using ORB-SLAM2 [33]. In order to avoid
the effects caused by the moving person in the egocentric
view, we employ a square-shaped mask that roughly covers
a large portion of the body to remove most of the feature

Without Global Pose Optimizer With Global Pose Optimizer

Figure 4. The global pose with/without global pose optimizer. The
left foot is zoomed in for better comparison.

points detected on the main body parts. We use a fixed mask
rather than estimating a silhouette mask for each image for
the sake of effectiveness and robustness.

With the estimated camera pose (Ri, ti) (i = 1, · · · , B),
the local body pose Pi can be transformed into the world
coordinate space to obtain its initial global body pose P̃ g

i :

P̃g
i = Ri · Pi + ti, P̃g

i ∈ P̃g
seq (8)

where P̃g
seq is the corresponding inital global pose segment

of Pseq .

3.3.2 Global Pose Optimizer

Simply combining local poses with camera poses would
not achieve very high-quality global poses because the opti-
mized local body poses are not constrained to be consistent
with the corresponding camera poses. For example, the ini-
tial global pose in the left part of Fig. 4 suffers from the foot-
skate artifact, which means the foot moves when it should
remain in a fixed position on the ground. In order to alle-
viate such inconsistency errors, we perform another spatio-
temporal optimization on the initial global pose. We first
train a sequential VAE on global pose sequences from the
AMASS dataset in the same way presented in Sec. 3.2.1. To
measure the smoothness of our learned latent space, we con-
ducted an experiment of interpolating two different body
motions. The results shown in Fig. 3 demonstrate that the
learned latent space is smooth (also see this result in the sup-
plemental video), which is important for the subsequent op-
timization process. With the learned latent space of global
motion, we seek for a latent vector zg such that the global
pose sequence Pg

seq = fg
dec(z

g) minimizes the following
objective function:

E(Pg
seq) = λJEJ(Pg

seq, P̃g
seq) + λTET (Pg

seq)

+ λBEB(Pg
seq)

(9)

where EJ(.), ET (.), EB(.) are the same as those in 3.2.2,
and λJ , λT and λB are set as 0.01, 1 and 0.01, respectively.
The example of optimized result is illustrated in the right
part of Fig. 4, where the footskate artifact is alleviated due
to our global optimizer.



4. Experiments
4.1. Datasets

Following [45] and [43], we train our local egocentric
pose estimators on the synthetic dataset from Mo2Cap2. We
use the AMASS dataset [28] to train our sequential VAEs.
To make the distribution of joint position in the training data
consistent with that in the real-world data, we set a virtual
fisheye camera attached to the forehead of the human mesh
at a distance similar to our capture settings.

We evaluate our method on both the real-world dataset
from Mo2Cap2 [45] and a new egocentric dataset. Our new
real-world dataset was captured using a head-mounted fish-
eye camera with the similar camera position as Mo2Cap2

[45] while the ground truth 3D poses were acquired using
a multi-view motion capture system. This dataset contains
around 12k frames of 2 actors wearing different clothes and
performing 13 types of actions. This dataset will be made
publicly available and further details of it are shown in the
supplementary materials.

4.2. Evaluation Metrics

We evaluate our method with three different metrics,
namely PA-MPJPE, the bone length aligned MPJPE (BA-
MPJPE) and the global MPJPE. They all calculate the Mean
Per Joint Position Error (MPJPE) but use different ways of
alignment to the ground truth. For PA-MPJPE, we rigidly
align the estimated pose of each frame to the ground truth
pose Pseq using P̂seq with Procrustes analysis [17]. For BA-
MPJPE, we first resize the bone length of each frame in
sequences P̂seq and Pseq to the bone length of a standard
skeleton. Then, we calculate the PA-MPJPE between the
two resulting sequences. For Global MPJPE, we globally
align all the poses of each batch (100 frames) to the ground
truth using Procrustes analysis. Each metric has its own fo-
cus. The PA-MPJPE measures the accuracy of a single pose
while BA-MPJPE eliminates the effects of body scale. The
global MPJPE calculates the accuracy of global joint posi-
tions, considering the global translation and rotation.

4.3. Comparison with State-of-the-art Results

Table 1 compares our approach with previous state-of-
the-art single-frame-based methods on our dataset and the
indoor sequence of Mo2Cap2 dataset. Since the code or
the predictions of xR-egopose are not publicly available,
we use our implementation instead. In order to obtain the
global pose for Mo2Cap2 and xR-egopose, we rigidly trans-
form the local predictions to the world coordinate system
with the camera pose estimated by SLAM. This global pose
is regarded as our main baseline and denoted as Mo2Cap2

(or xR-egopose) + SLAM. Since the camera poses from
ORB-SLAM2 are ambiguous to the scene scale, we further
estimate the scale by calibrating the camera position with a

Method Global
MPJPE

PA-
MPJPE

BA-
MPJPE

Mo2Cap2 test dataset
Mo2Cap2+SLAM 117.4 80.48 61.40
Mo2Cap2+SLAM+Smooth 113.0 76.92 58.25
Mo2Cap2+Ours 110.5 69.87 52.90
xR-egopose+SLAM 114.0 71.33 55.43
xR-egopose+SLAM+Smooth 112.2 70.27 54.03
xR-egopose+Ours 110.1 66.74 50.52
Our test dataset
Mo2Cap2+SLAM 141.8 102.3 74.46
Mo2Cap2+SLAM+Smooth 135.5 96.37 70.84
Mo2Cap2+Ours 119.5 82.06 62.07
xR-egopose+SLAM 163.4 112.0 87.20
xR-egopose+SLAM+Smooth 158.1 109.6 84.70
xR-egopose+Ours 134.1 84.97 64.31

Table 1. The experimental results on Mo2Cap2 test dataset [45]
and our test dataset. Mo2Cap2 (or xR-egopose) + Ours is the
result of our method based on the predictions of Mo2Cap2 (or
xR-egopose). Our method outperforms previous state-of-the-art
Mo2Cap2 [45] and xR-egopose [43] in all of the three metrics.

checkerboard in the first few frames of the sequence. Note
that since the Mo2Cap2 dataset does not provide frames
with a checkerboard, we applied the Procrustes analysis to
align the trajectory estimated by SLAM with the ground
truth trajectory to compute the scale. For a fair compar-
ison, we also smoothed the global pose of Mo2Cap2 and
xR-egopose with a Gaussian filter and denote the results as
Mo2Cap2 (or xR-egopose) + SLAM + smooth.

From these comparisons, we observe significant im-
provements, which proves that our method can improve the
accuracy of pose estimation results from egocentric videos.
Please also refer to the supplementary materials for the BA-
MPJPE on each type of motion. For the qualitative evalu-
ation, we show the comparison between Mo2Cap2 and our
method (based on Mo2Cap2) in Fig. 5. Please also see our
supplementary video for more results. Our method also fea-
tures the ability to estimate the global body pose, which is
shown in Fig. 6 and our supplementary video. In Fig. 6 we
demonstrate the accuracy of our global pose estimation by
projecting the predicted global pose to an external camera.

4.4. Ablation Study

We further conduct experiments to evaluate the effects of
individual components of our approach. We use Mo2Cap2

as our local pose estimator for all our ablation studies to
make the results comparable.

Local/ global pose optimizer. In this experiment, in or-
der to investigate the efficacy of our local and global op-
timizer, we evaluate our method after removing the local
pose optimizer or the global pose optimizer from our whole



Input Image Input Image Input ImageMo2Cap2 + SLAM Ours OursMo2Cap2 + SLAM Ours Mo2Cap2 + SLAMMo2Cap2 + SLAM 
+ Smooth

Mo2Cap2 + SLAM + 
Smooth

Mo2Cap2 + SLAM 
+ Smooth

Figure 5. Qualitative comparison on the accuracy of a single pose. From left to right: input image, Mo2Cap2 result projected with SLAM
(green), smoothed Mo2Cap2 result projected with SLAM (green) and our result (green) overlaid on ground truth (red). Note that in order
to better show the result, we rigidly align the estimated pose to the ground truth.

Figure 6. Global pose estimation results from a third-view camera. Top row: the input egocentric images, bottom row: the estimated 3D
pose projected on an external camera.

Method Global MPJPE PA-MPJPE BA-MPJPE
Mo2Cap2 + SLAM 141.8 102.3 74.46
w/o local optim. 134.7 96.33 70.77
w/o global optim. 123.1 84.99 64.10
w/o motion prior 128.1 92.31 68.10
w. GMM 125.0 90.12 67.50
w. single frame VAE 122.2 87.04 65.58
w. VAE in VIBE 126.7 86.48 66.46
w. VAE in MEVA 121.6 84.49 63.69
w. MLP based VAE 122.2 85.07 65.05
conventional reproj. 128.2 89.97 67.99
Mo2Cap2 + Ours 119.5 82.06 62.07

Table 2. The quantitative results of ablation study.

pipeline. The results are shown in the 2nd and 3rd row of
Table 2, which shows that both of the modules are important
to our approach. The heatmap reprojection error in the lo-
cal pose optimizer ensures that the optimized 3D pose con-
forms to the constraint of 2D predictions. The VAE prior
in the global pose optimizer keeps the movement of body
limbs in accordance with the global camera pose, thus im-
proves both on the global MPJPE and the local MPJPEs.

Motion priors. In order to validate the importance of mo-
tion priors, we test the performance of our optimization

framework without our motion priors by directly optimiz-
ing 3D pose Pseq with E(Pseq) rather than optimizing the
VAE’s latent vector z. We evaluate the method without mo-
tion prior on our dataset and show one of our results in
Fig. 7. In this figure, the human leg in the input image
is severely occluded. The ambiguity of the image signifi-
cantly reduced the accuracy of our single-frame pose esti-
mation network. Without the motion prior, our optimiza-
tion framework cannot resolve the ambiguity and the error
is still large, while in our method, the motion prior is able to
correct the estimated pose. The qualitative evaluation in the
4th row of Table 2 also confirms our claim. With the motion
prior, our spatio-temporal optimization framework is able to
make pose predictions smoother and less ambiguous.

We also compared our prior with the gaussian mixture
model (GMM) prior used in [3, 2, 20] and the single-frame
VAE prior used in [34]. When comparing with GMM prior,
we firstly train the GMM model with 8 Gaussians on the
local pose sequence (local GMM) and the global pose se-
quence (global GMM) from the AMASS dataset. Then we
substitute the local and global VAE in our method with the
local and global GMM and evaluate three MPJPEs, which
is shown in the 5th row of Table 2. GMM prior performs
worse since the VAE uses the neural network as a feature
extractor, making it easier to capture priors. When compar-



Input Image Mo2Cap2+ SLAM w/o motion prior Ours

Figure 7. Comparison between our method with and without mo-
tion prior. From left to right: input image, Mo2Cap2 + SLAM
(green), the result without motion prior (green) and the one with
motion prior (our result) (green) overlaid on the ground truth (red).

Figure 8. E(Pseq)-iteration curve of different VAEs. Our method
gives the lowest error while keeping stable during optimization.

ing with single-frame based VAE prior, we train a VAE net-
work taking a single input pose on the AMASS dataset and
substitute the VAE in the local optimizer with the single-
frame VAE. The evaluation result is shown in the 6th row
of Table 2. The single-frame VAE cannot capture the prior
over time, making it less effective than our sequential VAE.

CNN based sequential VAE. We use the CNN-based se-
quential VAE rather than RNN-based VAE for better effi-
ciency and optimization stability. To evaluate our advan-
tage, we substitute our CNN-based sequential VAE in both
the local and global optimizer with the VAEs in VIBE [19]
or MEVA [25] (see supplementary materials for implemen-
tation details), and report the results in the 7th to 9th rows
of Table 2. The result proves that our CNN-based VAE out-
performs others in terms of optimization accuracy, which
can be attributed to a more stable optimization process. To
demonstrate this, we show the the E(Pseq)-iteration curve
of local pose optimization process (Sec. 3.2.2) in Fig. 8,
where RNN-based VAEs are less stable due to the gradi-
ent explosion issue. To show the efficiency of CNN-based
VAE, we evaluated the time needed for the optimization.
Our method takes 195.7ms per 10-frame segment while
RNN-based VAE in VIBE and MEVA takes 552.1ms and
1139.4ms per segment respectively. We also compared our
CNN-based VAE with multilayer perceptron (MLP) based
VAE. According to Fig. 8 and the 10th row of Table 2, the
MLP-based VAE performs worse since it is not designed to

2D detections Right hand heatmap Comparison Zoomed Comparison

Figure 9. Comparison between heatmap reprojection error and
conventional reprojection error. In the 3rd and 4th image from left,
we show the result of heatmap reprojection error in green skeleton
and result of conventional reprojection error in blue skeleton.

capture the temporal context of the pose sequence.

Heatmap reprojection error. In this work we use the
heatmap reprojection error while a lot of previous works get
the reprojection error by calculating the distance between
estimated 2D joints and corresponding projected 3D joints
[2, 3, 34, 50]. To evaluate the improvement of heatmap re-
projection error over the previous approach, we substitute
the heatmap reprojection error in our pipeline with the con-
ventional reprojection error in [3] and compare this with our
method. In the qualitative evaluation shown in Fig. 9, the
2D pose estimation gives wrong results for the right-hand
position while the ground truth hand position is still covered
by the heatmap. Our heatmap reprojection error can lever-
age such uncertainty in the heatmap and gives better results
than the conventional reprojection error. We also show the
quantitative result in the 10th row of Table 2. These results
validate the advantage of our heatmap reprojection error.

5. Conclusions

In this paper, we propose a method for estimating global
poses with a single head-mounted fisheye camera. This
is achieved by employing novel strategies in our spatio-
temporal optimization framework: (1) a sequential VAE to
effectively capture the body motion prior. (2) a global mo-
tion prior to ensure consistency between the local body mo-
tion and the camera poses. (3) a heatmap-based reprojection
error term to leverage the uncertainty in predicted heatmaps.
Extensive experiments show that our method outperforms
state-of-the-art methods. We further evaluate the effects of
individual components of our approach.

In future work, we will study the solutions to this prob-
lem such as the integration of depth sensors. Other future
research directions include using the optimized 3D pose in
real world to finetune the local pose estimation network and
applying our method to the multi-person scenario.
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