
Egocentric Global Pose Estimation
Supplementary Material

Jian Wang1,2 Lingjie Liu1,2 Weipeng Xu3 Kripasindhu Sarkar1,2 Christian Theobalt1,2

1MPI Informatics 2Saarland Informatics Campus 3Facebook Reality Labs
{jianwang,lliu,ksarkar,theobalt}@mpi-inf.mpg.de xuweipeng@fb.com

1. Implementation Details
1.1. Sequential VAE

The input pose sequence with n frames is firstly reshaped
to (3× 15, n) and fed into the encoder with 45 input chan-
nels. The encoder has five 1D conv blocks with 64, 64, 128,
256 and 512 output channels. Each conv block contains
one 1D conv layer (kernel size=3, stride=1 and padding=1),
one batch norm layer and one leaky relu layer with negative
slope=0.01. The output of the encoder is sent into two linear
layers giving µ, σ ∈ R2048. The latent vector z is sampled
with µ, σ with the reparameterization trick.

For the decoder, the sampled latent vector z is firstly fed
into a linear layer with output dimension n × 512, and five
1D de-conv blocks with 256, 128, 64, 64 and 64 output
channels. Each block contains one 1D de-conv layer, one
batch norm layer and one leaky relu layer with the same
hyper-parameters as the encoder. The output vector with 45
channels is obtained from a final conv layer (kernel size=3,
stride=1 and padding=1). The output vector is eventually
reshaped to (n, 15, 3), representing a pose sequence as the
input.

During training, the weight of reconstruction loss and
KL divergence loss is set to 1 and 5 × 10−3 respectively.
The code will be released in the future.

1.2. Optimization Details

In local and global pose optimization frameworks, we
optimize the latent vector z by using a PyTorch imple-
mentation and the Limited-memory BFGS optimizer (L-
BFGS) [3] with strong Wolfe line search. We use a learn-
ing rate of 2.0 with 30 maximum iterations. We initialise
z using the results of the single-frame egocentric pose es-
timation network z = fenc(Pseq). After optimization, the
output pose sequence is reconstructed from the optimized z
with a VAE decoder fdec(z).

For each long sequence, we firstly split it into several
overlapping segments with length B and process each seg-
ment independently. After two adjacent segments are pro-
cessed, we merge the overlapping part between these seg-

ments in a linear combination way. For a segment with
length B = 10, the local pose optimizer, running on 10-
frame segments, takes 120.0 ms per segment while the
global pose optimizer takes 75.7 ms per segment. Our opti-
mization process is time-efficient thanks to the simple VAE
network and GPU-based optimization algorithm. All afore-
mentioned time is measured on a computer with Xeon 6144
CPU and Tesla V100 GPU.

2. Details and Comparisons of the Test Dataset
Our test set has 12200 frames in total, which consists of

5 sequences of 2 actors wearing different clothes perform-
ing 13 types of actions (see Table 2 and Table 3). Compared
with the Mo2Cap2 test set and the xR-egopose test set (un-
released), our test set contains more types of actions and
more data with global motions. The Mo2Cap2 test set con-
tains 5591 frames (2 actors performing 8 types of actions).
The xR-egopose test set has 10k frames (3 actors perform-
ing 6 types of actions).

3. Comparisons on Different Types of Motions
In Table 1 of our main paper, we show the quantita-

tive comparison between our method and the state-of-the-
art methods: Mo2Cap2 and xR-egopose. In order to further
compare the performance on different types of motions, we
show the quantitative comparison on Mo2Cap2 [6] in Ta-
ble 1. The comparisons on different motions of our test
dataset is shown in Table 2 and Table 3. In these tables, we
also show the BA-MPJPE results of the smoothed global
pose of Mo2Cap2 and xR-egopose to give a fair compari-
son. In the aforementioned results, our method outperforms
all of the baselines on every type of motion.

4. The Structure of RNN-based VAEs
In the Sec. 4.4 of the main paper, we compared the

performance of our CNN-based sequential VAE with the
MLP-based VAE and RNN-based VAEs in VIBE [1] and
MEVA [2]. We will describe the implementation details of
the aforementioned VAEs in this section.

Method walking sitting crawling crouching boxing dancing stretching waving total (mm)
Mo2Cap2+SLAM 38.41 70.94 94.31 81.90 48.55 55.19 99.34 60.92 61.40
Mo2Cap2+SLAM+Smooth 37.35 64.45 87.41 69.68 45.19 54.76 90.89 49.41 58.25
Mo2Cap2+Ours 35.39 60.83 75.45 63.15 40.14 53.05 84.96 44.10 52.90
xR-egopose+SLAM 39.69 63.64 64.90 61.22 47.87 58.37 84.64 53.99 55.43
xR-egopose+SLAM+Smooth 38.68 63.20 63.84 60.49 46.53 57.20 84.19 52.58 54.03
xR-egopose+Ours 33.66 60.34 62.33 55.67 44.24 51.29 82.63 46.81 50.52

Table 1. The BA-MPJPE of different types of motions on the indoor sequence of Mo2Cap2 dataset [6]. When based on the local poses
estimated by Mo2Cap2, our approach improves the Mo2Cap2 [6] results by 13.8% (8.5 mm); when based on the local poses estimated by
xR-egopose [5], our method improves the xR-egopose results by 8.9% (4.9 mm).

Method Mo2Cap2

+SLAM
Mo2Cap2

+SLAM
+Smooth

Mo2Cap2

+Ours

walking 69.68 66.68 57.30
running 77.88 74.14 66.78
crouching 63.28 60.76 56.05
boxing 79.37 75.59 67.57
dancing 82.65 76.88 61.43
stretching 117.7 114.9 107.5
waving 53.14 49.31 42.77
playing balls 60.95 57.69 53.30
open door 55.88 53.33 46.27
play golf 113.8 104.4 94.17
talking 53.93 50.65 48.16
shooting arrow 67.07 62.82 57.58
sitting 83.24 78.70 50.89
total (mm) 74.46 70.84 62.07

Table 2. The BA-MPJPE of different types of motions on our
test set. When based on Mo2Cap2 [6], our approach outperforms
Mo2Cap2 results by 16.6% (12.4 mm).

Method xR-egopose
+SLAM

xR-egopose
+SLAM
+Smooth

xR-egopose
+Ours

walking 84.20 82.96 60.72
running 76.78 74.43 64.92
crouching 96.86 96.53 75.11
boxing 85.74 83.67 63.45
dancing 94.23 92.42 64.78
stretching 119.9 119.7 116.3
waving 72.66 71.83 46.38
playing balls 95.30 93.94 58.49
open door 71.70 70.80 45.86
play golf 94.41 92.58 83.25
talking 78.10 75.84 46.90
shooting arrow 76.75 74.82 57.86
sitting 69.10 63.89 55.97
total (mm) 87.20 84.70 64.31

Table 3. The BA-MPJPE of different types of motions on our test
set. When based on xR-egopose [5], our method outperforms xR-
egopose results by 26.2% (22.9 mm).

RNN-Based VAE in VIBE The VIBE [1] explored the
performance of RNN-based VAE as a loss term in the train-

ing of the VIBE network. At time step t, the body pose Pt

with shape (15, 3) is firstly flattened and put in the encoder.
The encoder gives the µt, σt ∈ R2048 and the latent vector
zt is sampled from them. The latent vector zt is put into the
decoder and reconstructs the body pose Pt at time step t.
The encoder and decoder are two-layer GRU networks with
512 hidden dimensions.

RNN-Based VAE in MEVA The structure of RNN-based
VAE is shown in [2] and the code is released in https:
//github.com/ZhengyiLuo/MEVA. We directly use
their implementation in our experiment.

Note that the structure of RNN-based VAE in MEVA is
different from the VAE in VIBE. The VAE in VIBE get dif-
ferent µ and σ for each time step and use the different latent
vector z as the decoder input for each time step. In the VAE
of MEVA, the latent vector is obtained with a pooling layer
and works as the first input of the RNN-based decoder.

MLP-Based VAE The input pose sequence with n frames
is firstly reshaped to a vector with length n × 15 × 3 and
fed into the encoder with n × 15 × 3 input dimensions.
The encoder has five 1D fully connected blocks with 512,
512, 1024, 2048 and 2048 output dimensions. Each fully
connected block contains one fully connected layer, one
batch norm layer and one leaky relu layer with negative
slope=0.01. The output of the encoder is sent into two linear
layers giving µ, σ ∈ R2048. The latent vector z is sampled
with µ, σ with the reparameterization trick.

For the decoder, the sampled latent vector z is firstly fed
into a linear layer with 2048 output dimension, and five 1D
fully connected blocks with 2048, 2048, 1024, 512 and 512
output channels. Each block contains one fully connected
layer, one batch norm layer and one leaky relu layer with the
same hyper-parameters as the encoder. The output vector
is obtained from a final fully connected layer. The output
vector is eventually reshaped to (n, 15, 3), representing a
pose sequence as the input.

https://github.com/ZhengyiLuo/MEVA
https://github.com/ZhengyiLuo/MEVA

5. Design Choices of Our Method
In this section, we explore some design choices of our

method.

With VAE Prior Loss Different from previous optimiza-
tion schemes based on priors captured by VAE [4] or nor-
malizing flow [7], we do not use any prior error Eprior =
‖z‖2 to maximize the probability of the latent vector in the
Gaussian-distributed latent space. That is because such a
prior error encourages the latent vector z closer to 0, which
would make the pose stay close to a single mean pose, thus
incurring unnecessary errors. To validate this analysis, we
add the prior error with several different weightswvae in our
energy function and show the MPJPEs in the 3rd to 5th row
of Table 4. From the experimental result, we can see that all
the three errors rise as we increase the prior weight and that
the errors converge to our proposed method when the prior
weight approaches 0. This verifies our claim that the VAE
prior error is harmful to our optimization algorithm.

Optimize Pseq In our optimization algorithm, we opti-
mize the latent vector of VAE z and get the final prediction
Pseq with the VAE decoder fdec. An alternative optimiza-
tion strategy is to optimize pose sequence Pseq directly, cal-
culate the latent vector z with VAE encoder fenc and incor-
porate prior term with Eprior = ‖z‖2. To compare these
approaches, we report the direct optimization result in the
6th row of Table 4. It shows a better result is achieved when
the optimization is performed in the latent space, which is
consistent with the conclusion [7] in previous research.

Method Global MPJPE PA-MPJPE BA-MPJPE
Mo2Cap2 141.8 102.3 74.46
wvae=1e-3 176.3 105.2 70.42
wvae=5e-4 136.5 89.20 64.86
wvae=1e-5 121.1 83.40 62.53
optimize Pseq 128.1 92.32 68.10
Ours 119.5 82.06 62.07

Table 4. The quantitative results of different design choices.

6. Limitation of Our Method
As a common limitation for the SLAM methods, our

global camera pose estimation requires an environment with
rich visual features. Featureless scenes such as white walls
and green screens can lead to unreliable camera poses. Al-
though our method fails in the featureless background, it
performs well for real-life scenarios as shown in the sup-
plementary video. We encourage the reader to watch our
supplementary video (starting from #5:55) for our global
pose estimation for various motions and daily life activities
in various environments.

References
[1] Muhammed Kocabas, Nikos Athanasiou, and Michael J.

Black. VIBE: video inference for human body pose and shape
estimation. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 5252–5262, 2020. 1, 2

[2] Zhengyi Luo, S. Alireza Golestaneh, and Kris M. Kitani. 3d
human motion estimation via motion compression and refine-
ment. In Proceedings of the Asian Conference on Computer
Vision (ACCV), November 2020. 1, 2

[3] Jorge Nocedal and Stephen Wright. Numerical optimization.
2006. 1

[4] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo
Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 10975–10985,
2019. 3

[5] Denis Tomè, Patrick Peluse, Lourdes Agapito, and Hernán
Badino. xr-egopose: Egocentric 3d human pose from an HMD
camera. In IEEE International Conference on Computer Vi-
sion, pages 7727–7737, 2019. 2

[6] Weipeng Xu, Avishek Chatterjee, Michael Zollhöfer, Helge
Rhodin, Pascal Fua, Hans-Peter Seidel, and Christian
Theobalt. Mo2cap2: Real-time mobile 3d motion capture
with a cap-mounted fisheye camera. IEEE Trans. Vis. Comput.
Graph., 25(5):2093–2101, 2019. 1, 2

[7] Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu,
William T. Freeman, Rahul Sukthankar, and Cristian Smin-
chisescu. Weakly supervised 3d human pose and shape recon-
struction with normalizing flows. In European Conference on
Computer Vision, volume 12351, pages 465–481, 2020. 3

